
Low Power State Assignment Targeting Two-

and Multi-level Logic Implementations

Chi-Ying Tsui

Department of Electrical and Electronic Engineering

Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong

Massoud Pedram, Alvin M. Despain

Department of Electrical Engineering - Systems

University of Southern California

Los Angeles, CA 90089

Abstract

The problem of minimizing power consumption during the state encoding of a �nite

state machine is addressed. A new power cost model for state encoding is proposed

and encoding techniques that minimize this power cost for two- and multi-level logic

implementations are described. These techniques are compared with those which mini-

mize area or the switching activity at the present state bits. Experimental results show

signi�cant improvements.

1

1 Introduction

In this era of portable electronics applications, power consumption has become an im-

portant criterion for designing electronic circuits. Recently optimization methods for

low power have been developed for di�erent levels of design hierarchy ranging from

technology selection, architectural transformation, logic synthesis and physical design.

In this work, we address the problem of minimizing power consumption of a sequential

machine. Since the switching activity and hence the power consumption of a �nite state

machine (FSM) is strongly dependent on the state transition behavior and thus the

state encoding of the machine, we are particularly interested in developing encoding

algorithms which will ultimately give a low power implementation after logic synthesis.

It is known that the state assignment of an FSM has a signi�cant impact on the area

of the �nal implementation. Intensive research on minimizing area during the state

assignment has been conducted in the past ten years. The problem is NP-hard; indeed,

the optimum assignment can be found by exhaustively enumerating all the possible

assignments, carrying out logic synthesis for each assignment and then picking the one

that has the least area. This method is computationally too expensive. Approximate

methods have therefore been developed which rely on approximate pre-logic synthesis

cost functions in order to avoid the expensive logic minimization step. Traditionally,

state assignment has been formulated as a hypercube embedding problem. Initially,

codes of minimum length were assigned to the state variable and then logic optimization

is performed on the combinational part implementation derived from the encoding. In

contrast to this approach, DeMicheli et al. [8] proposed an innovative paradigm in which

one-hot codes are assigned to states and a minimum symbolic (multi-valued) cover of

the machine is then generated by output-disjoint minimization. This symbolic cover

de�nes a set of face embedding constraints which require that certain states be given

codes that lie on the same face of a hypercube of minimum (or given) dimensionality.

For two-level logic implementation, if these constraints are satis�ed, then the number of

cubes in the minimum binary cover of the �nal implementation will be upper bounded

by that in the minimum symbolic cover. The minimum area state encoding problem

for two-level logic is then relaxed to the problem of �nding the minimum number of

encoding bits such that all the constraints are satis�ed. DeMicheli [7] used a heuristic

row encoding technique to solve this problem. Villa et al. [14] employed the notion

of face-posets to tackle this problem. Yang et al. [15] transformed the problem into

a unate covering problem (covering seed dichotomies by a minimum-cost set of prime

dichotomies) and solved it using a heuristic technique. Devadas et al. [3] proposed an

exact method based on the concept of generalized prime implicants.

A variation on the state assignment problem is the bit-constrained state assignment

2

where an encoding is to be found that minimizes the area subject to the constraint that

the number of encoding bits is no larger than a user speci�ed value. This problem is

again NP-hard and heuristic methods are used to obtain a solution. A common approach

is to use simulated annealing [5].

As in any implementation of simulated annealing, we need to specify the initial solution,

the move generation, the cost calculation, the cooling schedule, and the stopping crite-

rion. For state assignment, the initial solution is some random state encoding; moves

are generated by randomly
ipping bits of the current encodings; the cost is calculated

so as to mimic the cost after the logic optimization targeting two- or multi-level logic

realizations; the temperature is decreased according to the simple rule Tnew = �T where

0 < � < 1. The search at a given temperature is terminated after a �xed, known number

of moves while the simulated annealing procedure is terminated if in the last k steps (in

our case k = 4), no improvement in the cost function is achieved. Among the above,

the most critical and computationally demanding procedure is the cost calculation pro-

cedure. The quality of the solution depends on how good the cost function captures the

�nal objective function.

For two-level logic implementation, nova [14] used the number of unsatis�ed constraints

weighted by their occurrence frequency in the symbolic cover as the cost function. For

multi-level logic implementation, a cost function that re
ects higher cube sharing is

used. In particular, jedi [6], mustang[2] and muse [4] assigned weights to pairs of

states which re
ect the number of literals that can be saved if the pair of states is

encoded with a speci�c Hamming distance. They then use the sum of the weights over

all pairs of states as the cost function.

In CMOS circuits, dynamic power consumption of a gate is given by:

Pavg =
0:5V 2

dd
CloadEswitching

Tcycle
(1)

where Tcycle is the cycle time, Cload and Eswitching are the load capacitance that the gate

is driving and the expected switching activity at the gate output, respectively. State

encoding for low power is harder than that for minimum area since it has to consider

both area and switching activity at the same time and the switching activity is not

known until the encoding is determined.

Roy et al. addressed the problem of reducing the switching activity during state assign-

ment in [10]. They assumed the power consumption is proportional to the switching

activity on the state bit lines of the machine and hence used the following cost function:

X
Si;Sj2S

tpijH(Si; Sj)

3

where tpij is the global state transition probability from state Si to state Sj andH(Si; Sj)

is the Hamming distance between the encodings of the two states. We denote the

encoding obtained by this method as the minimumweighted Hamming distance encoding

(MWHD). The shortcoming of the above approach is that it minimizes the switching

on the present state bits without any consideration on the loading of the state bits and

the power consumption in the resulting two- or multi-level logic realization of the next

state and output parts of the FSM.

From equation (1), power consumption depends on both the capacitance and switching

activity of the gate (in fact the product of the two). So methods only minimizing either

one of these two parameters only solve half of the problem and hence will not give an

optimal solution. Instead we have to minimize the weighted switching activity of the

circuits (weighted by the capacitance load) in order to reduce the power consumption.

In an attempt to account for power consumption in the combinational logic, Olson et al.

[9] used a linear combination of the switching activity and the number of literals as cost

function. The drawback of this approach is that it considers the loading and switching

activity separately and hence does not directly address the problem of minimizing the

weighted switching activity. In addition since the number of literals and the switching

activity are two quantities of very di�erent nature, a linear combination of the two may

not work very well.

In this paper, we consider the bit-constrained state assignment problem for low power.

Simulated annealing is used for the search strategy. We �rst present a power cost model

for state assignment which considers both the capacitive loading and the switching

activity simultaneously. We then propose accurate power cost functions for both two-

and multi-level logic implementations. For two-level logic using PLA implementations,

the dichotomy-based approach of [15] is extended to calculate the proposed power cost

function. The impact of the PLA type on the power cost function is also described. For

multi-level logic implementation, the cost function of [6] is modi�ed to take into account

the weighted switching activity at the inputs of the FSM.

The remainder of the paper is organized as follows. Section 2 gives our terminology. The

power cost model is described in Section 3. The low power state assignment algorithms

for two-level logic and multi-level logic using this power cost model are presented in

Sections 4 and 5. Experimental results and conclusions are given in Sections 6 and 7.

2 Terminology

A FSM is characterized by 5-tuples (X;Y; S; �; �), where

4

X = fxiji = 1; nXg set of primary inputs,

Y = fyiji = 1; nY g set of primary outputs,

S = fSiji = 1; nSg set of internal states,

� : X � S ! Y output function

� : X � S ! S next state function (Mealy machine).

The state encoding length for S is denoted by nE(� dlog2 nSe). The FSM is represented

by a state transition table M = fmijmi = (xi; Si; S
0
i
; yi); i = 1; : : : ; nMg, where S 0

i
2 S

is the next state. Each entry mi 2 M is a symbolic cube (or a multi-valued cube)

of the FSM. The state transition table can be represented by a state transition graph

G(V;E;W (E)), where

V = fvijvi 2 Sg set of vertices (state),

E = fei;j = (vi; vj)jvi; vj 2 V g set of edges joining vi and vj
where there is a transition from Si to Sj,

W (E) = fxi=yjjxi 2 X; yj 2 Y g labels on each edge denoting transition under

input xi, producing output yj

The FSM can be also viewed as a discrete-state discrete-transition Markov process. The

state probability PSi of a state Si, which is de�ned as the probability that the state is

visited in an arbitrarily long random sequence, can be obtained by solving the following

Chapman-Kolomgorov equations

PSi =
P

j2IN STATE(i) pjiPSj i = 1; 2; : : : ;M � 1

1 =
P

j
PSj

where IN STATE(i) is the set of fanin states of i in the STG and pji is conditional

probability that the next state is Si given the present state is Sj.

The global state transition probability tpSi;Sj between two states Si and Sj is de�ned as

the probability that the transition from Si to Sj occurs in an arbitrarily long sequence

and is given by

tpSi;Sj = PSipij :

The notion of global state transition probability can be generalized to transition between

two sets of states. The global state transition probability between two sets of states

Xi � S and Xj � S is de�ned as

TP (Xi ! Xj) =
X
Si2Xi

X
Sj2Xj

tpSi;Sj : (2)

5

The switching activity of the state bit line depends on the state encoding and the state

transition probabilities. The transition probability �pbi(Ebi
) of a state bit line bi is given

by

�pbi = TP (ONEi ! ZEROi) + TP (ZEROi ! ONEi) (3)

where ONEi and ZEROi are the set of states whose encodings have the ith bit equal

to 1 and 0, respectively.

3 A Power Consumption Model for FSMs

Figure 1 shows a typical implementation of a �nite state machine which consists of a

combinational circuit and a set of state registers. The sources of power consumption in

this implementation are highlighted in the �gure and explained below.

Preg is the power consumption at the state registers and is given by

Preg =
X

bi2state bits

CregEbi
(4)

where Creg is the input capacitance of the state register and Ebi
is the switching activity

of state bit line bi which is calculated from equation (3).

Pinputs is the power consumption required to drive the combinational inputs and the

state bit inputs of the combinational part of the machine. It depends on the switching

activity of the state bit lines and the number of combinational input and state bit literals

in the logic implementation and is given by

Pinputs =
X

bi2state bits

niClitEbi
+
X
j2PI

njClitEj (5)

where ni and nj are the number of literals that input lines bi and j are driving, Clit is

the e�ective capacitance due to each literal, Ebi
and Ej are the switching activities of

bi and j, and PI is the set of combinational inputs.

Pcomb is the power consumption in the combinational circuit itself and is given by

Pcomb =
X

n2NODES

CnEn (6)

where Cn is the e�ective capacitance that node n is driving, En is the switching activity

of node n, and NODES is the set of internal nodes of the circuit.

6

Figure 1: Power model for �nite state machines.

Poutputs is the power consumption at the combinational outputs of the circuits and is

given by

Pout =
X
o2PO

CoEo (7)

where Co is the e�ective capacitance that output o is driving, Eo is the switching activity

of output o, and PO is the set of circuit primary outputs.

The total power consumption of the �nite state machine is therefore equal to

Ptotal = Preg + Pinputs + Pcomb + Poutputs: (8)

Under a zero delay model where glitches are neglected,Eo only depends on the state tran-

sition probabilities and is independent of the state encoding and the circuit implementa-

tion. In addition, Co is �xed and independent of the implementation. Therefore Pout is

constant and independent of the state encoding and can be dropped when comparing the

power costs for di�erent state encodings. We therefore minimize Preg + Pinputs + Pcomb:

State encoding schemes that minimize the Hamming distance between state pairs with

high transition probabilities tend to minimize Ebi
and hence Preg. On the other hand,

these schemes may increase the fanouts of state bit lines and the number of nodes in the

combinational part, and hence increase Pinputs and Pcomb which will in turn o�set the

reduction in Preg. As a result, these methods do not in general produce power optimal

7

assignments. Similarly, state encoding schemes that minimize area tend to reduce the

fanouts of state bit lines and the number of nodes in the combinational part. They do

not however consider the switching activity, and again do not produce power optimal

assignments.

4 Two Level Logic Implementation

In this paper, we tackle the bit-constrained state assignment problem, i.e. given the

number of state bits, we �nd the encoding which gives the smallest power consumption.

This is a similar problem to that solved by NOVA with the exception that here we

minimize power consumption whereas NOVA minimizes area. This problem is however

di�erent from the encoding problme in [8] where the authors �nd a minimal length

encoding that satis�es the encoding constraints after symbolic minimization.

In nova, the objective function is the number of unsatis�ed constraints weighted by

their occurrence frequency in the symbolic cover. For low power encoding, we should

derive an appropriate cost function. In the following subsection, we formulate the cost

function for the low power state encoding.

4.1 The Cost Function

Figure 2 shows a typical schematic for a 2 level logic circuit. For a two-level logic circuit,

there is one level of AND and one level of OR gates. The power consumption at the

outputs of the OR gates that drive the state registers can be included in Preg while

Pinputs and Pcomb can be lumped into a single term PAND where

PAND =
X

BI2logic cover

PBI (9)

and BI is a binary implicant of the logic cover.

Let the binary representation of BI consists of combinational inputs x = x1 : : : xn and

state bit input b1 : : : bm, PBI is given by

PBI = PinputsBI
+ PcombBI

(10)

where

PinputsBI
=

nX
i=1

CANDExi
+

mX
j=1

CANDEbj
(11)

8

Figure 2: Power model for two level logic.

9

and

PcombBI
= nORCOREBI (12)

where CAND and COR are the capacitance loading of a literal in the AND plane and

OR plane respectively, nOR is number of OR gates driven by the BI, and EBI is the

switching activity at the output of BI.

Therefore the total power cost function for a two-level logic circuit is equal to

Preg +
X

BI2logic cover

PBI: (13)

The type of PLA used for the implementation has a direct impact on the power cost

calculation. For dynamic PLA circuit using NOR-NOR structure which is commonly

used for implementing high performance controllers in microprocessors, the next state

bit lines that drive the state register switch when the corresponding dynamic NOR gates

at the OR plane switch. The dynamic NOR gate is precharged to 1 during the precharge

period and switches only when its output is evaluated to 0 during the evaluation period.

Since the output of the NOR gate is NSi, the switching probability of the next state bit

line NSi is equal to prob(NSi = 0). In addition, we have to include Pclock , which is the

power consumption at the clocked transistors for the precharge and evaluation of each

NOR gate. Therefore the PBI for two-level logic circuits implemented using a dynamic

PLA is equal to

PinputsBI
+ PcombBI

+ Pclock : (14)

For pseudo-NMOS PLA circuit using NOR-NOR structure, we have to include the power

consumption due to the short circuit current drawn through the NOR gate as this is the

major source of the power consumption. In this work, we only consider dynamic PLA

implementation.

Given a �nite state machine, we �rst assign one-hot codes to the states. Then symbolic

minimization is applied on the one-hot coded machine using multi-valued logic mini-

mization [12]. The result is a symbolic cover of the �nite state machine. Each element

of the symbolic cover is a prime symbolic implicant. A prime symbolic implicant is a

4-tuple (X;S; S0; Y) where S is the set of states which transit to the same next state S0

and assert the same output Y when the input combination is X. The set of states in

S de�nes a state group. The state group forms a face embedding constraint in which

if only the codes of these states lie on the same face of a hypercube, then the symbolic

implicant can be realized by a single binary cube. Figure 3a shows the state transi-

tion table for a �nite state machine and Figure 3b gives the symbolic cover and the

corresponding symbolic implicants after symbolic minimization.

10

Given a symbolic cover, we want to quickly calculate the power cost of a given encoding.

Preg is easy to compute since Creg is �xed and Ebi
can be computed from the encoding

using equation (3). However if we want to compute PAND exactly, we have to know

the exact implementation which will be known only after logic minimization. In way of

compromise, we use the power cost of the symbolic implicants to approximate PAND as

detailed next.

Let SI be a prime symbolic implicant. If SI is realized by a single binary implicant BI,

then the power cost of realization of this symbolic cube is

PSI = PBI : (15)

If the state group of SI is not satis�ed by the encoding, it requires more than one binary

implicant to realize SI. Let BI1 : : :BIq be the set of binary implicants that realize SI,

then the power cost of this realization is

PSI =
qX
i=1

PBIq : (16)

PAND is then given by

PAND =
X

SI2symbolic cover

PSI : (17)

The key issue is, of course, to �nd the minimum power implementation of a symbolic

implicant SI, i.e. �nding BI1; : : : ; BIq that minimize the power. It should be noted that

although the minimum power implementation of a symbolic implicant may not be the

same as its �nal realization after two-level logic minimization, it still serves as a good

estimate of the power savings potential of the given encoding for generating a low power

implementation of the symbolic implicant (as con�rmed by our experimental results).

To obtain the minimum power implementation of a symbolic implicant, we use the

concept of dichotomy that has also been used for state assignment targeting minimum

area [15].

4.1.1 De�nitions and Notation

We use the example shown in Figure 3 to illustrate the de�nitions and notation. In the

following we assume a FSM with S states where inputs and outputs are denoted by X

and Y respectively.

11

Figure 3: Example illustrating the de�nitions.

De�nition 4.1 A symbolic implicant is a 4-tuple < X;S; S0; Y > corresponding to com-

binational inputs, present states, next states and combinational outputs of the FSM, re-

spectively. After one-hot encoding of states and symbolic minimization, we obtain a set

of prime symbolic implicants such that each represents the grouping of states that are

mapped by some input combination into the same next state and assert the same output.

The S part of a prime symbolic implicant de�nes a set of states and is represented by

a string of ns 0's and 1's and is called a state group. The 1's in a state group identify

the states that belong to the group. A group dichotomy corresponding to a state group

is a two-block partition of states such that those states having a 0 in the state group

are in the left block and those having a 1 are in the right block. A seed dichotomy is a

dichotomy where the right block has exactly one element. If a state group has n 1's, its

corresponding group dichotomy is split into n seed dichotomies.

Example. In Figure 3, there are 7 group dichotomies, one for each symbolic impli-

cant. For SI1 the corresponding group dichotomy is (S2S3; S1S4S5) and the three seed

dichotomies are (S2S3; S1),(S2S3; S4) and (S2S3; S5), respectively.

De�nition 4.2 Given an encoding with k bits, each bit i de�nes two encoding di-

chotomies: one where all states whose ith bit are zero go to the left block of the encoding

12

dichotomy while the remaining states go to the right block; the other where left and right

blocks are exchanged. We use the notation edT
i
(li; ri) = edi(ri; li).

Example. In Figure 3, the encoding dichotomies for b1 are: edb1 = (S1S3; S2S4S5) and

edT
b1
= (S2S4S5; S1S3), those for b2 are: edb2= (S1S5; S2S3S4) and ed

T

b2
= (S2S3S4; S1S5),

and those for b3 are: edb3 = (S1S2S3; S4S5) and edT
b3
=(S4S5; S1S2S3).

De�nition 4.3 The partial coverage pcj;i of a seed dichotomy sdj = (lj; Sj) by an en-

coding dichotomy edi = (li; ri) is de�ned as:

pcj;i =

(
li \ lj if Sj 2 ri
� otherwise

In other words, pcj;i is the subset of states in lj that can be distinguished from Sj by

edi. Since all seed dichotomies of a group dichotomy have the same lj, hence we use the

notation pci to represent the partial cover of edi for a given group dichotomy.

Example. The partial coverage of the seed dichotomy (S2S3; S4) by the encoding

dichotomy (S1S3; S2S4S5) is (S3).

De�nition 4.4 A seed dichotomy sdj = (lj; Sj) is fully covered by a set of encoding

dichotomies ED = fed1; : : : ; edng if

[
edi2ED

pcj;i = lj (18)

Example. Encoding dichotomies (S1S2; S3S4) and (S1S3; S2S4) fully cover the seed

dichotomy (S2S3; S4).

De�nition 4.5 A set of encoding dichotomies satis�es a state group constraint if there

exists a subset ED of the encoding dichotomies which fully covers all the seed dichotomies

of the group dichotomy corresponding to the state group constraint.

Example. Encoding dichotomy (S1S3; S2S4S5) and (S1S5; S2S3S4) fully covers the

group dichotomies of the symbolic implicant SI2.

13

4.1.2 Finding a Minimum Cost Implementation of Symbolic Implicants

Given a state encoding, we want to �nd the minimumpower realization of every symbolic

implicant SI in the symbolic cover of the FSM. This problem is mapped to a rectangle

covering problem as follows. Let b1; : : : ; bn and ed1; : : : ; ed2n (where edn+i = edT
i
) be

the sets of state bits and their corresponding encoding dichotomies. Let gd = (zg; og)

be the group dichotomy of SI where zg and og denotes sets of states having 0's and 1's

in the state group of SI. Furthermore let SD = fsd1; : : : ; sdmg be the set of m seed

dichotomies of gd where sdj = (zg; Sj) and Sj is the j
th states in og.

A 2n�m covering matrix M is built where every row represents an encoding dichotomy

and every column denotes a seed dichotomy. If pcj;i 6= � then Mij is 1, else it is 0. A

rectangle (R,C) is de�ned as

8i2R^j2CMij = 1 (19)

where R � 1; : : : ; 2n and C � 1; : : : ;m. A valid rectangle (R,C) is a rectangle with

[i2R pci = zg: (20)

A valid rectangle (R,C) implies that the seed dichotomies in C can be realized by a

single binary cube consisting of the state bits in R. In other words, the state bits in R

can distinguish the symbols represented by the seed dichotomies in C from zg. Figure 3d

shows the covering matrix for SI1 and SI2, and illustrates the notion of a valid rectangle.

(f1g; f2; 3g) for SI1 is not a valid rectangle since zg = fS2; S3g and pc1 = fS3g 6= zg.

However rectangles (f1; 3g; f2; 3g) and (f3g; f3g) are both valid rectangles. In this

example, the group dichotomy SI1 cannot be covered by a single subset of encoding

dichotomies and hence cannot be realized by a single binary cube. In fact SI1 has to

be realized by �ib1b3 and �i�b2. For SI2 rectangle (f1; 2g; f1; 2g) fully covers all the seed

dichotomies and hence SI2 can be implemented by one single binary implicant ib1b2.

The minimum power realization problem can then be stated as �nding a valid rectangle

cover f(R1; C1); : : : ; (Rk; Ck)g such that the power cost is minimized. The power cost is

de�ned as

PSI =
X

(Ri;Ci)2f(R1;C1);:::;(Rk;Ck)g

PBI(Ri;Ci) (21)

where BI(Ri;Ci) is the corresponding binary implicant of (Ri; Ci).

A simpli�ed version of the valid rectangle covering problem is used in the kernelization

step of multi-level logic optimization and is shown to be NP-hard [11]. To solve the

valid rectangle covering problem, we therefore resort to a heuristic greedy approach.

We construct one valid rectangle at a time until all seed dichotomies are covered. In

14

constructing the valid rectangle, we pick one encoding dichotomy at a time until the

rectangle is valid.

For every rectangle used, there is some �xed power cost which is the power consumption

at the combinational primary inputs and the clocked-transistors. Therefore one goal is

to minimize the number of rectangles in the cover. The wider the rectangle, the higher

the chance of having a rectangle cover with smaller cardinality. The procedure is then

to look for the widest and least cost rectangle �rst. After a rectangle is chosen, we

eliminate the seed dichotomies which are covered by it. The procedure is repeated until

all seed dichotomies are covered.

To �nd the widest and least cost rectangle, we use the following procedure. The cost of a

rectangle depends on the number and the switching activity of the encoding dichotomies

used in the rectangle. A wide rectangle is formed from the encoding dichotomies that

cover the largest number of uncovered seed dichotomies. Also the larger the size of the

partial cover pcji of an encoding dichotomy edi, the higher the chance of using fewer

encoding dichotomies to form a rectangle. Therefore, we assign the following cost for

each encoding dichotomy

cost(edi) =
Eedi

seed coverage(edi)zero block coverage(edi)
(22)

where Eedi
is simply the switching activity of state bit i, seed coverage(edi) is the ratio

of the number of seed dichotomies covered by edi and the total number of the seed

dichotomies, and zero block coverage(edi) is the ratio of the number of states in zg
which are covered by edi and the total number of states in zg. In Figure 3d, the cost for

edb1 for SI1 is thus
Eb1

0:666�0:5
. If either seed coverage(edi) or group coverage(edi) is zero,

then di does not distinguish any states from zg and hence is redundant. Therefore its

cost is set to in�nity.

The encoding dichotomy with the least cost is chosen �rst. If the rectangle is not a valid

one, we have to continue the process of selecting more encoding dichotomies. Once an

encoding dichotomy is chosen, it sets an upperbound on the width of the �nal valid

rectangle and also reduces the number of uncovered seed dichotomies in zg. The costs of

the remaining dichotomies are updated dynamically as the width of the largest possible

rectangle R is now equal to the cardinality of the set of possible covered seed dichotomy.

Now R is equal to

\edi2EDselect
RC(edi) (23)

where EDselect is the set of selected encoding dichotomies and RC(edi) is the set of seed

dichotomies sdj such that Mi;j = 1.

Also since some of the states in zg have already covered by the selected edi in EDselect,

15

therefore zg has to be reduced by removing the states in the set

[edi2EDselect
pcedi (24)

where pcedi is the partial cover of edi.

The new seed coverage(edk) and zero block coverage(edk) of the unselected encoding

dichotomy edk are then obtained from the number of seed dichotomies in R which are

covered by edk and the number of states in the reduced zg which are covered by the

partial cover of edk.

5 Multi-Level Logic Implementation

5.1 The Cost Function

For area minimization, the objective of the state assignment is to minimize the number

of literals in the multi-level logic implementation. The literal saving cost function has

been well studied in [6] [2]. In these approaches, the present state weights are calculated

by grouping the symbolic cube M = (X;S; S0; Y) in a state transition table into the

following subsets:

CY

k;i
= fmj 2M jSj = Sk; (yj)i = 1g

CS
0

k;i
= fmj 2M jSj = Sk; S

0
j
= Sig

jCY

k;i
j (jCS

0

k;i
j) represents the occurrence frequency of state Sk in the output (next state)

functions.

Let nE be the number of state bits used for encoding. If the encodings of states Sk and

Sl have a Hamming distance of dk;l, then a common cube B with jBj = nE�dk;l literals

can be extracted from them.

For an output function yi, if we assume an unminimized, 1-level, 1-hot encoded repre-

sentation of the FSM, there are jCY

k;i
j and jCY

l;i
j fanins from Sk and Sl, respectively. The

literal saving of extracting a common cube B from Sk and Sl for this output function is

thus equal to

(jBj � 1)�k;l;i

where �k;l;i = jCY

k;i
j + jCY

l;i
j. Similarly, the literal saving for a next state function Sj is

equal to

(jBj � 1)�j
k;l;j

16

where
k;l;j = jCS
0

k;j
j + jCS

0

l;j
j and �j is the number of 1's in state Sj. The cost of

implementing the extracted cube is jBj. Therefore, the total literal saving of extracting
a common cube C from states Sk and Sl is

�k;l = f
nYX
i=1

�k;l;i +
nSX
j=1

�j
k;l;jg(jBj � 1) � jBj: (25)

This is the cost function used in JEDI [6] except that the last term in Eq. 25 is removed.

MUSTANG [2] approximates �j by nS=2, and uses multiplication instead of addition to

calculate the weight function.

For low power applications, we have to minimize Preg; Pinputs and Pcomb. We look at

Pinputs. For power conscious state assignment, state transitions with high probability

should be assigned higher weights. However the occurrence frequency of each state must

be considered as well because this frequency determines the number of fanouts from the

state bits (which also a�ects the power consumption). So instead of counting the number

of literals saved, we calculate a literal savings factor weighted by the switching activity

of the literals.

Consider two states Sk and Sl with a common cube B. The two state are encoded as

follows.

Sk = b1b2 : : : bm| {z }
B

j bm+1 : : : bnS| {z }
Bk

Sl = b1b2 : : : bm| {z }
B

j b0
m+1 : : : b

0
nS| {z }

Bl

The common cube B can be extracted from Sk and Sl as

Sk + Sl = B(Bk +Bl) = b1b2 : : : bm(bm+1 : : : bnS + b0
m+1 : : : b

0
nS
)

Let the set SB denote the set of states whose corresponding bits have the same binary

values as those in B and SB = S � SB. The notation Sbi stands for the set of states

whose ith encoding bit is 1.

The power saving at the primary and state input bits by extracting B from the present

states Sk and Sl is equal to the number of literals saved weighted by the switching

activity of the state bits in B. The literal power saving in Pinput is equal to

f
nYX
i=1

�k;l;i +
nSX
j=1

(�j
k;l;j)g
mX
q=1

TP (Sbq$Sbq)�
mX
q=1

TP (Sbq$Sbq): (26)

where TP (Sbq$Sbq) is simply Ebq .

17

However, B is now fanout to
P

nY
i=1 �k;l;i+

P
nS
j=1(�j
k;l;j) number of literals and the power

cost due to the extracted cube B is

f
nYX
i=1

�k;l;i +
nSX
j=1

(�j
k;l;j)gTP (SB$SB) (27)

where TP (SB$SB) is calculated by identifying SB and applying equation (2) on SB.

We have to subtract this power cost from the power saving at the input literals and

therefore the overall literal power saving when extracting a common cube B from states

Sk and Sl is given by

�P

k;l
= f

nYX
i=1

�k;l;i +
nSX
j=1

(�j
k;l;j)gf
mX
q=1

TP (Sbq$Sbq)� TP (SB$SB)g �
mX
q=1

TP (Sbq$Sbq):

(28)

Figure 4 illustrates an example of how the literal power saving is calculated for a speci�c

encoding when a common cube is extracted from a pair of states. The state transition

table and the corresponding state probabilities of the FSM are shown in Figure 4a and

4b, respectively. The calculation of �k;l;i and
k;l;j is demonstrated in Figure 4c. The

literal saving and the overall literal power saving when extracting a common cube B

from state S2 and S3 for the given encoding are shown in Figure 4d.

Unlike area minimization where the initial literal count is �xed, (i.e. it does not depend

on the actual encoding) and hence literal saving can be used as a metric for overall area

saving, the initial literal power consumption does depend on the encoding and hence

the above literal power saving alone does not re
ect the actual literal power cost. We

have to calculate the initial power cost Pinit and then subtract the literal power saving

to get the actual power cost. Therefore,

Pinputs = Pinit � Psaving (29)

where

Pinit =
X
Si2S

�SiClit

nEX
j=1

Ebj
(30)

Psaving =
X
Sk2S

X
Sl2S

�P

k;l
Clit (31)

where S is the set of all state, �Sk is the occurrence frequency of Sk which is given by

�Sk =
nYX
i=1

jCY

k;i
j+

nSX
j=1

�j jC
S

0

k;j
j: (32)

Preg is equal to

Preg = Creg

nEX
j=1

Ebj
: (33)

18

Figure 4: Example for calculating the literal power saving.

19

6 Experimental Results

In this section we present experimental results of the low power state assignments algo-

rithm for two level and multi-level implementations. Experiments were done using the

MCNC-91 FSM benchmark sets. The power consumption was measured in �W using a

sequential machine power estimator [13], assuming a 5V power supply and 20MHz clock

frequency. The experiment are done on a Sparc 20 with 64 Mbytes memory.

The �rst experiment is to compare low power state assignment (LPSA) for two level

implementation using dynamic NOR-NOR PLA with NOVA [14] which is a state as-

signment program targeting minimum area and with the minimum weighted Hamming

distance encoding (MWHD). The option we used for NOVA is input constrained algo-

rithm plus simulated annealing. The encoded machines were synthesized using espresso-

exact. Table 1 summarizes the results. Columns 3 and 5 give the % power reduction of

MWHD and LPSA over NOVA, respectively.

It can be seen that in most of the benchmarks the low power state assignment produces

better results than NOVA and MWHD encodings. An average 10.3% reduction in

power is obtained compared to NOVA. It is worthwhile to point out that the minimum

weighted Hamming code does worse than NOVA in terms of power consumption. The

power consumption increases by an average 0.4%. We also counted the number of

product terms in the �nal implementation for each encoding. Table 2 summarizes the

number of product terms in the �nal PLA implementation for NOVA, MWHD and

LPSA. It is seen that the PLAs generated using NOVA or LPSA encoding have similar

number of product terms (an average less than 1% di�erence) while that using MWHD

has an average 15.6% more product terms. This explains whyMWHD does not produce

a good low power solution. The execution time of LPSA is summarized in Table 3. The

long execution time is due to the simulated annealing approach and the overhead in

calculating the cost of each encoding dichotomy.

The second experiment compares low power state assignment (LPSA) for multilevel

implementation with JEDI [6] which is a state assignment program targeting minimum

area and with the MWHD encoding. The default output dominant algorithm option is

used for both cases. The encoded machines were synthesized and mapped using the sis

package and a gate library from industry. Table 4 summarizes the results. Columns 3

and 5 give the % power reduction of MWHD and LPSA over JEDI, respectively.

Table 4 shows that in general the low power state assignment produces better results

than JEDI and the MWHD encoding. An average of 14.5% reduction in power con-

sumption is obtained compared to JEDI. The average power reduction of MWHD

encoding compared to JEDI is about 10.7%. Table 5 summarizes the number of literal

20

circuits NOVA MWHD % red. LPSA % red.

bbara 361.49 362.88 -0.38 339.36 6.12

bbsse 508.82 408.66 19.68 411.16 19.19

bbtas 216.21 196.71 9.02 166.92 22.80

beecount 281.28 205.06 27.10 222.79 20.79

cse 630.42 668.39 -6.02 614.88 2.47

dk14 440.29 541.52 -22.99 437.73 0.58

dk16 898.30 991.83 -10.41 886.16 1.35

dk17 313.11 325.84 -4.07 313.11 0.00

dk27 180.02 201.56 -11.97 177.73 1.27

dk512 342.76 370.34 -8.05 318.93 6.95

don�le 812.24 729.89 10.14 547.89 32.55

ex1 821.82 857.05 -4.29 665.09 19.07

ex4 378.85 336.14 11.27 278.23 26.56

sand 1427.90 1424.46 0.24 1358.94 4.83

s208 267.68 406.50 -51.86 314.64 -17.54

s27 251.75 237.46 5.68 223.51 11.22

sse 519.25 413.80 20.31 411.16 20.82

tma 552.24 500.71 9.33 517.09 6.36

average

%reduction -0.40 10.30

Table 1: Power consumption for 2-level logic using dynamic PLA.

counts for JEDI, MHDW and LPSA. Although the average literal counts for the low

power state assignment algorithms are larger than that of JEDI (4.4% respectively),

power consumption is lower since JEDI does not consider the switching activity. The

minimumweighted Hamming distance code however, has on average, 9.8% more literals

than that obtained from JEDI. This, and the fact that the capacitive loading of the

state bits are ignored, explain why the MWHD encoding does not have as much power

saving as LPSA The execution time for multi-level LPSA is summarized in Table 3.

We also compared LPSA with the approach suggested in [9]. In their approach a

weighted cost function

�Costlit + �Costswitching (34)

is used where Costlit and Costswitching correspond to the number of literals in the com-

bination logic part and switching activities at the state registers, respectively. Di�erent

� and � combinations can be used to generate di�erent solutions. In [9], four di�erent

(�; �) combinations namely, ((0,1),(1,0),(99,1),(1,99)) to generate four sets of solutionare

used. In LPSA we can also provide
exibility in tuning the weight of power consump-

tion at the registers and the weighted switching activity of the literals by changing R,

the ratio of Creg to Clit. In this comparison, we compared the optimal results obtained

by [9] using di�erent (�; �) combinations with our results using di�erent R ratios. Sim-

ilar to the experiments done in [9], we used 4 di�erent R ratios (0,7,20,50). Table 6

summarizes the comparison. Results show that in general LPSA does better than [9].

In 13 out of the 18 benchmarks, LPSA obtains a lower power encoding. On average

the power reduction is about 7.2% whereas the number of literals is reduced by 7%.

21

circuits NOVA MWHD % increase LPSA % increase

bbara 24 26 8.33 24 0.00

bbsse 31 29 -6.45 29 -6.45

bbtas 13 11 -15.38 10 -23.08

beecount 13 12 -7.69 13 0.00

cse 46 50 8.7 45 -2.17

dk14 27 37 37.04 28 3.70

dk16 61 76 24.59 65 6.56

dk17 19 24 26.32 19 0.00

dk27 7 11 57.14 9 28.57

dk512 18 24 33.33 19 5.56

don�le 56 54 -3.57 37 -33.93

ex1 51 55 7.84 42 -17.65

ex4 19 20 5.26 16 -15.79

sand 105 111 5.71 105 0.00

s208 19 33 73.68 25 31.58

s27 13 16 23.08 14 7.69

sse 31 29 -6.45 29 -6.45

tma 31 34 9.68 36 16.13

average

%increase 15.62 -0.32

Table 2: Number of product terms.

execution time (in sec)

circuits 2-level multi-level

bbara 100 3.5

bbsse 190 13.4

bbtas 17 0.67

beecount 30 1.3

cse 322 12.4

dk14 39 0.83

dk16 1946 40.8

dk17 53 1.2

dk27 27 0.94

dk512 260 7.00

don�le 520 34.85

ex1 631 23.90

ex4 93 6.50

sand 1510 48.60

s208 724 40.65

s27 21 0.75

sse 186 13.40

tma 921 30.4

Table 3: Execution time of LPSA.

22

circuits JEDI MWHD % red. LPSA % red.

bbara 193.39 183.7 4.97 133.2 31.10

bbsse 497.144 428.6 13.79 444.4 10.61

bbtas 94.1 75.20 20.09 97.4 -3.55

beecount 257.2 243.4 5.36 216.14 15.96

cse 509.12 490.37 3.68 392.21 22.96

dk14 617.89 659.05 -6.66 584.2 5.43

dk16 1596.1 1218.56 23.65 1256.06 21.30

dk17 421.42 354.22 15.95 356.73 15.35

dk27 255.83 192.55 24.74 181.42 29.09

dk512 525.32 422.8 19.51 375.22 28.57

don�le 623.17 666.95 -7.03 537.47 13.75

ex1 793.43 792.00 0.18 800.91 -1.95

ex4 456.08 266.57 41.55 300.57 34.10

s208 323.6 289.18 10.66 260.74 19.44

s27 130.3 173.00 -32.78 154.8 -18.91

sand 1593.73 1523.37 4.41 1583.15 0.66

sse 497.14 428.6 13.79 444.37 10.61

tma 1020.1 638 37.45 752.22 26.26

average

%reduction 10.74 14.50

Table 4: Power consumption for multi-level logic.

circuits JEDI MWHD % increase LPSA % increase

bbara 69 80 15.94 62 -10.14

bbsse 122 121 -0.82 130 6.56

bbtas 24 24 0 26 8.33

beecount 54 43 -20.37 42 -22.2

cse 213 223 4.69 210 -1.41

dk14 102 112 9.80 101 -0.98

dk16 294 293 -0.34 311 5.78

dk17 64 65 1.56 57 -10.94

dk27 26 25 -3.85 25 -3.85

dk512 65 85 30.77 80 23.08

don�le 106 185 74.53 130 22.64

ex1 239 297 24.27 265 10.88

ex4 73 77 5.48 77 5.48

s208 130 106 -18.46 118 -9.23

s27 20 30 50.00 26 30.00

sand 546 587 7.51 634 16.12

sse 122 121 -0.82 130 6.56

tma 178 171 -3.93 184 3.37

average

%increase 9.8 4.45

Table 5: Number of literal counts.

23

Power literals

circuits best result best result best result best result

of [9] of LPSA % reduction of [9] of LPSA % reduction

bbara 183.71 (�=0,�=1) 133.19 (R=7) 27.50 80 62 22.5

bbsse 426.09 (�=1,�=99) 444.37 (R=7) -4.29 130 130 0

bbtas 75.20 (�=0,�=1) 65.45 (R=20) 12.97 24 22 8.33

beecount 231.61 (�=1,�=99) 212.90 (R=0) 8.08 47 43 8.51

cse 407.78 (�=1,�=99) 383.31(R=50) 6.00 200 200 0

dk14 552.84 (�=1,�=99) 584.31(R=7) -5.69 99 101 -2.0

dk16 1218.56 (�=0,�=1) 1224.50(R=20) -0.49 293 297 -1.37

dk17 354.22 (�=0,�=1) 306.95(R=50) 13.34 65 49 24.62

dk27 192.55 (�=0,�=1) 181.42(R=7) 5.78 25 25 0

dk512 404.65 (�=1,�=99) 348.59(R=50) 13.85 83 64 22.90

don�le 614.40 (�=1,�=99) 537.47(R=7) 12.52 118 130 -10.27

ex1 792.00 (�=0,�=1) 657.33(R=0) 17.00 297 241 18.86

ex4 266.57 (�=0,�=1) 244.94(R=20) 8.11 77 69 10.39

s208 261.70 (�=99,�=1) 232.22(R=20) 11.26 112 105 6.25

s27 119.83 (�=1,�=99) 114.30(R=50) 4.61 17 17 0

sand 1523.37(�=0,�=1) 1412.78(R=50) 7.26 587 564 3.92

sse 426.09 (�=1,�=99) 444.37(R=7) -4.29 130 130 0

tma 638.00 (�=0,�=1) 663.33(R=50) -3.97 171 149 12.87

average % reduction 7.20 average %reduction 7.0

Table 6: Power and literal reduction comparing with weight-combined cost function

7 Concluding Remarks

We presented a power cost model for the state assignment problem targeting both two-

and multi-level logic implementation. We then formulated the problem of calculating

the power cost for the symbolic implicant for two-level as a rectangle covering problem

and proposed a greedy algorithm to solve it. For multi-level logic implementation, we

proposed a power cost function which captures the weighted switching activity at the

inputs of the circuit.

Espresso [1] is used to generate the �nal implementation for the two-level logic. This

two-level logic minimization algorithm targets for minimum area and does not exploit

the switching activity information. Future work will therefore focus on developing two-

level logic minimization algorithm for low power.

References

[1] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli. Logic Min-

imization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, Boston, Mas-
sachusetts, 1984.

[2] S. Devadas, H-K. T. Ma, A. R. Newton, and A. Sangiovanni-Vincentelli. MUSTANG:
State assignment of �nite state machines targeting multi-level logic implementations.

24

In IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
volume 7, pages 1290{1300, December 1988.

[3] S. Devadas and A. R. Newton. Exact algorithms for output encoding, state assignment and
four-level Boolean minimization. In Proceedings of the Twenty Third Hawaii International
Conference on the System Sciences, volume I, pages 387{396, January 1990.

[4] X. Du et al. MUSE: A MUltilevel Symbolic encoding algorithm for state assignment. In
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pages
28{38, January 1991.

[5] S. Kirkpatrick, C. D. Gelatt, and M. P.Vecchi. Optimization by simulated annealing.
Science, 220(4598):671{680, May 1983.

[6] B. Lin and A. R. Newton. Synthesis of multiple-level logic from symbolic high-level
description languages. In IFIP International Conference on Very Large Scale Integration,
pages 187{196, August 1989.

[7] G. De Micheli. Symbolic design of combinational and sequential logic circuits implemented
by two-level macros. In IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, volume 5, pages 597{616, September 1986.

[8] G. De Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli. Optimal state assignment
of �nite state machines. In IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, volume 4, pages 269{285, July 1985.

[9] E. Olson and S. M. Kang. Low-power state assignment for �nite state machines search.
In International Workshop on Low Power Design, pages 63{68, April 1994.

[10] K. Roy and S. Prasad. Syclop: Synthesis of CMOS logic for low power application. In
Proceedings of the International Conference on Computer Design, pages 464{467, October
1992.

[11] R. Rudell. Logic Synthesis for VLSI Design. PhD thesis, University of California, Berkeley,
1989.

[12] R. Rudell and A. Sangiovanni-Vincentelli. Multiple-valued minimization for PLA opti-
mization. In IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, volume 6, pages 727{751, September 1987.

[13] C-Y. Tsui, M. Pedram, and A. M. Despain. Exact and approximate methods for cal-
culating signal and transition probabilities in fsms. In Proceedings of the 31th Design

Automation Conference, pages 18{23, June 1994.

[14] T. Villa and A. Sangiovanni-Vincentelli. NOVA: State assignment of �nite state machines
for optimal two-level logic implementations. In IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, volume 9, pages 905{924, September 1990.

25

[15] S. Yang and M. Ciesielski. On the relationship between input encoding and logic min-
imization. In Proceedings of the Twenty Third Hawaii International Conference on the

System Sciences, volume I, pages 377{386, January 1990.

26

