
Abstract
We present LEOPARD, a fanout optimization algorithm

based on the effort delay model for near-continuous size buffer
libraries. Our algorithm minimizes area under required timing
and input capacitance constraints by finding the tree topology
and assigning different gains to each buffer to minimize the total
buffer area. Experimental results show that the new algorithm
achieves significant buffer area improvement compared to previ-
ous approaches.

1. Introduction
Very often in a design, a signal needs to be distributed to sev-

eral destinations under some timing constraint at each destina-
tion. In practice there may also be a limitation on the load that
can be driven by the source signal. Fanout optimization is the
problem of finding a buffer tree topology and sizing of the buff-
ers in this topology so as to satisfy the constraints.

Since logical buffers must finally be mapped to physical buff-
ers in the library, a more realistic problem is to find the optimum
sizes for the buffers from the set of sizes available in the library.
This problem has been proved to be NP-complete [1]. More
recently however researchers [4],[3] used near-continuous rather
than discrete size libraries. This greatly simplifies the problem
and allows more powerful optimization techniques to be applied.
At the same time, the number of discrete sizes for inverters in a
typical ASIC library has increased to the extent that a near-con-
tinuous inverter sizing model has become a valid and fairly accu-
rate model.

In [3], the authors simplified the fanout optimization problem
by restricting the search space to a subset of trees and showed
that the results still compare very favorably with the algorithms
that consider larger set of topologies. The author used a dynamic
programming approach to implicitly enumerate the set of all LT-
trees and find the optimal LT-tree topology and sizing. [4] also
restricted the search space to a certain type of trees called fanout-
free trees and showed that there still exists an optimal solution in
this search space under a gain-based delay model. Fanout-free
trees (which are the same as LT-trees of type-I) are trees in which
a buffer can drive at most one other buffer.

In this paper, we present an algorithm that finds the fanout
tree topology and sizing of the buffers in the tree by decomposing
the whole problem into subproblems and solving each subprob-
lem separately for each sink. The solutions to the subproblems
are then merged to form the solution to the whole problem. Our
derivation relies on the notions of logical and electrical effort
first proposed by Sutherland [6]. 

Sutherland [6] minimizes the delay along any single path by
assigning equal effort to each stage on that path. While this
approach is proved to minimize the delay, it does not necessarily
result in area-optimal solution. Kung [4], on the other hand,
solves the fanout optimization problem so as to minimize the
input capacitance seen at the source subject to timing constraints
for the sinks and without any consideration of total buffer area.

Our approach, however, in addition to finding the minimum
achievable load capacitance on the driver, can also minimize the
total buffer area subject to some input load capacitance constraint
for the driver. The latter is important because it allows us to trade
off the propagation delay through the source driver and that
through the rest of the buffer tree and thus reduce the total buffer
area without much increase in the overall delay. Experimental
results show an area improvement of 38% compared to Suther-
land and 20% compared to Kung with a 5% increase in the input
capacitance constraint and an area improvement of 38% com-
pared to previous fanout optimization methods.

The remainder of this paper is organized as follows: In sec-
tion 2, the problem of fanout optimization is formulated. In sec-
tion 3, the delay model being used in this paper is explained.
Section 4 explains the proposed algorithm. In section 5, experi-
mental results are shown and in section 6, we conclude the paper.

2. Problem Formulation
Problem 1:

Given the source of a signal Q with maximum driving capa-
bility Cin and a sink S with capacitive load CL, polarity P and
required time TR, find the optimum number of buffers for a buffer
chain and the appropriate sizing for them to minimize area such
that the delay from Q to S is less than or equal to TR.

Problem 2:
Given the source of a signal Q with maximum driving capa-

bility Cin along with a set of sinks Si to any of which is assigned a
triplet  where  is the capacitive load,  is the
required time and Pi is the polarity of the sink Si, find a fanout
tree of buffers and appropriate sizing for them to minimize the
area such that the timing constraint and the polarity required at
each sink is satisfied. 

The objective function, area, in both of the two problems is
considered to be the sum of the input capacitances of all the buff-
ers which is reasonable with the assumption of continuous sizing
for gates.

3. Delay Model
The delay model we are using in this paper is based on the

method of logical effort presented in [6]. This method is basically
a reformulation of the conventional RC model of CMOS gate
delay.

Using the same terminology as in [6] the delay of a gate is
defined to be:

(1)
τ is a time unit that characterizes the semiconductor process

being used. It is only used to convert the unit-less part of (p+gh)
to the time unit. For simplicity we do not consider τ from now on.
p is the parasitic delay of the gate and the major contribution to it
is the capacitance of the source/drain regions of the transistors
that drive the output. Throughout this paper we use pinv as the
parasitic delay for an inverter. g is called the logical effort of the
gate and depends only on the topology of the gate and the ability
to produce output current. This value for an inverter is assumed
to be 1 and for other gates calculated based on their internal
topologies. Basically logical effort of a logic gate tells how much
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worse it is at producing output current than is an inverter, given
that each of its inputs may contain only the same input capaci-
tance as the inverter. h is called the electrical effort (also called
gain) of the gate and is defined to be the ratio of the output capac-
itance of the gate to the input capacitance at one of the input pins.
Basically the electrical effort describes how the electrical envi-
ronment of the logic gate affects performance and how the size of
the transistors in the gate determines its load-driving capability.

 The important point is that p and g are independent of the
size of the gate and the only factor that is effected by sizing is the
electrical effort h. [6] shows how g and p are independent of siz-
ing by doing the reformulation to define the four factors τ, p, g
and h in terms of the resistance and capacitance of a minimum
size inverter and a template gate representing the topology of the
gate. For details refer to [6].

4. Algorithm
In section 4.1 we solve Problem 1 and in sections 4.2 and 4.3

we solve Problem 2.

4.1. Buffer Chain for Single Sink
For this problem we have a chain of buffers between the

source and the sink. We define the variables of the problem to be
the electrical efforts of the n buffers h1, h2, ..., hn. (cf. Fig. 1).

Fig. 1: Buffer Chain.

Thus the overall area as a function of n and hi
,s would be:

(2)

The goal would be to find n and all hi
,s to minimize the area

while both the timing and input capacitance constraints are satis-
fied.

Theorem 1. The delay of the optimum buffer chain solution
for Problem 1 is exactly equal to the specified required time TR.
Proof: For the sake of brevity we do not go through the details of the
proof and just mention that the area is a monotonically decreasing func-
tion of all hi’s and since the delay along the path for some n is npinv+Σhi
we can always increase some hi to decrease the area till we get to the
point where the delay is equal to the required time. ■

To find the optimum number of stages n, we use the maxi-
mum input capacitance constraint .

The input capacitance for the first buffer is computed as fol-
lows:

(3)

Using equation (3), the input capacitance constraint can be
restated as follows:

(4)

Theorem 2. H achieves its maximum value when all hi’s are
equal.
Proof: According to Theorem 1, the summation of all hi’s is constant for
any given number of buffers. Since the product of some variables with a
constant summation is maximum when all the variables are equal, all hi’s
have to be equal to maximize H. ■

The n buffers have parasitic delay of npinv thus the overall
effort delay for the whole path would be TR-npinv where TR is the
required time at the sink, or the delay through the whole path
according to Theorem 1. This implies that:

(5)
So the maximum of H, named H as a function of n would be:

(6)

Note that for the equation 6 to have a meaningful physical
interpretation, the nominator has to be positive and that means n
should be less than TR/Pinv. 

Fig. 2: Plot of  vs. n.
H is drawn in Fig. 2. By taking the derivative of H and setting

it equal to zero, we find that it has its maximum value at:
(7)

where:

(8)

The function Lambert(ω) is the solution to the nonlinear
equation xex=ω. For further information about Lambert function
refer to [2].

It is interesting to note that:

which allocates the well-known gain of e to each buffer [5].
With these observations, we propose the algorithm in Fig. 3 to

find the optimum number of buffers and also the optimum sizing
for them.

Note that for a certain n, we can have different hi
,s that result

in different areas and input capacitances. Among all the values
that hi’s can assume, only those which result in H larger than CL/
Cin satisfy the input capacitance constraint (cf. equation (4)). In
other words, only the points above the line CL/Cin are acceptable.
Thus for Case I in Fig. 2 there is no feasible solution.

To find the optimum solution, we intersect the line CL/Cin
with the graph H (cf. line 2 of Fig. 3 and Case III in Fig. 2) which
results in  and . Note that there always exists an  unless
the line is passing below unity and that means CL is less than Cin
which has the trivial solution of “no buffers”. On the other hand
there exists an upper-bound on the number of buffers because of
the intrinsic delay which has to be less than the delay of the
whole path, that is the number of buffers has to be less than TR/
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1. begin

2. ;
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Fig. 3: Algorithm OptN.
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Pinv (cf. line 3 of Fig. 3). Therefore the optimum n lies between
 and n2. Any n smaller than  or larger than n2 has H below

the line CL/Cin and is thus unacceptable.
There is a possibility that the line CL/Cin intersects the graph

but there is no integer n between the points of intersection to sat-
isfy the polarity constraint. This only happens when the line
crosses the H curve very close to the peak of the graph (cf. Case
II in Fig. 2).

In step 5 we find the optimum sizing for the buffers on the
chain. This is the minimization of a posynomial function with
posynomial inequality constraints [7] which can be easily solved
in polynomial time. Finally among all the solutions, the best one
in terms of the area is selected as the optimum solution.

Theorem 3. The algorithm OptN solves Problem 1 optimally.
Proof: Since all the feasible solutions are explicitly considered, the algo-
rithm finds the optimum solution. ■

4.2. Buffer Tree for Multiple Sinks
In this section we consider the more general case when the

source Q is driving more than one sink.
[4] introduced two transformations that can be performed on

the fanout tree namely merging and splitting. Here we use the
splitting transformation and show that splitting does not degrade
the quality of the solution.

Theorem 4. The split/merge operations preserve input capac-
itance (thus area) and delay.
Proof: Suppose the gain of the original buffer is h thus the delay through
the buffer for both of the branches is h+pinv and the input capacitance is
(C1+C2)/h which is also the area of the buffer. After splitting the original
buffer to two buffers with equal gains of h, the delay for both branches
would still be h+pinv and the input capacitance would be C1/h+C2/h thus
the same input capacitance and the same area. ■

Therefore if T* is the optimal fanout tree with proper sizing
of buffers, it can be split to a fanout-free tree consisting of a set of
buffer chains T, which has the same area as T* and also satisfies
the timing and input capacitance constraints.

We will find T using the optimal algorithm presented in sec-
tion 4.1 and in section 4.3 we transform T to T*.

The problem formulated as Problem 1 in section 2 was stated
such that the maximum allowed input capacitance was given. So
before we can break down the whole problem into smaller prob-
lems of optimal buffer chains, we need to somehow allocate por-
tions of Cin to each chain (cf. Fig. 5).

In this section we propose a heuristic for doing this allocation.
Assume m to be the number of sinks and thus the number of

branches. Consider the kth branch (k=1, ..., m). The graph
depicted in Fig. 2 shows that Hk, the product of buffer gains, has
its minimal value of 1 at nk=0 (lim H when n tends toward 0). On
the other hand, Hk cannot be any larger than  that is

the value of Hk(nk) when nk is calculated from (7), thus the mini-
mum acceptable input capacitance would be:

(9)

We introduce k new variables xk for k=1, ..., m such that:
(10)

Our heuristic is to find xk
,s in such a way that their ratio is

proportional to the slope of the graph in Fig. 2. The motivation
behind this heuristic is the fact that between two branches, the
one with smaller slope gains a larger change in the number of
buffers when there is a small change in input capacitance (mov-
ing the line ). Compare this with the branch with a large
slope, which would gain a smaller change in the number of buff-
ers when there is the same change in its input capacitance.

We estimate this slope with the difference of the top point and
the minimal point of the graph for H. The number of stages that
leads to the maximum H was computed by equation (7).

With all these we propose our heuristic as in Fig. 6.

After finding the allocated input capacitances, we will end up
with m sub-problems that can be optimally solved by the algo-
rithm presented in section 4.1

4.3. Merging Buffer Chains
So far, we have been assuming to have a continuous-sized

buffer library. In reality the ASIC library has a finite (and hope-
fully large) number of gate sizes. So we need to map the solution
to one consistent with the library. The main problem during this
transformation is that due to round-up errors, the total gate area
might be significantly increased. For example a buffer size of
0.35 will be mapped to a buffer size of 1. Now, if we could merge
two buffers of size 0.35 each to one buffer of size 1, the area
increased is minimized. This is the main rationale for doing
merging (transforming T to T* in our terminology), something
similar to the split transformation but in the other way(cf. Fig. 4).
Clearly we also have to be concerned about satisfying the timing
constraints of using this transformation.

We want to do the merging in such a way that all the timing
constraints still be satisfied and the area (as well as the input
capacitance of the very first stage) be the same. Very similar to
the proof of Lemma 1, it can be proved for the merging transfor-
mation to have exactly the same area and delay, the electrical
effort of the buffers to be merged should be the same. Since we
optimize each branch with respect to the corresponding sink, the
electrical efforts of buffers may not necessarily be equal. Thus
we define a constant ε and merge two buffers as long as the dif-
ference between the gains of them is less than or equal to ε per-
cent.

The merging is done starting at the source of the signal, pro-
ceeding towards the sinks preserving the area while merging so
as not to increase the capacitive load imposed on the previous
stage beyond its expected load.
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1. begin
2. for k=1, ..., m

3. ;
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5. Experimental Results
We have three different groups of experiments. In the first

group, we compare the results of LEOPARD in section 4.1 with
an algorithm that minimizes the delay through the path. We have
implemented the algorithm presented by Sutherland to minimize
the delay. The results of our algorithm are compared with the
results of our implementation of Sutherland’s in Table 1.

For all the experiments in Table 1, the minimization problems
of our algorithm were solved using Matlab Optimization Toolbox
ver. 1.5.2. 

We first minimized the path delay with a maximum input
capacitance constraint using Sutherland’s method. Then we used
this minimum delay as our timing constraint for minimizing area.
In the 2nd and 3rd columns, we present Sutherland’s results, and
in the 4th and 5th columns we give our results for the same delay
values. As expected, the area and delay results are almost the
same. However when we give LEOPARD a 5% additional slack,
we can reduce the area by an average of 38% as shown in col-
umns 6 and 7.

Next we show the comparison of LEOPARD results with the
results of our implementation of Kung’s algorithm [4].

 We used Kung’s algorithm to minimize the input capacitance
and then used this minimum input capacitance as the input capac-
itance constraint for our area minimization problem (same input
capacitance and with an additional 5%). We have assumed
pinv=0.6. As can be seen in Table 2, we reduce the area by an
average of 20%.

Finally our last set of experimental results compare LEOP-
ARD with fanout optimization programs of SIS. SIS runs differ-
ent fanout optimization programs namely LT-Tree, Two-Level,
Bottom-Up and Balanced and the best one is reported. In this
experiment, we used a standard cell library consisting of ten dif-
ferent inverters. For each inverter we specified τintrinsic and Rout
for the SIS library delay model and pinv and τ for the Sutherland
delay model. We assumed that there is a perfect match between
the SIS and Sutherland delay model values for each inverter.

We first used the fanout optimization programs of SIS to do
fanout optimization. The results are reported in column 6. Then
we used the delay and input capacitance results of SIS as con-
straints of our problem. The results assuming continuous-size
buffer library are reported in column 3. Then we performed
merging and mapping to the real buffers in the discrete-size
buffer library and the results are shown in columns 4 and 5. As

shown in the table, in case of continuous sizing the area is
expressed in terms of the capacitances but for the discrete-sized
buffers, it is the actual buffer area extracted from the library.
Table 3 shows an average of 38% area improvement for LEOP-
ARD.

6. Conclusions
This paper has presented an optimal algorithm for buffer

chains to minimize the area. The algorithm finds the optimum
number of buffers and the optimum sizing for them by solving a
posynomial minimization problems subject to posynomial ine-
quality constraints which can be easily and quickly solved by a
convex program solver.

Based on this algorithm, a heuristic method was presented for
the general case of buffer trees. Considering the fact that the
number of discrete sizes for buffers in typical libraries has highly
increased, the near-continuous buffer library is fairly accurate.

The next step in improving the present work is by considering
the wiring effect because the wiring effects have been proved to
dominate in designs using deep sub-micron technologies.

We are considering two approaches to tackle the wiring prob-
lem. The first approach is to start with the given placement of
cells and routing trees and then solve the fanout optimization
problem. The second approach is to try to simultaneously size
and place the buffers given only the locations of the cells and not
the routing structure. Each approach has its own pros and cons.
The advantage to the first approach is that since we have the rout-
ing information, we actually have a better and more accurate esti-
mation of the wire capacitance but the disadvantage is that the
buffers would be restricted to be placed on the given routing tree
while it could have been the case that we get a better solution if
we were to do the placement and routing again. The second
approach on the other hand has the advantage of performing
fanout optimization and placement simultaneously but is a very
hard problem because there is no accurate estimation of the wire
capacitance.
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Sutherland LEOPARD
LEOPARD
w/ 5% slack

Prob# Delay Area Delay Area Delay Area

1 5.78 233 5.78 225 6.00 190
2 5.66 19 5.66 19 6.00 15
3 5.66 39 5.67 36 6.00 30
4 4.48 65 4.48 62 5.00 20
5 6.87 43 6.88 40 7.00 20
6 9.52 225 9.52 213 9.60 123

Table 1: Comparison with Sutherland.

Kung LEOPARD
LEOPARD
+5% InCap

Prob# Sinks InCap Area InCap Area InCap Area

1 3 46.15 176 46.15 175 48.45 154
2 5 51.69 611 51.69 609 54.27 504
3 5 53.28 916 53.28 913 55.94 739
4 12 160.99 2025 160.99 2002 169.04 1599
5 17 432.13 3375 432.13 3344 453.74 2743
6 10 426.59 2304 426.59 2284 447.91 1901
7 15 101.06 4230 101.06 4183 106.11 3333
8 4 54.57 664 54.57 658 57.29 551
9 4 110.80 571 110.80 566 116.34 479

10 4 27.70 455 27.70 450 29.08 356

Table 2: Comparison with Kung.

LEOPARD
cont. sizing

LEOPARD
discrete sizing

SIS

Prob# Sinks Σcap Σcap Area Area

1 12 0.093 0.093 3920 5281
2 6 0.032 0.039 3902 4676
3 21 0.065 0.088 6090 20952
4 14 0.093 0.093 3920 5281
5 21 0.060 0.089 7220 11952
6 12 0.045 0.062 4814 7857
7 16 0.087 0.110 6327 12315

Table 3: Comparison with SIS.


