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ABSTRACT

This paper presents LEOPARD, a Logical Effort-based fanout OPtimizer for ARea and Delay,

which relies on the availability of a (near) continuous size buffer library. Based on the concept of

logical effort in VLSI circuits, the proposed algorithm attempts to minimize the total buffer area

under the required time and input capacitance constraints by constructing the fanout tree topol-

ogy and assigning the buffer sizes. More precisely, the proposed algorithm produces the optimum

fanout tree solution if the fanout tree topology is restricted to a chain of buffers. For the case that

a discrete size library of buffers is available, this paper also presents a post-processing (buffer

merging) step that transforms the continuous buffer sizing solution to a discrete one while mini-

mizing the round-off error. Experimental results show that compared to previous approaches, both

for continuous and discrete buffer libraries, LEOPARD achieves a significant reduction in the

total buffer area subject to the required time constraints.

I. INTRODUCTION

Very often in a VLSI design, a signal needs to be distributed to several destinations under a

required timing constraint at each destination. Furthermore, in practice, there may also be a limi-

tation on the load that can be driven by the source signal. Fanout optimization is the problem of

finding a buffer tree topology and sizing the buffers in this topology so as to satisfy the con-

straints. Since these buffers must be picked from the sizes that are available in a given cell library,

the more realistic problem is to find the optimum sizes for the buffers from the set of sizes avail-

able in the library. This problem has been proved to be NP-complete [1]. While several

approaches exist for tackling the fanout optimization problem using simplified delay models ([9],



[10]), new techniques [12] have also been proposed which use more accurate delay models or

even taking interconnect delay into account [11]. More recently, however, researchers [3] have

started to use continuous, as opposed to discrete, size libraries, in the sense that the optimum

fanout tree is calculated with the assumption that buffers are available in all sizes. This greatly

simplifies the problem and allows the application of more powerful optimization techniques. At

the same time, the number of discrete sizes for inverters in a typical ASIC library has increased to

the extent that a “near-continuous inverter sizing” model has become a valid and fairly accurate

model.

In [2], the authors simplified the fanout optimization problem by restricting the search space to a

subset of trees and showed that the results still compare very favorably with the algorithms that

consider a larger set of topologies. The authors used a dynamic programming approach to implic-

itly enumerate the set of so-called LT-trees and find the optimal LT-tree topology and sizing. Ref-

erence [3] also restricted the search space to a certain class of trees, called fanout-free trees, and

showed that there still exists an optimal solution in this search space under a gain-based delay

model. Fanout-free trees are trees in which a buffer can drive at most one other buffer.

In this paper, an algorithm is presented that finds the fanout tree topology and sizes of the buffers

on the tree by decomposing the whole problem into subproblems and solving each subproblem

separately for each sink. The solutions to the subproblems are then merged to form the solution to

the whole problem. Our derivation relies on the notions of logical and electrical effort first pro-

posed in [4].

Sutherland and Sproull [4] minimized the delay along any single path by assigning equal delay

budgets to each stage on that path. While this approach was proven to minimize the delay, it did

not necessarily result in an optimal solution in terms of the total buffer area. Kung [3], on the

other hand, solved the fanout optimization problem to minimize the input capacitance seen at the

source gate subject to timing constraints for the sinks and without any consideration of the buffer

area. In contrast, the approach presented in this paper minimizes the total buffer area subject to

capacitance constraint for the driver. This is an important distinction because it allows one to trade

off the propagation delay through the source driver and through the rest of the buffer tree to

reduce the total buffer area without too high of an increase in the overall delay.
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The remainder of this paper is organized as follows. In Section II, the effort delay model that is

used throughout this paper is explained. Section III explains the details of the algorithm. In Sec-

tion IV, experimental results are shown, and in Section V, we conclude the paper.

II. DELAY MODEL

The delay model used in this paper is based on the concept of logical and electrical efforts pre-

sented in [4]. The effort-based model is basically a reformulation of the conventional RC model

of CMOS gate delay.

Using the same terminology as in [4], the delay of a gate is defined to be:

(1)

where τ is a time unit that characterizes the semiconductor process being used. It is only used to

convert the unit-less part of (p+gh) to a time unit. For simplicity, τ is not considered from now on.

Parameter p is the parasitic delay of the gate. The major contribution to the parasitic delay is the

capacitance of the source/drain regions of the transistors that drive the output. Throughout this

paper pinv is used as the parasitic delay for an inverter. Parameter g is called the logical effort of

the gate and depends only on the topology of the gate and the ability to produce output current.

The logical effort for an inverter is assumed to be 1, and for other gates calculated based on their

internal topologies. The logical effort of a logic gate tells how much worse it is at producing out-

put current than is an inverter, given that each of its inputs may have only the same input capaci-

tance as the inverter. Parameter h (specified for each input pin of the gate) is called the electrical

effort (also called gain) of the gate and is defined to be the ratio of the capacitive load driven by

the gate to the input capacitance at the corresponding input pin. The electrical effort describes

how the electrical environment of the logic gate affects performance and how the size of the tran-

sistors in the gate determines its load-driving capability.

The important point is that p and g are independent of the size of the gate, and the only factor that

is affected by sizing is the electrical effort h. Reference [4] shows how p and g are independent of

1. A preliminary version of this work was presented in [8]. The journal submission includes more theoreti-
cal derivation, results, and experimental data.

d τ p gh+( )=
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sizing by doing the reformulation to define the four factors τ, p, g and h in terms of the resistance

and capacitance of a minimum size inverter and a template gate representing the topology of the

gate. For details refer to [4].

III. ALGORITHM

In this section, the fanout optimization problem is stated as two separate problems, and each one

is solved separately.

One-Sink Fanout Optimization (1FO) Problem: Given the source of a signal Q with maximum

driving capability Cin and a sink S with capacitive load CL , required polarity P, and required

arrival time TR, find the optimum number of buffers for a buffer chain and the appropriate sizing

for them to minimize the total buffer area such that the delay from Q to S is less than or equal to

TR, the required polarity P is achieved, and the capacitive load imposed on Q is no more than Cin.

Multiple-Sink Fanout Optimization (mFO) Problem: Given the source of a signal Q with max-

imum driving capability Cin along with a set of m sinks Si each of which is assigned a triplet

where is the capacitive load, is the required arrival time, and Pi is the

required polarity for the sink Si, find a fanout tree of buffers and the appropriate sizing for them to

minimize the total buffer area such that the timing constraint and the polarity required at each sink

is satisfied and the capacitive load imposed on Q is no more than Cin.

Note that the only difference between the two problems is the number of sinks to be driven. The

objective function, area, in both of these problems is considered to be the summation of input

capacitances of all the buffers, which is reasonable with the assumption of continuous sizing for

the gates.

The rest of this section is organized as follows. The 1FO problem is solved in Section A, and in

Section B, the mFO problem is solved based on the solution derived for 1FO problem.

CL i
TRi

Pi, ,( ) CLi
TRi
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A. Buffer Chain

For the 1FO problem, the solution is a chain of buffers between the source and the sink. The vari-

ables of the problem are defined to be the number of buffers, n, and the electrical efforts of these

buffers, h1, h2,..., hn.

Since the logical effort for an inverter is 1, the delay through the buffer chain can be expressed in

terms of n and hi’s as follows.

(2)

The overall area, which is calculated as the summation of the input capacitances of all buffers on

the buffer chain, may subsequently be expressed as:

(3)

The goal would be to find n and all hi
,s to minimize area while both timing and input capacitance

constraints are satisfied; that is,

h1 h2 hn

CLC2 CnC1

input cap

electrical
effort

Fig. 1: Buffer Chain.
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Theorem 1: In the 1FO problem, delay through the optimum buffer chain is exactly equal to

the specified required time TR, i.e., delay = TR.

Proof: According to equation (3), area is a monotonically decreasing function of all hi’s

(i=1,..., n). In other words, increasing any hi will always result in a buffer chain with

smaller area. The delay, on the other hand, is an increasing function of all hi’s according to

(2). This means that by increasing any arbitrary hi, area can be decreased and delay can be

increased up to the point that delay becomes no larger than the given constraint TR; there-

fore, the optimum buffer chain has delay = TR. �

Lemma 1: In the 1FO problem, for a fixed number of buffers, n, in the chain, the optimum

buffer chain has equal to a constant .

Proof: According to Theorem 1 and equation (2):

The first term on the left hand side, npinv , is constant for a given n; therefore, for the

optimum buffer chain with n buffers is also constant and equal to:

(4)

Hence the claim is proved. �

hi∑ TR npinv–

npinv hi

i 1=

n

∑+ TR=

hi∑

hi

i 1=

n

∑ TR npin v–=
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To find the optimum number of buffers, n, the maximum input capacitance constraint is

used, where C1 is the input capacitance of the first buffer in the chain being driven by the source

signal and Cin is the given constraint on the input capacitance.

The input capacitance for the first buffer is computed as follows.

(5)

Let the electrical effort of the chain be defined as the product of electrical efforts of all the buffers,

and let it be shown by H. Using the above equation, the input capacitance constraint can be

restated as follows:

(6)

Theorem 2: In the 1FO problem, for a fixed number of buffers, n, in the chain, the electrical

effort of the buffer chain, H, achieves its maximum value when all hi’s are equal.

Proof: According to Lemma 1, the summation of all hi’s is constant for any given number

of buffers. Since the product of some variables with a constant summation is maximum

when all those variables are equal, all hi’s have to be equal to maximize H. �

The electrical effort of each buffer for the buffer chain that maximizes H, according to Theorem 2

and equation (4), would then be:

(7)

So the maximum of H, named H as a function of n would be:

(8)

C1 Cin≤

C1

CL

hi∏
------------=

H hi

CL

C1
------=

CL

Cin
--------≥∏=

ĥi ĥ
TR npinv–

n
------------------------= = i∀ 1 … n, ,=

H
TR npinv–

n
------------------------

 
 

n

=
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H is drawn in Fig. 2 for TR=14 and pinv=0.6.

According to Theorem 2, there is a maximum value that H can achieve for any given buffer count;

therefore, the only buffer counts that are feasible are those for which the maximum value that H

achieves is not less than the ratio CL/Cin (equation (6)) and those correspond to the buffer counts

between the points of intersection of H and line CL/Cin (Fig. 2). As an example, for Case I in Fig.

2, there is no feasible solution because there are no intersection points and H lies below CL/Cin for

all buffer counts. For Case III, on the other hand, there are two points of intersection and ;

therefore, the only feasible buffer counts are between and .

Fig. 2: Plot of vs. n.H Max hi∏( )=

case I

case II

case III

ñ1 ñ2

ñ1 ñ2

ñ1 ñ2
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With these observations, algorithm OptN in Fig. 3 is proposed for finding the optimum number of

buffers and their sizes.

To find the optimum number of buffers, the line CL/Cin is intersected with the graph H (line 2 of

Fig. 3 and Case III in Fig. 2) which results in and . Note that:

(9)

Therefore, there always exists an unless the line CL/Cin is passing below unity, which means

that CL is less than or equal to Cin in which case no buffers need to be used at all. On the other

hand, there exists an upper-bound on the number of buffers because of the intrinsic buffer delay.

According to equation (4), for the electrical efforts of buffers to have a meaningful physical inter-

pretation, TR - npinv has to be positive, which means (line 4 of Fig. 3):

(10)

algorithm OptN (C in, CL, TR, p)

1. begin

2. ;

3. n1=  or  depending on polarity p;

4. n2=min ( , );

5. for n=n1,..., n2 step 2

6.

7. return (best n, best {h});

8. end

ñ1 ñ2,( ) solve
TR npinv–

n
------------------------
 
 

n CL

Cin
--------=

 
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ñ2 TR pinv⁄

h{ }

Min arean

s t: delayn TR≤
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




=

Fig. 3: Algorithm OptN
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In short, the buffer count is limited by on one side and by and TR/pinv on the other side.

Therefore, the optimum buffer count, n, lies between n1 and n2 (lines 3 and 4 of Fig. 3).

There is a possibility that the line CL/Cin could intersect the graph where there is no integer n

between the points of intersection to satisfy the polarity constraint. This only happens when the

line crosses the H curve very close to the peak of the graph (Case II in Fig. 2). In lines 5 and 6, the

optimum sizing for the buffers on the chain is found by solving a convex optimization problem as

follows:

(11)

This is a minimization of a posynomial function with posynomial inequality constraints that can

be easily solved in polynomial time [6]. Finally among all the solutions, the one with the mini-

mum area is selected as the optimum solution.

It is interesting to note that by taking the derivative of H and setting it equal to zero, its maximum

value is found to be at:

(12)

where:

(13)

The function Lambert(ω) is the solution to the nonlinear equation xex=ω. For further information

about Lambert function refer to [5]. As pinv tends toward zero:

(14)

ñ1 ñ2

Min

st :

CL

hn
------

CL

hnhn 1–
------------------ …

CL

hnhn 1– …h1
------------------------------+ + +

h1 … hn TR npinv–≤+ +

h1…hn

CL

Cin
--------≥










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-------------------------------------------------------------------=
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---=
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and this corresponds to allocating the well-known electrical effort of e to each buffer with the

assumption of pinv = 0.

Theorem 3. Algorithm OptN finds the optimum solution for the 1FO problem.

Proof: Since all of the feasible solutions are explicitly considered, the algorithm is guaran-

teed to find the optimum solution. �

B. Buffer Tree

In this section, the more general case of the fanout optimization problem is considered, where the

source signal is driving more than one sink.

Reference [3] introduced two transformations that can be performed on a fanout tree, namely

merging and splitting. It is shown here that these transformations maintain the same area, delay,

and capacitance.

Theorem 4. The split/merge transformations applied to a fanout tree preserve the input

capacitance (thus area) and the delay.

Proof: The proof for split transformation is as follows. Suppose the electrical effort of the

original buffer before splitting is h. Thus the delay through the buffer for both of the

branches is h+pinv , and the input capacitance is (C1+C2)/h which is also the area of the

buffer. After splitting the original buffer to two buffers with equal electrical efforts of h, the

delay for both branches would still be h+pinv and the input capacitance would be

h

h

h

C1

C2

C2

C1

Split

Merge

Fig. 4: Split/Merge Transformations.
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thus the same input capacitance and hence the same area. For merge trans-

formation, one can easily verify the same provided that the electrical efforts of the buffers to

be merged are equal. �

Therefore, if T* is the optimal fanout tree with the proper sizing of buffers, it can be split to a

fanout-free tree consisting of a set of buffer chains T, which has the same area as T*, according to

Theorem 4, and also satisfies the timing and input capacitance constraints (Fig. 5). First, T will be

found by using the optimal algorithm presented in section A. The method used to transform T into

T* will be discussed later.

The 1FO problem was stated such that the maximum input capacitance allowed was given. There-

fore, before the mFO problem can be broken down into 1FO problems, different portions of Cin

need to be allocated to each branch (Fig. 5).

Input Capacitance Allocation (ICA) Problem: Given a number of sinks, each with a required

time, capacitive load, and required polarity, and a total budget on input capacitance Cin, allocate

portions of Cin to each branch such that the total area is minimized while the given constraints for

all sinks are satisfied.

In this section it is first proven that the ICA problem is NP-Complete and then a heuristic is pro-

posed for solving this problem.

C1 h C2 h⁄+⁄

CL1

CL2

CLm

Cin

Ci1

Ci2

Cim

Fig. 5: Input Capacitance Allocation for a Fanout-free
Buffer Tree.
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Intuitively speaking, the input capacitance allocation problem is similar to Knapsack problem

where objects of the Knapsack problem correspond to the capacitance budgets of each branch and

the total capacitance is limited by the input capacitance constraint Cin which corresponds to the

Knapsack volume.

Before it can be formally proven that this problem is NP-Complete, the behavior of area must be

studied as a function of input capacitance for each branch. The valid range for the buffer count on

branch i is [1, ], according to (10). For each buffer count n, in this range, there exists a

maximum electrical effort for the buffer chain, according to (8). Therefore, because of the capaci-

tance constraint in equation (6), there exists a minimum required input capacitance as follows:

(15)

where the denominator is the maximum value that can be achieved by , according to equa-

tion (8). On the other hand, there exists a maximum beneficial input capacitance, , for each

buffer count which means that allocating an input capacitance larger than will not improve

area any further. This value can be calculated using the same optimization problem as in equation

(11) but with dropping the capacitance constraint; that is:

and then calculating as follows:

T Ri
pinv⁄

Ci

CLi

TRi
npinv–

n
-------------------------

 
 

n
----------------------------------=

h∏
Ci

Ci

h{ }
Min

s t:

 arean

delayn TR≤
=

Ci

Ci

CLi

h∏
-----------=
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Obviously, any input capacitance larger than will not improve area any further because allo-

cating already results in the same solution as when the capacitance constraint is dropped.

Now that there exists a range for input capacitance for each buffer count, it can be proven that

area is a decreasing function of input capacitance in this range.

Theorem 5: For a fixed number of buffers in a buffer chain, the area cost is a decreasing

function of input capacitance for .

Proof: Increasing input capacitance, Cin, for a branch will decrease the ratio CL/Cin in the

capacitive constraint of the optimization problem in equation (11). Therefore, there either

exists a better solution with smaller area or, if not, the same solution with the same area is

still achievable. Hence, increasing input capacitance will not increase area, and therefore,

area is a decreasing function of input capacitance and claim is proven. �

Area vs. input capacitance for some buffer count will therefore look something like the graph

shown in Fig. 6a. As shown in Fig. 6a, no feasible solution exists for input capacitances smaller

than and the area stays the same for input capacitances larger than . Different buffer counts

in the range [1, ] result in the graphs shown in Fig. 6b. The minimum area over all

buffer counts will therefore look like the graph shown in Fig. 6c. This piece-wise nature of area

versus input capacitance, which is due to different buffer counts, causes the ICA problem to be

NP-Complete.

Theorem 6: ICA problem is NP-Complete.

Proof: To perform the proof, the 0-1 Knapsack problem will be reduced to the ICA prob-

lem. In the conventional version of the Knapsack problem, each item has a size and a value

and the objective is to maximize the total value. In the ICA problem, however, the objective

is to minimize area. Therefore, we will consider the negative of area, rather than the area

itself, so as to make the problem a maximization problem rather than a minimization one

(Fig. 7a).

Ci

Ci

Ci Cin Ci≤ ≤

Ci Ci

TRi
pinv⁄
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The value vs. size curve for some item of 0-1 Knapsack problem is shown in Fig. 7b. The

point about this graph is that it is not a continuous one. For sizes below si, the value is zero,

Ci Ci

Input Cap.

Area

Fig. 6a: Area vs. Input Cap. for Some
Buffer Count n.

Input Cap.

Area

Fig. 6b: Area vs. Input Cap. for Differ-
ent Buffer Counts.

n1

n2

n3

Input Cap.

Area

n1

n2

n3

Fig. 6c: Minimum Area vs. Input Cap.

Input Cap.

Area

n1

n2

n3

Fig. 7a: -Area vs. Input Cap.

Size

Value

Value

Size

si

vi

si

vi

δ

Fig. 7b:Value vs. Size for an Item
of Knapsack Problem.

Fig. 7c: Modified Value vs. Size
Graph.
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and for sizes greater than si, the value is vi. Assuming δ to be the accuracy of the machine,

the graph can be modified to the one shown in Fig. 7c to make it a continuous one. Note that

the graph may have any arbitrary behavior in the range between si and si+δ. This new graph

is a special case of the graph shown in Fig. 7a in which the curve has become linear. Since

the 0-1 knapsack problem is NP-complete, the ICA problem is NP-Hard as well, otherwise

one could formulate the 0-1 Knapsack problem as an ICA problem and solve it in polyno-

mial time. Note that the NP-Hardness of ICA is because of the piece-wise nature of the area

versus input capacitance curve, and that, in turn, is because area is represented by different

functions for different buffer counts. Now that it has been proven that ICA is NP-Hard, it

must be shown that the decision version of ICA can be tested in polynomial time. This is

obviously true because one can easily add up the input capacitances of each branch and

compare it with the input capacitance budget Cin. This can be done in linear time, meaning

ICA is in NP, and since it was proven that ICA is NP-Hard, therefore the ICA problem is

NP-Complete. �

After proving that ICA is an NP-Complete problem, this section proceeds by proposing a heuristic

method for allocating input capacitances to each branch.

Let m denote the number of sinks and thus the number of branches. Consider the k-th branch

( ); Hk , maximum of electrical effort of the k-th branch, has its minimal value of 1 at

nk=0 (lim. H when n tends toward 0). On the other hand, Hk cannot be any larger than

, the value of Hk(nk) when nk is calculated from equation (12). According to equation

(5), the maximum value of Hk corresponds to the minimum value of Cik ; therefore the minimum

acceptable input capacitance would be:

(16)

Allocating any capacitance less than to any branch will make that branch infeasible. Hence, m

new positive variables xk for k=1,..., m are introduced such that:

1 k m≤ ≤

µ T Rk
pinv,( )

Ck

CLk

µ TRk
pinv,( )

----------------------------=

Ck
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(17)

This way, one can be sure that the minimum required capacitance is allocated to each branch. The

heuristic is to find xk’s in such a way that their ratio is proportional to the positive slope of H

graph in Fig. 2. The motivation behind this heuristic is the fact that for two different branches to

have the same change in buffer count, the branch with smaller slope would need a smaller change

in CL/Cin. When a branch is given a wider range of buffer counts to explore, a better solution will

likely be found. For an example, refer to Fig. 8. Branch 1 has a larger slope compared to branch 2;

therefore, a larger change in CL/Cin for branch 1 is required to have the same buffer count range

as branch 2. Since CL is given and fixed for each branch, changing CL/Cin corresponds to chang-

ing the Cin allocated to that branch.

The proposed heuristic is shown in Fig. 9. Line 4 finds xk’s such that the desired ratio between

them, as discussed above, is fulfilled.

The slope for each branch is estimated as follows:

(18)

Cik Ck xk+=

∆n

∆CL/Cin

∆
C

L /C
in

B
ran

ch
1

Branch 2

Fig. 8: Different Slopes Corresponding to Dif-
ferent Branches.

slopek

ymaxk
ymink

–

xmaxk
xmink

–
------------------------------

µ TRk
pinv,( ) 1–

TRk
λ pinv( ) 0–

-------------------------------------= =
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After finding the allocated input capacitances, m instances of the 1FO problem will be generated

that can be optimally solved by the algorithm presented in Section A.

C. Merging Buffer Chains

So far, a continuous-sized buffer library has been assumed. In reality the ASIC library has a finite

(and hopefully large) number of inverter sizes. So the solution needs to be mapped to one consis-

tent with the library. The main problem when rounding the inverter sizes is that it may result in

significant errors. To alleviate this problem, the merging transformation, which is the opposite of

the split transformation introduced in Fig. 4, is used.

To show how this works, recall Theorem 4. If the electrical efforts of the buffers on two branches

are equal, one can merge them and replace them with a single buffer with the same electrical

effort. Note that simply because the electrical efforts of the buffers are the same, one cannot con-

algorithm InCapAlloc (Cin, {CL}, {TR})

1. begin

2. for k=1,..., m

3. ;

4. {x}=solve:

5. for k=1,..., m

6. Cik=Ck+xk;

7. return ({Ci});

8. end

Ck

CLk

µ TRk
pinv,( )

----------------------------=

Ck xk+( )
k 1=

m

∑ Cin=

k∀ 2 … m, ,=

x1

xk
-----

µ TR1
pinv,( ) 1–

µ TRk
pinv,( ) 1–

-------------------------------------
 
 
  TRk

λ pinv( )
TR1

λ pinv( )
--------------------------

 
 
 

×=













Fig. 9: Algorithm InCapAlloc.
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clude that the buffer sizes are also the same. As shown in Fig. 4, the sizes of each of the buffers

before merging are C1/h and C2/h , respectively, and the size of the buffer after merging is

(C1+C2)/h. Therefore, the size of the buffer after merging is equal to the summation of buffer

sizes before merging. This fact can be used to reduce the rounding error. As an example, consider

a buffer size of 0.35 that has to be mapped to a buffer size of 1 in the ASIC library. Now, if two

buffers of size 0.35 could be merged to a single buffer, the size would be 0.7, and rounding to a

buffer size of 1 would result in smaller error.

Clearly one has to be concerned about satisfying the required time and input capacitance con-

straints when performing this transformation. The merging should be performed in such a way

that all timing constraints are satisfied and the area (as well as the input capacitance of the very

first stage) is the same. As noted in the proof of Theorem 4, for the merging transformation to pro-

duce the exact same area and delay, the electrical efforts of the buffers to be merged must be

equal. However, because each branch of the fanout tree is optimized separately with respect to the

corresponding sink, the electrical efforts of the buffers may not necessarily be equal. Thus a con-

stant ε is defined and two buffers are merged if the difference between their electrical efforts is

less than or equal to ε percent. In addition, two buffers are merged if the rounding error after

merging the two is smaller than the summation of rounding errors of each buffer before the merge

operation. Obviously, the efficiency of this approach is dependent on the order in which the buff-

ers are selected to be merged. The approach presented here is to cluster the buffers into groups of

nearly equal electrical efforts and check for the merging possibilities inside each group. Merging

is performed starting at the source of the signal, and proceeding toward the sinks, while at the

same time preserving the area so as not to increase the capacitive load imposed on the previous

stage. The pseudo-code for a recursive merging algorithm is shown in Fig. 10.
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IV. EXPERIMENTAL RESULTS

Three different sets of experiments were performed. In the first set, the LEOPARD algorithm of

Section III was compared with an implementation of the Sutherland algorithm [4], which mini-

mizes delay through a path. The results are reported in Table 1.

Circuit
Sutherland LEOPARD

AREA

LEOPARD
with 5% slack

Delay Area Delay Area

1 6.97 233 232 7.32 183

2 6.86 19 19 7.20 15

3 15.05 458 455 15.80 277

4 12.85 183 182 13.49 123

5 8.13 22 22 8.53 17

6 11.32 143 142 11.89 97

7 6.86 38 38 7.20 30

8 12.20 198 197 12.81 134

9 13.79 245 245 14.48 149

10 8.50 70 69 8.93 54

Table 1: Comparison with Sutherland.

algorithm Merge (source)

1. begin

2. B = all buffers driven by source;

3. cluster buffers in B based on their electrical efforts;

4. foreach cluster:

5. repeat

6. pick two buffers;

7. merge if it improves the rounding error;

8. add merged buffer to the cluster;

9. until no more merging is possible;

10. foreach buffer in every cluster:

11. Merge (buffer);

12. end

Fig. 10: Algorithm Merge.
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For all of the experiments, the minimization problems within the LEOPARD algorithm were

solved using the Matlab Optimization Toolbox ver. 2.0. Furthermore, pinv was assumed to be 0.6.

For each circuit, the capacitive load of the sink and the maximum capacitance that the source can

drive were given. First, the path delay was minimized using Sutherland’s method. Delay and area

of minimum-delay buffer chain are reported in columns 2 and 3. Next the resulting delay and

polarity were used as the constraints for the area minimization problem in LEOPARD. In the 4th

column the minimum area generated by LEOPARD subject to the given constraints is shown. As

expected, the area is almost the same because delay has been minimized, and hence, the timing

constraint is so tight there will not be much room for reducing area. However, when LEOPARD

was given a 5% additional slack, it can reduce area by an average of 29% as shown in columns 6

and 7. This shows how delay can be traded off for area to significantly reduce area using LEOP-

ARD if a slight increase in delay can be afforded. Note that merging or rounding is not applied

during this set of experiments and the area reported is the summation of input capacitances of all

inverters.

In the next set of experiments, the results from LEOPARD are compared with the results of an

implementation of Kung’s algorithm [3].

Circuit Sinks
Kung LEOPARD LEOPARD

+5% InCap

InCap Area Area InCap Area

1 5 53.28 916 906 55.94 739

2 4 68.34 1104 1093 71.76 907

3 6 34.18 462 457 35.88 381

4 10 236.41 1463 1451 245.05 1231

5 4 153.45 1296 1284 161.12 1079

6 7 156.40 1635 1619 164.22 1347

7 15 158.62 5358 5295 166.55 4210

8 12 29.24 4342 4290 30.70 3376

9 9 21.25 3868 3820 22.31 2995

10 11 21.28 5808 5735 22.34 4461

Table 2: Comparison with Kung.
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For each circuit, a number of sinks with capacitive load, required time, and required polarity are

given. The number of sinks for each circuit is shown in column 2. Kung’s algorithm was first used

to minimize capacitive load on the source. The resulting capacitance and area are reported in col-

umns 3 and 4. The capacitance calculated by Kung’s algorithm was then used as the capacitive

constraint for area optimization in LEOPARD. The resulting area is reported in column 5. Finally,

an additional 5% input capacitance was allowed for each circuit to further reduce area, and the

resulting input capacitance and area are shown in columns 6 and 7. An average of 19% improve-

ment in area is achieved in the expense of 5% additional input capacitance. Note that in this set of

experiments, neither merging nor rounding were performed for Kung’s algorithm or LEOPARD

and the area reported in Table 2 is the total capacitance of inverters calculated by the algorithms

rather than extracted from the library. pinv is assumed to be 0.6.

Finally our last set of experimental results compare LEOPARD with the SIS fanout optimization

program. SIS runs different fanout optimization programs, namely LT-Tree, Two-Level, Bottom-

Up , and Balanced, and the best one is reported [14]. In this set of experiments, a standard cell

library consisting of ten different inverters was used. For each inverter τintrinsic and Rout were

specified for the SIS library delay model and pinv and τ were specified for the Sutherland delay

model. A very good match between the SIS delay and logical effort delay model values was

enforced.

The fanout optimization programs of SIS were first used to perform fanout optimization. The

results are reported in column 6 of Table 3. Then the delay and input capacitance resulting from

SIS were used as constraints for LEOPARD. The results, assuming a continuous-size buffer

library, are reported in column 3. Then merging and mapping to the real buffers in the ASIC

library were performed, and the results are shown in columns 4 and 5. As shown in the table, in

case of continuous sizing the area is expressed in terms of the capacitances but for the discrete-
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sized buffers, it is the actual buffer area extracted from the library. Results show an average of

38% area improvement for LEOPARD.

V. CONCLUSION

This paper presented an optimal algorithm for buffer chains to minimize area with the assumption

of continuous sizing for the buffers. The algorithm finds the optimum number of buffers and the

optimum sizing for them by solving a posynomial minimization problem subject to posynomial

inequality constraints which can be easily and quickly solved by a convex program solver. Based

on this algorithm, a heuristic method was presented for the general case of buffer trees. Consider-

ing the fact that the number of discrete sizes for buffers in typical libraries has highly increased,

the assumption of near-continuous buffer library is fairly accurate.
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