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ABSTRACT

This paper presents LEOPARD, a Logical Effor-based fanout OPtimizer for ARea and Delay,
a () library.
logical effotin VLS diraits the proposes algorithm attempts to mirimize the total buffer area.
Under the requires e and! input capacitance corraints by constrcting the fenout tree topol-
sizes. More el

buffers. For the casethal

a discrete sze lbeary of bufersis aailabl, this paper also presents a pot-processing (buifer
merging) step that sizing solution
= el both

for continuous and discrete bufer libraries LEOPARD achieves a significant reduction in the.
total buffer area subject o the require time constraints.

1. INTRODUCTION

Very often in a VLS! design, a signal needs 1o be disributed o several destinetions under a

reired iming Furthermore, in prectice th asobealim-

tation on thelod that Fenout

finding a buffer tree topol ogy and sizing the bfers in this topology = as to setisy the con-

arants tibvary,
of sizesavall-

able in the libray. This problem has been prover to be NP-complee (1), While sverd
(91,




[10]), new techniques [12] have also been proposed which use more accurate delay models or
even teking inerconnect delay into aceount [11]. More recently, however, resesrchers [3] have.
arted to use continuous as opposed to discrete, size libraries in the sense the the optimum
fanout the ssumption thet al sizes. This greatly
s mplifies the problem and allows the applicetion of more powerful optii zation techniques. At
the sametime, the number of
the extent that & szing’ model axurate
model

1n[2), the authors simplifes the fanout optimizztion problem by restrcting the sesrch space (o

aubst of trees and showed tha the resuts sl compare very favorebly with the dlgoriths thet
e s of topolog es.

itty enumerate the se o so-callef LT-rees and find the optirml LT-ree topology and sizing. Ref-

erence [3] d resticted tress, called d

showed that there sl exits an optimal solution in this seerch space nder a geir-based delay

model

Inthispapes, an d gorithm is presented the finds the fanout e topology and sizes of thebufers
on the tres by decomposing the whole proble into subproblems and solving each subproblem

=par
the whole problem. Our derivation relfes on the notions of logical znd dectrical ffor first pro-
poedin[4).

Sutherland end Sproull 4] minimi ze the deay elong any sngle peth by assgning equal delay
budgets to each stage on that path. While this approech was proven to miriize the deay, it did
ot necesszrily result in an opimal solution in terms of the toal buffer avea. Kung [3], on the.
other hand, solved

the buffer
aren. In contrast, the cpproech presented in this peper mirimizes the total buffer area subject to

off the propagetion delay through the source civer and through the rest of the bulfe ee to

reduce thetota buifer area vithout 0o high of n increae in the overall delay.



“The remainder of this peper is organized s follows. In Section I, the efot defay model that is
plaines. Section 11 the dgorithm. In Sec-
tion IV, experimental resitsave shown, and in Section V, we conclude the peper.

11 DELAY MODEL

“The delay model used i this peper i besexf n the conospt of logical and elecrical lfortspre-
e in (4] model o RC mode
of CMOS gete deay.

[4] thedelay of

d=pegh (1)

pr g used. tis only usetito
For dmpicity,

Parameter the gate. The e isthe

cepatence of regions of Throughout this

pepe 5 used Paraneter g efort of

the gete and depends only on the topology of the gete and the ability to produce output current.
Thelogicd onthar
internel topologies. The logical effart of alogic atetells how much woree it s  producing out-
teurrent thet ecch of itsinpu

(speci inputpin of the electrical
for (also called ga) of the gate and i defined 10 bethe rtio of the capecitive oad hiven by
the gate 10 the input capacitance a the corresponding input pin. The lectrical effort destribes
environment of thetran-

istorsin the gte determines it oahiving capabilty.

thet thesize o the ga only fector that
dfort h. Reference[4] o

1
altivalon el andexpaimena daa.



szing by doing the reformulation to deinethe four factors &, p, g and h in terms of theresistance
end cepecitance of of the
e, For detalsrefer t0[4].

111 ALGORITHM

Inthis secon, the fanout  each one:

is sl ved seperately.

One-Sink Fanout Optimization
driving capebility C;, and a sink S with cepecitive load C, , required polarty P, end required
arival time Ty, o

thet or equal to
T Cir

Maultiple-Sirk Fanout Optimization (mFO) Problen: Given the source of asignal Q with ey
imum driving cepetlity G, dong with a set of m snks § esch of which is assgned a i plet.
(Cy. T P where C,_isthe cepeciive load, Ty is the require arrivl time and P, is the

bufer

Notethet the only The

\ area, in both of of input.
cepaitences of all the buffers, which s rezeoneble with the asmption of continuous szing for
thegates.

“The rest of this section is organized as follows. The 1FO problem i solved in Section A andin
Section, 1FO problem.




A.Buffer Chain

Thevari-
ablesol bufers. effortsof these
buers, by, .. by,

dectrical
b by hy oSl
&g S Fa
me ]
it cap

Fig. 1: Buffer Chain,

dfort 1
temsof nandh'sasfollows

delay =t T @)

“The overall area which s calcul ted as the summetion of the input capacitances of al buffers on
thebufer chein, may subsequenty be expressed as:

roori e
! "IN

i

o cepaitance
constraints aresatisied: tht s,



Theorem 1: In 2 equalto
the pecfied requir ed time Ty, e, delay

Proof: According to equation (3), area is a monotonically decreasing functon of al hy's
(i=1..., ). In other words, incressing any y will always result in a buffer chain with

amller rea Thedelay, on the other hand, is an increas ng function o all hy's according to

@.Thi thet g any abitrary b,
thet del than Ty there-

fore, the optmun bufer chain hes delay .

Lemma 1: In the 1FO problem, for afixed number of buffers, n, in thechain, the optimum

buffer chain has 5~ h, equal to constant Ty,

Proof: According to Theorem 1 and eqution (2):

it TN

Thefirs Sde, Py, is constant for h forthe

optimum buffer chain with n buffers s . condant and enudl to:
Th= Te-nbny (4

Hencethe daim isproved .



of e €,5C,is
Used, where C, isthe input capecitance of thefirst bufer i the chain being criven by the source:
sond and C,, i sthe iven condirant on theiinput caperiance:

[}

- &
T
Letthedxtrcal effort of the chain be defined asthe product of decticd effortsof al the bufers,
and et it be shown by H. Using the above equation, the input capacitance constraint can be.
restcted s follows:

.

G S
Helh=gtegt ©
Theorem 2 Inthe 1FO problem, for afixed number of buffers,n, inthe chein, the dectrica
fort of thebuffer chain, H, achievesitsmaximum value when all h'sare equel

Proof: According to Lerma 1, the summation of all hy'sis contant for any given number
of buifers Since the product of some varizbles with a constant summetion is maximum
when al those veriables ere equel, all hy'shaveto be equal to maximizeH. .

“The electical effort of each bulfer for the buffer chain that mewimizes H, according to Theorem 2
and equation (4), would then be:

S0 themaximum of H, named H as afunction of nwould be:

('r"now)" ®




Hisdiann in ig.2(0rTo=14 andpg,=06.

o 5 10
Fig.2 Plotof Al = Max([Th) vsn

According o Th g
therefore, the only H
(quat

bt hep i ofintsction of  andline C /Gy (i 2). As an exme fo Case i i
Iy tor

il buffer counts. For Case i, on thotherhand, there are two pois of iierection i, and

herefore.the ory feasble buffer couns arebetween i and



buffersand hei szes.
aigorithm OBt €y Cp, T, )

. begin

o T G
2 o = ()L &,
5. nr=[FTor ] +1 depending on polaric ;.
4 ngmmin (7], [ T/p i
5 fornem, . nesen?

Win  area,
6 m-|s ddayer,
c<c,

7. return (best n, best {h});
& end

Fig.3: Algorithm OptN

of bufers, theline: with thegraph H (line2 of
Fig 3and CaselllinFig.2) which resulsin i, and f,. Notethat

imA=1 @

Theefore, there dvys existsan i, unless the ine C,/G,is pasing below uniy, which means

thet C, isess than or equal 1o G,y in which case no buffers nees to be used at ll O the other

hand, o delay.
A effortsof physica inter-
pretation, Ty 1y, has 1o be posiive, which means(line 4 of Fig. 3):

To
nsz® (0




I shor, the buffe count s limited by i, on one side and by i, @0 Tl o1 the other sce.

Therefore, liesbetwesn n, and Fig. 3).

There is a possbilty that theline C,/C,,, could intersect the graph where there is no integer n
between the points of intersection to satisfy the polariy constraint. This only happens when the.

). Inliness nd s, the
follows:
G, G, ,_ &
R e
s byt by ST npy )
G
hyzg

“This is a miimization of a posynomial function with posynorial inequality consirains thet can
be easly solved in polynomial time [6]. Finaily among all the solutions; the one with the miri-
mum areais sefected s the opmum soluion.

value is found o be at:

= Txip) (12)

Lamber (p,/e)

MPin) = G Camber(pin /617 1)

<)

ebout Lambertfunction refer 10 [5]. AS P tendstoward zro:

1
Jim ) = 3 @)



end this corresponds to alocating the wiel-known electrical effort of €10 eech buffer with the.
asamption of p, = 0.

Theorem 3. Algorithm OpN findsthe optimum solution for the 1FO proble.

Proo: Sincedl of
teed o find the optimum solution. .

B. Buffer Tree

Inthis st ol L wherethe

urce signd is riving more than one ink.

Reference [3] inroduced two transformations tht can be performed on a fanout tree, namely
merging and spiting. It s hown here the these ransformations meitain the same erea delay,

rd coptnce
%{% .Esom
g {ﬁ

Fig 4 SplitMerge Trandormations

Theorem 4. The plitmer ge transiormations applied 1o a fanout tree preserve the input
capacitance (thusares) and the deay.

Proot: The proof for st randormationis a ol lows Suppose the dextrical effortof the
origial buffe befoe piting is h. Thus the delay through the buffer for both of the.
brenches s v iy, . 2nd the input capaiance is (Cy+C; I which is s the area of the
buffer. At sliting the oigind buffe to two buffers with el xtrical eforts of , the
delay for both branches would il be py, and the input cepacitance would be



€y/h+Cy/h thus the same nput capacitance and hence the same area. For merge trens-

formetion, one can easly verify the same provided thet the electica efforts of the buffersto

bemerged areequa

Therefore, if T+ isthe optimal fanout tree with the proper sizing of bufers it cen be spit toa
fanoutfres ree consisting of aset of buffer chains T, which has the same arenas T, ccording to

Theorem 4, 5). First, Twill be
Tinto
™ will be discussed later
There-
fore, into 1FO problems different portions of G,

et 0 bellocatr 10 sch branch (Fig. 5.

o)
G ] @

po—.
1 Cs ‘lv‘ G2
Lpo—po o]

Gin Gn

Fig.5: Input Capacitance Allocation for a Fanout-free
Buffer Tree.

Input Capacitance Allocation (1CA) Problem: Given anumber of sinks each with a required
time: cpacitive load, and reuied polarty, and a (ote budget on it capad e, locde

portionsof G,y

al srksaresdisfie

fira thet the ICA
posed for slving thisproblem.



Intitively speaking, the input cepacitance allocation problem s similar 1o Knapsack problem

tetod by the input G which
Knapsack volume.

Before it can beformally proven tha this problem is NP-Complete, the behavior of area must be.

on
branch (L Ty /Py 1. or ench bufer isrange thereeist
efort fortheufer Therelore, because of the caperi-
G
(—,R Gy )
S
can be achieved by [Th aa-

tion (8). On the cther hand, there exists a mexirum bereficial i nput capecitance, G,. for ezch

e count which mesns the allcaing n it capitence lager then G, il ot improve

(11) but with chopping the caperitznce consrait thatis.

Min - area,

M =la delay,<T,

adthen ccuaing  asfollons




Ctvicusty, ny inputcapctance ger han G, il ntimgrove ey futhr beceuse -

aing €, awoppen

Noww that there exists a range for input capcitence for each bufer count, it can be proven thet

Theorem 5 For a fixed number of buffersin a buffer chain, the area codt isa decreasing

function of input capacitance for €< G,y < €,

Proot. capacitance, Gy, ninthe.
cepaitive constraint of the optiizetion problem in equation (11). Therelor, there either
exists a better soluton with smaller aeaor, f ot the seme soluon with the same area s
till achievable. Hence, increasing input capecitarce will not incresse area, and therelore,

input .

Aveavs. input capacitence for some buffer count will therefore look something like the graph
shown in Fig. 6a Asshown in Fig. 6a no fessible solution exists for input capecitances smaller

then ¢, counts.

in the range (1 TPy J] el in the orephs shown in Fig. 6b. The minimum area over al

therefore look 6 ae
versus input cepacitance, which s due to different bulfer counts causes the ICA problem to be.
NP-Complete
Theorem 6: 1CA problem isNP-Complete.
Proof: To perform the proof, the 0-1 Knzpsck problem will be reduced o the ICA prob-
lem. In the conventiona version of the Knapsack problem, ezch tem hes asizeand a vaue

value InthelCA problem, the object
is 0 miniize area. Therefore, we will cond der the negative of area, rether then the area

itsalf, 50 as to mke the problem a maxinization problem rether then a minimizaticn one
(Fig. 73
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Fig.6a: Areavs Input Cap.for Some  Fig, Gb: Area vs Input Cap. for Differ-
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A
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“The value vs. 52 curve for some tem of 0-1 Knapseck problem is shown i Fig. 7b. The.
tisnot For sizesbelow s, thevd




end for s zes greater then s, thevalue s v, Asauming & to be the accurecy of the machine,

Notethet
oraph and §+5. This new raph
is aspecia case of inFig Since.

he0-1 knpseck problm is NP-complete, the ICA problem s NP-Hard s wel, oherwise
one could formulate the 01 Krepsack problem as.an ICA problem and it in polyro-
mia isbecaseof thearen

ditha, it dfeent
funcions for diferent buffer counts. Now the it has been proven tht ICA 1S NRHard, it
must be shwn that the decision version of ICA can be tesed in polynomial time. This is
Obuiously true becase one can il ad up the inpul capecitances of each branch and
compareit with G Thisen mening

ICA isin NP, and since t was proven that ICA is NP-Hard, therefore the ICA problem is
NP-Complete .

meshod for dlocating input capacitancesto eech branch.

Let m denote the number of sirks and thus the number of branches. Consicer the k-th branch

(15K m); Py, maximu o electica ot of thekith tanch, s itsmirime vlue of 18

=0 (lim. H when 1 tends toward 0). On the other hand, H cannot be any larger than

T Py e vl of ) vt

), A

ecceptableinput capacitance would be

Cui
G = —— (g
& b 4

9 % Hence m

for ke



Ci= Gt (D)

Thisway, The
heuisic 510 find s in such a way the thei ratio i proportiond o the posiive scpe of 7
waphinFig.2 e

o
inCu/Gy o

likely be found. For an example, rfer to Fig. 8 Branch 1 hasalarger siope compared 0 brench2;
therefore, alarger change in C,/C;y for branch 1is required o have the same bufer count range:

s brench 2. Since €, \ changing C, /G,
ingthec,, alocated o that branch,

Fig.8:Different Siopes Corresponding toDif-

“The proposed heurisiicis shown in Fig. 9. Line 4 finds ;s such thet the desired retio between
them, as discussed above isfulfll et

“The slope for ezch branch isestimated asfol lows:

- (TP -1
sope, = Yo _WTaP) 1
Xna, “Xmin,  TRMPin) =0




aigorithm InCapallac Cp, (1, (Te)
1. begin
2 fork1...
B e
BT Pin)
4 olve:
T (Gx) = C
Pt
We=zm
X (B(Toy P =) (TrA(m)
[ TR AT
5 forke,..,
6 CamCirg
7. rewum G0y
8 end
Fig.9: Algorthm InCapAlloc.
At : ofthe be generced
et

C. Merging Buffer Chains

i

opefully lerg of inverter s zes.

et with the librery. The main problem when rounding the inverter §2es is that it mey resultin
sgnificant errors.

which
the split randformation introducer in Fig. 4, isuset

o show howw this works, recel Theorem 4. If the e ectrica effortsof the buffers on two branches.
ere equal, one can merge them and replace them with a single bufer with the same eectrica
dfort dfonsof




clude that the buffer sizes are also the same. As shown i Fig. 4, the sizes of esch of the bufers
before merging are Cy/h and Ch, respectively, end the size of the bulfer alter merging is
(Cy+Cy)/h Therelore the size of the buffer after merging is equal 10 the summation of bufer

This fact Asen example consider
abuifer size of 035 that has to be meppedto a buffer size of 1inthe ASIC library. Now if two.
bufers of 22 0.35 could be merged 1o a single bulfer, the size would be 0.7, and rounding to
buffer szeof 1 would resuin smaller error.

Clearly one hes to be concerner about stifying the requires time and input capecitance cor-
trints when peforming thistransformetion. The merging should be pesformed i such a vy
thet all timing consirints are st and the area (as wel & the input capeitence of the very
Theorem 4,
duce the exact same rea and delay, the dxtrical eforts of the buffers o be merged must be.
e H
cortesponding ik, the eectrcal fforts of the buffers may ot necessarily be el Thus acon-
tant ¢ is definest and two buffers e merged i th diference between their detrical eforts is
Tess then or enual o ¢ percent. I ackiton, two buffers are merged i the rounding eror after

operation. Obviousy,

nesrly equal elecrical efforts and check for the merging possibiles inside each group. Merging
is performed starting at the source of the signal, and procesding toward the sinks while at the.
impossd on the previous.
aae 1.




dgorithm Merge (source)

B = all buffers driven by source;
cluster buffers in B based an their electrical efforts;
foreach cluster:
repeat
pick two buffers;
merge if it improves the rounding error;
add merged buffer to the cluster;
ntil no more merging is possible;
10. foreach buffer in every cluster
n Merge (buffer);
12. end

TRNAVAG S S
=

Fig. 10: Algorithm Merge.
1V, EXPERIMENTAL RESULTS

Thvee different ses of experiments were performed.In the firs set,the LEOPARD algorithm of
‘Section I was compered with an implementztion of the Sutherland algorithm [4], which miri-
mizes deay through apath. The results are reported n Table 1.

LEOPARD
cireit | 9 | LEOPARD [ with 56 s

Delay [ Aren Doy | Arem
o7 | =8 o A

5 | 1 o8
9 |un 0 | 1

0| w0 8%
Table 1: Comparison with Sutherland.

N
H
PP




For all of the experiments, the minifization problems within the LEOFARD agorithm were
“Toolbo ve. 2.0, Furth

For ech dircul, the sink he

crivewere given. Firs, the path delay was minimi zed using Sutherland's method. Delay and erea.

of mirimum-delay buffer chain are reported in columns 2 nd 3. Next the resulting delay and

pol problem in LEOPARD. Inthe &th
EOPARD aibjet s

expected, the area s alimost the same because defay hes been mirimized, end hence, the timing

constraint is so tight there will not be much room for reducing area. However, when LEORARD

sack it age

a7, for LEOP-

ARD if aslight increase in defay can be aforded. Note that merging or rounding is not applied

during this se of experiments nd the areareport s the summetion of input capacitancesof il

iverters.

In the next se of experiments, the resuls from LEOPARD are compared with the resuits of an
implementation of Kung's dgorithm 3]

LEomRD
Circuit | Sinks. Kung LEOPARD +5% InCap
InCep | Area Ara InCz Ara

5% [ w | 7S

[0 | s o

| EEY

e | vl |z | 1al

o I ECEE T

e U ECPA e

e | sme [ 1mse | a0

s e | im0 [ mn | an
5 e | oo | za | aws
) o | sms |z | awe

Table2: Comparison with Kung



For each circuit, anumber of sirks with cepacitive o, e e time, end required polaiy are:
oiven. The number of

L 3 and 4. The capecitance calul ted by Kung's  gorithm was then used e the capeciive.
EOPARD. Finaly,

an additional 5% input cepaitence was allowed for each circuit o further recuce ares, and the.
resuling input capecitance and area are shownin colums 6 and 7. An average o 19% improve-
596 aitiond o

experiments neither mesging nor rounding were performed for Kung's agorithm or LEOPARD
and the area reporten n Teble:2 i the total capecitance of iverters cel culated by thealgorithims.

Finally our I set o experi mental resultscompere LEOPARD wih the SIS fenout optmizetion
program. SIS uns diffeent fanout optimization programs nemely LT-Tree: Two-Level, Bottom-
Up, and Balancer, and the bet one isreported [14]. In this set of experiments a sendard cell
libvery cond ting of ten cifferent inveters wes uSed. For €2ch IVerler e 1 Ry Were.
specifed for the SIS ibrery defay mode and p,, and © were speifie or the Suherland defay
mod. A very good melch between the SIS delay and logical effort delay model values wes.
enforced

“The fenout optiizetion programs of SIS were first used to perform fenout optimizaion. The.
60f Table 3. Then
S were use as consiris for LEOPARD. The results, asauming a continuous-sze buffer
libvery, are reported in colurn 3. Then merging and mapping 10 the real buffers in the ASIC
ad in

caseof for the dicrete




sz buffers, it is the actudl buffer area extracted from the library. Results show an average of
335 aren improvement for LEOPARD.

Leorar | Leoraro as
cont.szing | discretesizing
circuit | sinks | zap zcap | Area | Area
1 2 00 00m | 32 | sm1 |
2 6 002 00m | m@ | 4676
3 2 0065 00 | oo | 2m%
“ u 00 00w | @ | sm1
5 2 0060 00w | a0 | mow
6 ) 0045 oo | 1 | 77
7 5 0087 010 | w2 | 1315
Tabled: Comp:
V. ConcLusion
peper dgorithm
of the buffers. of buffersand the
optimum sizing for them by solving a posynomial minimization problem subject to posynomial
e @ progrem solver. Based
general case of buffer trees Consider-
ing the fect that the number of buffersin typica
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