Microprocessor Power Analysis
* by Labeled Simulation

Cheng-Ta Hsieh, Kevin Chen and Massoud Pedram
University of Southern California
Dept. of EE-Systems
Los Angeles CA 90089

&Outline

= Introduction
m Problem Formulation
= Source and Sink
= Architecture Patterns

Propagation Rules

Generalizations

Conclusions

DATE'01 M. Pedram

Macro-Analysis vs. Micro-Analysis

m Macro-Analysis can answer the questions:

= How long the battery of a notebook computer can last if
we run the Internet Explorer?

= Is MIPS more power-efficient than Strong ARM for
running Windows CE 2.07?

= Micro-Analysis can answer the questions:

= What is the power consumption of a branch instruction,
or a compare instruction?

= How much power is consumed in some component for
a certain instruction?

DATE'01 M. Pedram

Instruction Level Macro Modeling

m Instruction Base Costs

= Individual instruction
m Effect of Circuit State

= Consecutive instruction pair
= Inter-Instruction Effects

= Pipeline stall, cache misses

DATE'01 M. Pedram

Review of Instruction Level Model

Power ”
Macro Model Program

I
II 1 I r L 1 L I
IM— —Reg_ __ — TDM— —Reg
Instruction
Base Power i l,

f
+ Program

Consecutive I I L_ 1| I I
Instruction Pair < ! ‘ il TNy ppan NECE Eoy

Power l,

I .
Instruction Stall and Base Pair Other

Cache Miss Power etc.
Ep :Z(Bu xN;) +Z(Oi,j xNi,j) +Z E
i i k
DATE'01 M. Pedram

Problem Formulation

= Given N gates, g;, 9,, ... 9, in a processor and k
active instructions I,,1,,...,l,

m For each gate g;, find an instruction set or a labeling,
Li={l;,...1.}, such that the energy consumption of the
gate in the current clock cycle is caused by
instructions in L;

= Calculate instruction power consumption by
label propagation

Gate .

DATE'01 M. Pedram

$ Cycle-Accurate Energy Calculation

m Let gates(l) denote the set of label indices that
contain instruction |

m Energy consumed by instruction | in the current clock

cycle is:
1 1 2
ngates(I)l jl
DATE’01 M. Pedram
$An Example Pipeline
IF ID EX MEM WB
g g g
e e T S
= = =l
X ¢’ X
> > >
PC= M = iﬁ%‘ ALU= = DM = —
> > >

DATE'01 M. Pedram

$ Example (cont’d)

I, o N
iy 1
M = Reg— —— — '[DM_ ~ Reg
I3 I I2 —_— I1
M = Reg. — '[DM_ ~ Reg
l, r s b ly
M = Reg — — '[DM_ " Reg
ls [, N

M = Reg— — '[DM_ ~Reg

DATE'01 M. Pedram

&A Simple Propagation Rule

\'4
©

Do [T
IR SE
U1 0

“f

Next Clock Cycle

TQ—{lx}

V o

el

DATE'01 M. Pedram

Definitions

m Source

m Set of gates (or wires) from which the labels are
originated

m Sink

» Set of gates (or flip-flops) where the instruction label is
dropped

= Label Propagation Rule

= A description of how the labels are propagated through
FSM’'s, MUX’s, FF’s, and primitive gates

DATE'01 M. Pedram

Architecture Pattern

s Name

= The handle that is used to described the intended
architecture effect (e.g., pipeline-flush, pipeline-stall,
data-forwarding)

Description

= Explanation of how the pattern is caused and how the
processor reacts to the pattern

Liable Set

= Set of instructions that are responsible for the power
dissipation caused by the architecture pattern

Required Rule

= Specification of how the propagation rule should work
in response to the pattern

DATE'01 M. Pedram

An Architecture Pattern Example

s Name
= Streamlined Execution.
m Description

= Each pipeline stage performs the operation specified
by the incoming instruction

m Liable Set

= The instruction being executed in a pipeline stage is
responsible for the power dissipation of that stage

= Required Rule

= The instruction label in a pipeline is transferred to the
next stage in the next clock cycle

DATE'01 M. Pedram

Feasible Labeling Problem

= Given a
= set of architecture patterns.
= Find the
= set of sources
= set of sinks
= set of label propagation rules
m that satisfy all the required rules in the set of
architecture patterns

DATE'01 M. Pedram

Implication by Domination

An architecture pattern is dominated by a

combination of other patterns if its required rules are
covered by the required rules of these architecture
patterns

A labeling scheme is feasible for a target processor if

all of the architecture patterns of that processor are
dominated by the architecture patterns that are
captured by the labeling scheme

DATE'01

M. Pedram

Source

PC -»

DATE'01

addr

40
a4
48
52
56

IM

. add $1,$2,$3 Instruction Pipeline
5. Sub $4,$5,$6 b
. sti $8,$17,0 —» JZReg X B reg
.- muli $15,$17,4 {|2} ~

o lw $24, 0($16) \

Label Source

M. Pedram

Sink

add mov
$3,$1,$31 $1,100
M = JReg: : = DM ™ TReg
Write Back Instruction Decode
mov $1, 100 read reg num 1
write———3 add $3, ;$1,{$31
H_DD register o2 /

write reg rosz [|k

number | jecoder register I

-
S1ts

) Q-
Dreglster 3L

write data
(imm value : 100)

read reg num 2

DATE'01 M. Pedram

Journey of a MIPS Instruction

PC
Write gR

’ Write
REG MEM REG
IM »Read # ALU # Read Write

MEM
Write

DATE'01 M. Pedram

&Pipeline-StaH Pattern

sub |
I - =13
M = Reg_ =
and _
M = J:Reg_ L

_sub

DM ™ T Reg

and _ b_ibb|e

= '[DM_ ~ Reg

sub |

3
M = J:Reg_ |] '[DM_ ~ Reg

and _bubble bubble sub

Il

|2

|3

sub $2,$1,$3
and $12,$2,$5

DATE'01

M = J:Feeg_] '[DM_ ~Reg
and _ bubble bubble bubble
M = Reg__ —— — '[DM_ ~ Reg
M. Pedram

&Hazard Detection Circuit

src(l,)

dst(l,,) dst(l,) dst(l,)
{|4}I_4ﬁ1'}_42_‘ | 1

Hazard
L —— = Detection
|_I | ,_l | | T T
M —0 I e — |3 |2
=1 eg_ . — '[DM_ B
ROAA; Credit Both [
| | {115} °J_
{Is}—o 0 {I,} — o Credit Last bubble—1
—{ — I}
Pt U A § s
i —1 bubble
DATE'01 M. Pedram

10

$ Data Forwarding Pattern

t | X MEM [WB g
-»U_>{I3} {1} {1} dst(l ,) dst(l ,)
Reg. X ‘ | |
File ALUD > DM » _ —
TR | |
> EE— - (I —° {53
{I 2} — 1 Q — {I 3}
| Forwarding € {1,}
Control €
DATE'01 M. Pedram
&Pipeline Flush Pattern
40 beq $1,$3,28 M- fReq. _ - oM~ Reg
44 and $12,$2,$5 M= treg _ - oM™ Reg
48 or $13,%$6,$2 M- req. _ — TDM— -Reg
52 add $14,%$2,$2 M= HReg _ - oM~ Reg
72 Iw $4, 50($7) = e Z = Tom ey

DATE'01 M. Pedram

11

Pipeline Flush Control Circuit

IM_'J:Reg__ — |DM__Reg

control control control
1 1 1 Flush

L
from prev. 3 0L
Stage UUE to next
bubble — 1 stage

hazard Lausn=L predicted condition
detected Ly e Flush actual condition
Lyor{}
DATE’01 M. Pedram

Queuing Pattern

| Queue
L={l} . '
L c L b B —
L, r 1
bus \
wait | [_

|

operands not 2
available

DATE'01 M. Pedram

12

General Propagation Rules

7

% Primitive Gates

in—— .
2-input _ L
in2 gate out
L2
+ OR Gate
| Priority Rule:
n, n, I-out
0 0 L,+L, IFLy={1} L={1)
) 0 Ll then L1+L2:{Imax(i,j)}
0 1 L, Union Rule:
1 1 L,+L
172 L,+L,=L,0L,
DATE'01 M. Pedram

Rules for Primitive Gates (cont'd)

s AND Gate

ing in, Lout
0 0 L,+L,
1 0 L,
0 1 L,
1 1 L,+L,
% XOR Gate
In1 inz I‘ou'(
0 0 L+L,
1 0 L,+L,
0 1 L,+L,
1 1 L,+L,
DATE’01 M. Pedram

13

$ MUX Propagation Rule

Li,—o Lout
L,—1
1L,
select
select Lg==¢ L,==¢ L,==0¢ Lout
0 X 1 X L
0 1 0 X L,
0 0 0 X (LgtL,)
1 X X 1 L
1 1 X 0 L,
1 0 X 0 (LytL,)
DATE'01 M. Pedram

gGeneralization — Pseudo Instruction

Cache Miss
\
\
\
CI;:rtle || Og\lgache_mliss} | I I
~ 4 — — '3) L
bubble—1 = Il ma Tl IR

(nop) El I

l, °
bubble 1

(nop) hazard_detected

DATE'01 M. Pedram

14

Generalization - Instruction Splitting

An ARM arithmetic instruction

3130292827262524232221201918171615141312111098 7 6543210

cond | 001 op S| Rd Rn shifter_operand

Operation
if ConditionPassed (<cond>) then

Rd = Rn <op> <shifter_operand>

if S ==1 and Rd == R15 then
CPSR = SPSR

else if S ==1then
N Flag = Rd[31]
ZFlag=ifRd==0then 1 else 0
C Flag = CarryFrom (Rn + <shifter_operand>)
V Flag = OverflowFrom (Rn + <shifter_operand>)

DATE'01 M. Pedram

A Design Example: ZILOG DSP CORE

-
=
E— U1 | —_1
.
[L L
" .
' [—

-

d 1 .-.'-

i .
| Riart e i |
Jd T8 A

DATE'01 V. Pearam

5

.

15

Energy Calculation

X y
P =3 (B, +5,+10°) + Y (C, V™ 5,410
n=1 n:i ,
—_—— ~
Cell Power Net Power

P = power dissipation for current clock cycle (uJ);

X = number of input pins;

E,, = energy associated with the n" input pin (W/MHz)
y = number of output pins;

C,, = external capacitive loading

DATE'01 M. Pedram

Experimental Results

Instruction Class Aver age Ener gy(108J) ' ns(tlrolljjcrﬂon

NON 0.0053

SL 0.0262 83
MAC 0.0513 132
CTRL 0.0101 30
CAS 0.0147 7
ALF 0.0198 14

DATE'01 M. Pedram

16

$Summary

m Proposed technique reports cycle-accurate (fine-
grain) power consumption for each instruction being
executed in a pipelined (superscalar) machine

m Proposed technique helps identify power problems
during the processor design phase

m Proposed technique is verified against MIPS, ARM,
Pentium microprocessor, and a Zilog DSP

m Pseudo instruction and instruction splitting are useful
for building a high-level macro-model that accounts
for hard-to-capture power effects

DATE'01 M. Pedram

17

