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Abstract� We describe a canonical and compact data structure� called

Edge Valued Binary Decision Diagrams �evbdd�� for representing and ma�

nipulating pseudo Boolean functions �PBF�� evbdds are particularly useful

when both arithmetic and Boolean operations are required� We describe

a general algorithm on evbdds for performing any binary operation that is

closed over the integers� Next� we discuss the relation between the proba�

bility expression of a Boolean function and its representation as a pseudo

Boolean function� Utilizing this� we present algorithms for computing the

probability spectrum and the Reed�Muller spectrum of a Boolean function

directly on the evbdd� Finally� we describe an extension of evbdds which

associates both an additive and a multiplicative weight with the true edges

of the function graph�

�
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��� INTRODUCTION

The development of e�cient techniques for representing and manipulatingBoolean

functions lies at the heart of much of the recent advances in logic synthesis� ver�

i�cation and testing� Reduced� ordered binary decision diagrams �robdd� 	
�

�� � and their numerous variants� provide such a representation� and thus have

become ubiquitous in many problems that arise in computer�aided design of

digital systems�

In many applications it is often convenient and more e�cient to represent and

manipulate Boolean functions at the word level or in the integer domain� For

example� in attempting to verify data path components that perform various

types of arithmetic operations� it is easier to specify the behavior in the integer

domain� and transform the logic implementation into a similar representation�

Other applications where integer level representations are preferred are spectral

analysis of Boolean functions 	��� multiple output decomposition 	�� ��� �
� ���

etc� The advantages of integer level representations is not just limited to logic

design� A large collection of discrete� or combinatorial optimization problems

that involve binary or integer variables� but where the range of the objective

function is some �nite subset of integers� also require compact representations

and algorithms for their manipulation 	���

In this chapter� we describe a canonical and compact representation of pseudo

Boolean functions� called Edge Valued Binary Decision Diagrams �evbdd� 	���

��� evbdds can be used to e�ciently represent and manipulate integer valued

functions� Since Boolean functions are a subset of pseudo Boolean functions�

evbdds can also be used to represent Boolean functions� This allows the con�

struction of general procedures for performing both arithmetic and Boolean

operations� Following a description of evbdds and their properties� we show

how certain spectral transformations on Boolean functions can be carried out

on evbdds� One particular transform� called the probability spectrum �PS� 	���

will be examined� The PS of a Boolean function has important applications in

testing of digital circuits 	��� Additionally� there is a direct relation between

the PS and the Reed�Muller �RM� coe�cients of a Boolean function 	��� We

present an algorithm that transforms an evbdd representation of a Boolean
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function to another evbdd that represents its PS� Next� we show how the

evbdd representation of the PS can be transformed into another evbdd that

represents the RM spectrum� Finally� we show that by associating both an

additive and a multiplicative weight with the edges of an evbdd� we can de�

velop a more compact representation of pseudo Boolean functions� The new

data structure� which was proposed in 	
� and is called Factored Edge Valued

Binary Decision Diagram� reduces complexity of certain arithmetic operations

and allows direct implementation of the complement edges�

��� PSEUDO BOOLEAN FUNCTIONS

De�nition ����� A pseudo Boolean function �PBF	 f�x�� � � � � xn���� with xi �

f�� �g� is a polynomial that is linear in each variable and whose coe
cients are

elements of the set of integers I� The general representation of a PBF is of the

form

f�x�� � � � � xn��� �X
�i������in���

ij�f���g

ai������in��x
i�
� x

i�
� � � �x

in��

n�� � xi � f�� �g� ai������in�� � I��������

In �������� if a��������� � � � then f�x�� � � � � xn��� are said to be constant�free�

With respect to a speci�c ordering hx�� x�� � � � � xn��i of the variables� �������

can be expressed as

f�x�� � � � � xn��� �

c� x���� f��x�� � � � � xn���� � ��� x���� � fr�x�� � � � � xn������������

where f��x�� � � � � xn��� and fr�x�� � � � � xn��� are constant�free� and c� �� � � I�

For the sake of brevity� the right side of ������� will be indicated by a ��tuple�

hc� xn��� f�� fr � �� �i� The representation given in ������� is analogous to

the Shannon decomposition of a Boolean function� However� ������� is not in
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standard or canonical form� To see what this means� consider the function

f�x�� x�� x�� � 
� �x�� �x�x�� �x�x�� �x�x�x�� 
x�� �x�x�� Below are

two di�erent representations of this function in the form of ��������

f�x�� x�� x�� �

� � x���� �x� � �x� � x�x�� � ��� x���� � 
x� � �x�x�� � �����
�

� � x���
 � �x� � �x� � x�x�� � �� � x����� � 
x� � �x�x����������

In fact there are an in�nite number of expressions of the form given in �������

that denote the same function� Therefore� given two ��tuples�

hc�� x�� f�� fr � ��� ��i� and h c�� x�� g�� gr� ��� �� i� one cannot deter�

mine whether or not these two representations denote the same function by

simply checking the equality of the components� Among all the expressions of

the form �������� we designate that one in which � � � to be the standard or

canonical form� Then two such representations denote the same function if and

only if the corresponding components of their canonical forms are equal�

��� EDGE VALUED BINARY DECISION

DIAGRAMS

An Edge Valued Binary Decision Diagram �evbdd� is a graph representation

of a pseudo Boolean function� that is expressed in standard form� e�g�� �������

with � � ��

De�nition ����� An evbdd is a tuple hc� f i� where c is a constant� and f is

a directed acyclic graph consisting of two types of nodes�

�� A non�terminal node v described by a ��tuple

hvar�v�� child��v�� childr�v�� valuei� where var�v� � fx�� � � � � xn��g�

child��v� and childr�v� are evbdds that represent the subexpressions

f��x�� � � � � xn��� and fr�x�� � � � � xn��� in ����	 and value � � in ����	�

� The single terminal node� denoted by �� which represents the value ��
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Figure ��	�� evbdd representation of the pseudo Boolean function

shown in ������� �� � ���

De�nition ����� An evbdd hc� f i denotes the arithmetic function c � f �

f�� �gn � integer where f is the function f denoted by f � hx� f�� fr� valuei�

The terminal node � represents the constant function f � �� and hx� f�� fr� valuei

denotes the arithmetic function f � x � �value � f�� � ��� x� � fr �

Figure ��
�� shows a general evbdd representation of ��������

����� Reduced and Ordered evbdds

The decomposition of a PBF given in ������� assumes a speci�c ordering of the

variables� This means that there is an index function index�x� � f�� � � � � n��g�

such that for every non�terminal node v� either child��v� is a terminal node

or index�var�v�� � index�var�child��v���� and either childr�v� is a terminal

node or index�var�v�� � index�var�childr�v���� If v is the terminal node� then

index�v� � n� Such an evbdd is said to be ordered� An evbdd is reduced if

there is no non�terminal node such that child��v� � childr�v� with value � ��

and there are no two nodes u and v such that u � v� We only consider reduced�

ordered evbdds�
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Figure ��	�
 evbdd of f�x�� x�� x�� � 	 
 �x� � �x�x� � �x�x� 


x�x�x� 
 	x� � �x�x��

Example ����� Consider the function f�x�� x�� x�� given in �����	� With

respect to the ordering hx�� x�� x�i� the function can be decomposed as follows�

f�x�� x�� x�� � 
 � �x� � �x�x� � �x�x� � �x�x�x� � 
x� � �x�x�

� 
 � x���� �x� � �x� � x�x�� � ��� x���
x� � �x�x���

�� �x� � �x� � x�x� � � � x����� �x�� � �� � x�����x��


x� � �x�x� � � � x��
� �x�� � ��� x�����

��� �x� � �� � x���� � �� � �� � x�����

��x� � � � x���� � �� � ��� x�����


� �x� � 
 � x���� � �� � ��� x������

Figure ���� shows the evbdd representation of f�x�� x�� x��� �

A path in an evbdd corresponds to an assignment of values to the variables

associated with the path� The value of a PBF f�x�� � � � � xn���� for a given

assignment �x�� � � � � xn��� is obtained by summing the values along the path

as follows�
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De�nition ����� Given an evbdd hc� f i representing f�x�� � � � � xn��� and a

function � that for each variable x assigns a value ��x� equal to either � or ��

the function EVeval is de�ned as

EVeval�hc� f i��� �

�
c f is the terminal node �
EVeval�hc� value� child��f �i��� ��variable�f �� � �
EVeval�hc� childr�f �i��� ��variable�f �� � �

An extension of obdds� called Multi�valued Decision Diagrams �mdds�� was

given in 	
�� In an mdd� a nonterminal node can have more than two chil�

dren and a terminal node assumes integer values� All operations are carried

out through the case operator� which although works for arbitrary discrete

functions� cannot directly perform arithmetic operations� Recently� another

extension to obdds� called Multi�Terminal Binary Decision Diagram �mtbdd�

was presented in 	�� �� An mtbdd corresponds to a fully expanded version

of an evbdd� In general� for functions where the number of distinct terminal

values is large� an mtbdd will require larger number of nodes than an evbdd�

However� for functions where the number of distinct terminal values is small�

an mtbdd may require less storage space depending on the number of nodes

in the corresponding graphs�

An evbdd requires n � � nodes to represent �n��x� � � � � � ��xn�� �an n�

bit integer�� while an mtbdd requires �n�� � � nodes to represent the same

function� When there are only two di�erent terminal nodes �e�g�� � and ���

evbdds� mtbdds� and obdds are equivalent in terms of the number of nodes

and the topology of the graph 	��� In this case� an evbdd will require more

space to represent the the edge�values� The worst case time complexity for

performing operations on evbdds is the same as that for mtbdds� However�

many operations satisfy certain properties 	�� that can be exploited so that

evbdds are much more e�cient than mtbdds�

In 	�� a useful calculus for manipulating pseudo�Boolean functions �referred by

authors as A�Transforms� has been described� Also� to represent such pseudo�

Boolean functions� a graph representation called Semi�Numeric Decision Di�

agrams �snDD� is introduced� In snDDs apart from standard BDD nodes�

various operator nodes are also allowed� an operator node corresponds to basic
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arithmetic operations such as �� �� �� Also� numeric values are allowed to be

stored graph terminals� Thus snDDs contain mtbdds or adds�

����� Operations on evbdds

Let hcf � f i� with f � hx� f�� fr� vf i� and hcg� gi� with g � hy� g�� gr� vgi�

be evbdds that represent two PBFs� We present a procedure� called apply�

that computes hch� hi � hcf � f i op hcg� gi� where op is any binary operator

that is closed over the integers� Examples of op include the integer arithmetic

operators� such as �� �� and multiplication by a constant� relational operators�

minimum and maximum� logical shift� and modulo c� for some constant c�

Furthermore� if the evbdd represents a Boolean function� then apply can be

used directly to perform Boolean operations� as well�

Let h � h var�h�� h�� hr� vhi� and consider the case where index�x� �

index�y�� This means that y will appear below x in h and var�h� � x� Now�

when x � �� hcf � f ix�� � hcf � vf � f�i� and when x � �� hcf � f ix�� � hcf � fri�

Therefore� hch� hix�� � hch� � h�i � hcf � vf � f�i op hcg� gi� and hch� hix�� �

hchr � hri � hcf � fri op hcg� gi� Once the left and right children of hch� hi have

been computed� they have to be combined and the result must be expressed in

the canonical form� The step involved in this standardization is expressed as

follows�

x�ch� � h�� � �� � x��chr � hr�

� chr � x�ch� � chr � h�� � ��� x��hr��

Therefore� the result returned is

�ch� h� � �chr � hx� h�� hr� ch� � chr i��

Figure ��
�
 shows this �nal step� A similar situation exists if index�x� �

index�y��

The steps involved in the procedure apply are shown in Figure ��
��� There are

a set of terminal or default cases speci�c to each operator� the results of which
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Figure ��	�	 Combining the left and right children and converting to

a canonical form�

can be returned without any further computation� As with robdd implemen�

tations� the e�cient construction and manipulation of evbdds is made possible

through the use of two tables that permit sharing of previously computed sub�

graphs without having to reconstruct them in the course of a computation�

Thus� at any time only one evbdd for each distinct function is ever main�

tained� The �rst table� called the unique table� contains a unique entry for

each evbdd node� The second table� called the computed table maintains the

correspondence between a function that has been computed and the node in

the unique table� Thus in the course of a computation� computed table is �rst

checked� and if the result is there� it is returned� Otherwise� after the operation

is performed� the node associated with the new evbdd is added to unique table

and the function denoted by the node is entered into computed table� along with

a pointer to the node in unique table� Additional enhancements such as the use

of complement edges 	�� are also possible�

Steps �� �� �
 and �� of apply may generate new evbdds since equality of two

evbdds hcf � f i and hcg� gi requires cf � cg and f and g to be isomorphic� This

implies that the time complexity of apply is not simply O�j hcf � f i j � j hcg�gi j��

where j hcf � f i j and j hcg�gi j denote the number of nodes in evbdds hcf � f i

and hcg�gi� A complete analysis of the time complexity of apply is beyond the

scope of this paper� Details appear in 	��� However� most of the operators in

question satisfy certain properties which can be exploited to reduce the time
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apply�hcf � fi� hcg�gi� op�
f
� if �terminal case�hcf� fi� hcg�gi� op�

return�hcf � fi op hcg�gi���
� if �comp table lookup�hcf � fi� hcg� gi� op� ans��

return�ans��
	 if �index�f� � index�g�� f
� hcgl �gli � hcg 
 value�g�� childl�g�i�
� hcgr �gri � hcg� childr�g�i�
 var � variable�g��
� g
� else f
� hcgl �gli � hcgr �gri � hcg�gi�
�� var � variable�f��
�� g
�� if �index�f� � index�g�� f
�	 hcfl� fli � hcf 
 value�f�� childl�f�i�
�� hcfr � fri � hcf � childr�f�i�
�� g
� else f hcfl � fli � hcfr � fri � hcf � fi�g
�� hchl �hli � apply�hcfl � fli� hcgl �gli� op��
�� hchr �hri � apply�hcfr � fri� hcgr �gri� op��
�� if �hchl �hli �� hchr �hri� return �hchl �hli��
�� h � find or add�var�hl�hr� chl � chr ��
�� comp table insert�hcf � fi� hcg�gi� op� hchr �hi��
�� return �hchr �hi��
g

Figure ��	�� Procedure apply�

complexity� As a result� the time complexity of binary arithmetic operations�

Boolean operations� and relational operations is O�j hcf � f i j � j hcg�gi j�� Thus�

when Boolean functions are represented by evbdds� the time complexity is the

same as in the case of robdds�

����� Some Applications of evbdds

In this section we present a summary of some important applications of evbdds

that have been in investigated 	���
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Integer Linear Programming� Integer linear programming �ilp� is an NP�hard

problem that appears in many applications� In 	�� an obbd based approach for

solving ��� programming problems is presented� For operations involving inte�

gers such as conversion of linear inequality constraints into Boolean functions

and optimization of non�binary objective functions� BDDs are not directly ap�

plicable� This shortcoming limits the caching of intermediate computations to

only Boolean operations� Our approach to solving the ilp is to combine the

bene�ts of evbdds �e�g�� subgraph sharing and caching of intermediate results�

with the state�of�art ilp techniques� In 	��� we describe an algorithm using

evbdds that computes optimal solution to a given linear objective function

subject to linear constraints� Even without the use of sophisticated bounding

techniques� experimental results show that the evbdd based ilp solver is as

e�cient as a commercial ilp package�

Hierarchical Veri�cation� The process of logic veri�cation is to show the equiv�

alence between the speci�cation and the implementation� obdds can be used

to verify logic circuits� only at the Boolean level� For example� to verify a ���

bit adder� one would have to �rst derive the obdds �obddimp� for each of the

�� outputs of the logic circuit and the obdds �obddspec� from the �� Boolean

expressions of each output function and then show equivalence� This would

only show that each of the �� outputs does realize the corresponding Boolean

expression� However� since evbdds can be used to represent discrete inte�

ger and Boolean functions� they provide a means to verify the a logic circuit�

where the speci�cation is expressed in the integer domain� Thus the speci��

cation of a ���bit adder would simply be x � y � c� where c is the carry�in�

If �b�� b�� � � � � bn��� represent the outputs of a ���bit adder� then the veri�ca�

tion process would �rst construct �� evbdds for the bi�s and construct a single

evbdd for �� � b� � � � �� ��� � b��� This evbdd would be compared with the

evbdd of the speci�cation� thus showing that the adder does indeed perform

addition� Details of the use of evbdds for veri�cation are described in 	���

Decomposition of Multiple Output Boolean Functions� The decomposition of

Boolean functions had been the subject of extensive research� Much of the

classical work on decomposition based on Karnaugh maps 	�� � and cubes 	
��
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and more recently using obdds 	�� �� �
� 
�� are applicable to single Boolean

functions� evbdds allow decomposition of multiple Boolean functions� In 	�� a

set of evbdd based algorithms for decomposition of single and multiple output

functions are described� This includes disjunctive and non�disjunctive decom�

position� and decomposition of completely and incompletely speci�ed functions�

��� THE PROBABILITY TRANSFORM

AND ITS SPECTRUM

Many properties of Boolean functions that are di�cult to deduce in the Boolean

domain are often very easy to establish using an alternate representation� The

alternate representation is called the spectral domain� A spectral transforma�

tion of a Boolean function of n variables is typically represented in the following

form�

Tn eZn � eRn� �������

where eZn is a �n � � vector representing the truth table of the function� and

Tn is a �n� �n transformation matrix� eRn is a �n � � vector� and is called the

spectrum of the Boolean function� Di�erent transformation matrices generate

di�erent spectra� Some of the more extensively studied transformations are the

Hadamard� Walsh and Reed�Muller 	��� 

� ��� These transforms have found

extensive use in function classi�cation� veri�cation� logic synthesis� testing and

fault diagnosis�

The key obstacle in using ������� is that the transformation matrix is of size

�n � �n� Thus ������� can be used in practice only when n is small� This is

where evbdds play an important role� In situations where Tn has a recursive

structure� the transformation given in ������� can be carried out directly on the

evbdd representation of the Boolean function�

In this section� we examine one particular transform� called the probability

transform � which is also known as the algebraic transform � The fundamental

properties of this transform and its extensive applications to testing were inves�

tigated by Kumar 	��� However� many of the results presented in 	�� require
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computations whose complexity is exponential in the number of variables� The

probability spectrum of a Boolean function is directly related to the pseudo

Boolean representation of the function� Using this relation� and the fact that

evbdds provide a canonical and compact representation of PBFs� we present

an algorithm to compute the probability spectrum directly on the evbdd� The

resulting structure is called a spectral evbdd� The only di�erence between an

evbdd and the corresponding spectral evbdd is in the interpretation � the sum

of the values along the edges of a path in a spectral evbdd is the spectral coe��

cient associated with the input assignment� After showing how the probability

spectrum can be computed using evbdds� we show how the spectral evbdd

can be transformed� so that the resulting structure represents the Reed�Muller

spectrum of a Boolean function� The resulting structure is called an rmevbdd�

Let f�x�� � � � � xn��� be a Boolean function� Let Xi � Pr�xi � ��� with Xi �

	�� �� and F �X�� � � � � Xn��� � Pr�f�x�� � � � � xn��� � ��� F �X�� � � � � Xn��� is

called the probability expression of f�x�� � � � � xn���� The probability expres�

sion F �X�� � � � � Xn��� is obtained by the repeated application of the following

rules 	��� 
��

Pr�xi � �� � ��Xi

Pr�xi � xi � �� � Xi

Pr�f� � f� � �� � F� � F� � F�F��

where Fi � Pr�fi � ���

The probability expression F �X�� � � � � Xn��� represents a real valued function

whose domain and range are 	�� �n and 	�� �� respectively� Now� if the variables

Xi are restricted to be integers that can assume either � or �� �i�e�� Xi � f�� �g��

then the expression F �X�� � � � � Xn��� is the pseudo Boolean representation of

f�x�� � � � � xn����

Example ����� Consider f�x�� x�� x�� � x�x� � x�x�� Applying the above

rules� we obtain

F �X�� X�� X�� � X�X�X� �X�X� �X�� �������
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Now the pseudo Boolean representation of f�x�� x�� x�� is the same as the right

side of �����	� with Xi � f�� �g� �

De�nition ����� �from ����	 With respect to the ordering� hX�� � � � � Xn��i�

the probability spectrum of a Boolean function f�x�� � � � � xn��� is a vector eSf �

	s�� s�� � � � � s�n��
T � where si is the coe
cient of the term X

i�
� X

i�
� � � �X

in��

n�� in

F �X�� � � � � Xn���� and hi�i� � � � in��i is the binary representation of the integer

i�

Example ����� Consider the probability expression given in �����	� Expand�

ing the expression into a canonical sum of products form� we obtain

F �X�� X�� X�� � � �X�
�X

�
�X

�
� � � �X�

�X
�
�X

�
� � � �X�

�X
�
�X

�
� � � �X�

�X
�
�X

�
�

� � �X�
�X

�
�X

�
� � � �X�

�X
�
�X

�
� � ���� �X�

�X
�
�X

�
� � � �X�

�X
�
�X

�
� �

The probability spectrum eSf � 	� � � � � � � � �T �

Theorem ����� �from ����	 De�ne a �n � �n matrix Pn as follows�

P� � �� Pn �
h

Pn�� �
�Pn�� Pn��

i
�

Let eZ be a �n � � vector of values of f�x�� � � � � xn���� Then the probability

spectrum eSf is given by eSf � Pn � eZ� �����
�

�

We now show how the transformation given in �����
� can be carried out on an

evbdd representation of f � With respect to the ordering hx�� � � � � xn��i� eZn

can be partitioned as 	 eZ�
n���

eZ�
n��

T � where eZ�
n�� � eZ�

n��� corresponds to the

min�terms of f with x� � � �x� � ��� Then �����
� can be expressed as� eS�feS�f
�
�
h

Pn�� �
�Pn�� Pn��

i� eZ�
n��eZ�
n��

�
�

�
Pn�� � eZ�

n��

Pn�� � eZ�
n�� � Pn�� � eZ�

n��

�
�

�������
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In �������� eZ�
n�� and

eS�f � eZ�
n�� and eS�f � correspond to the right �left� children

of the evbdd of f�x�� � � � � xn���� and the resulting spectral evbdd� respec�

tively� Thus� ������� states that to compute the spectral evbdd we perform the

following steps recursively�

�� replace the right child with the spectral evbdd of the right child�

�� replace the left child with the spectral evbdd of the left child minus the

spectral evbdd of the right child�

Note	 Since an evbdd is reduced� a node of the form v � hx� f � f ��i would

never appear� However� the spectral transform of the subgraph rooted at v

would result in a node v� � hx��� f �� �i� where f � is the result of spectral trans�

form when applied to the right child of v� For this reason� the algorithm for

computing the spectral transform must keep track of the level of each node�

If the index of the variable associated with the node currently being visited

is greater than its level� then an a new evbdd� rooted at a node of the form

v� is returned� The basic steps of the procedure that converts an evbdd of a

Boolean function to a spectral evbdd is shown in Figure ������

Example ����� Consider the Boolean function f�x�� x�� x�� � x�x� � x�x� of

Example ������ Its representation as a PBF is given in Equation ����� Using

this� its evbdd representation is shown Figure ����� The execution of the

procedure evbdd to spevbdd on the evbdd of Figure ���� results in the spectral

evbdd shown in Figure ������ Summing the values along the edges of the

spectral evbdd will result in the spectral coe
cients shown in Example �����

�
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evbdd to spevbdd�ev� level�n�
f
� if �level �� n� return ev�
� if �ev �� �� return ��
	 if �index�ev� � level� f
� right � evbdd to spevbdd�ev� level 
 �� n��
� left � ��
 return new evbdd�level� left� right��
� g
� right � evbdd to spevbdd�childr�ev�� level
 �� n��
� spl � evbdd to spevbdd�childl�ev�� level 
 �� n��
�� left � evbdd sub�spl� right��
�� return new evbdd�level� left� right��
g

Figure ����� Procedure to convert an evbdd to a spectral evbdd�

Figure ����
 evbdd of f�x�� x�� x�� � x�x� � x�x��

��� REED�MULLER COEFFICIENTS

The standard symbolic interpretation of an obdd results in a sum of products

representation of a Boolean function� It is well known 	��� 

� ��� that another

canonical representation is possible if only AND and XOR operators are used�

The resulting expression is called the Reed�Muller �RM� representation of the



EVBDD 	�

Figure ����	 Spectral evbdd of the evbdd shown in Figure ������

function� Speci�cally� if f�x�� � � � � xn��� is a Boolean function� then the RM

representation of f has the form

f�x�� � � � � xn��� � a�� 	 a��xn�� 	 a��xn�� 	 � � � 	 a�n���x��x� � � � �xn��� �������

where ai � f�� �g� and �x is either complemented or un�complemented variable

xi�

We assume that each variable on the right side of ������� appears either as

complemented or un�complemented� but not both� Digital circuits built using

the RM form have a number of useful properties� They belong to a class of

easily testable networks since test sets are independent of the function realized

by the circuit and depend linearly on the number of inputs 	
�� This has

motivated interest in minimization of RM forms� Minimizing an RM form

requires determining the polarity of each variable so that the resulting RM

expression for the function has the least number terms�

The RM coe�cients of a Boolean function� represented by an evbdd can be

obtained using a transformation nearly identical to the one given in Theorem

������ The resulting representation will be called an rmevbdd� Let eAf denote

the RM coe�cients of a Boolean function f � ordered in the same way as eSf
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�see Theorem ������� De�ne a �n � �n matrix Rn as follows�

R� � �� Rn �
h
Rn�� �
Rn�� Rn��

i
�

Then the RM spectrum eAf is given by

eAf � Rn � eZn� �������

The RM spectrum can also be computed from the probability spectrum 	���

The relation is simply eAf � jeSf j mod �� �����
�

Thus� the rmevbdd can be generated using either ������� or �����
�� Thus�

to transform an evbdd of a Boolean function to an rmevbdd� line �� of the

procedure evbdd to spevbdd shown in Figure ����� has to be modi�ed as follows�

�� left � evbdd add�spl� right��

Example ��
�� Figure ����� shows the rmevbdd of the function f�x�� x�� x�� �

x�x� � x�x� of Example ������ It was derived from the evbdd shown in Fig�

ure ����� In an rmevbdd� a path from the root to the terminal node that

involves a right edge of a node v� such that var�v� � xi� corresponds to a prod�

uct term in which xi is not present in the RM representation� For example�

consider the path corresponding to the assignment x� � �� x� � �� x� � �� in

the rmevbdd shown in Figure ������ This assignment corresponds to a path

that includes the right edge of a node v� with var�v� � x�� Therefore� this path

corresponds to the term x�x�� The associated RM coe
cient is the sum of the

edge values along this path� i�e�� � � � � � � �� � �� �

There are �n RM forms for a function f�x�� � � � � xn���� corresponding to the

�n possible combinations of polarities for each variable� From �����
�� we see
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Figure ����� rmevbdd of the evbdd shown in Figure ������

that �nding the minimal RM expression of a function requires identifying the

polarity vector that will result in the least number of odd terms 	��� The

following theorem shows the e�ect of changing the polarity of a variable in the

rmevbdd representation of a Boolean function�

Theorem ��
�� Let E and E� represent the rmevbdds of

f�x�� � � � � xi��� xi� xi��� � � � � xn��� and f�x�� � � � � xi��� xi� xi��� � � � � xn���� respec�

tively� Then E� is obtained from E by performing the following transformation

on every node u� such that var�u� � xi�

childr�u�
 �child��u� � childr�u�� mod ��

Figure ����� shows the procedure to switch the polarity of a variable in an

rmevbdd�



�
 Chapter �

�� swith polarity switches the polarity of
a variable in an rmevbdd�
ev is an rmevbdd� i is the index of the
variable whose polarity is to be switched�
�
switch polarity�ev� level� i� n�
f
� if �level �� n� return ev�
� if �ev �� �� return ��
	 if �index�ev� � level� f
� right � ��
� return new evbdd�level� childl�ev�� right��
 g
� if �index�ev� �� i� f
� spr � evbdd add�childl�ev�� childr�ev���
� right � mod��spr��
�� return new evbdd�level� childl�ev�� right��
�� g
�� left � switch polarity�childl�ev�� level 
 �� i� n��
�	 right � switch polarity�childr�ev�� level
 �� i� n��
�� return new evbdd�level� left� right��
g

Figure ����
 Procedure to switch the polarity of a variable in an rmevbdd�



EVBDD �	

��	 FACTORED EDGE VALUED BINARY

DECISION DIAGRAMS

Factored Edge Valued Binary Decision Diagrams �fevbdd� are an extension

to evbdds which were presented in 	
�� By associating both an additive and a

multiplicative weight with the true�edges� fevbdds o�er a more compact rep�

resentation of linear functions� since common sub�functions di�ering only by an

a
ne transformation can now be expressed by a single subgraph� Additionally�

they allow the notion of complement edges to be transferred from obdds to

fevbdds�

De�nition ����� An fevbdd is a tuple hc� w� f i� where c and w are constant

values� and f is a rooted� directed acyclic graph consisting of two types of ver�

tices� �

�� A non�terminal vertex v is represented by a ��tuple

hvar�v�� child��v�� childr�v�� value� factori where value and factor are ra�

tional numbers and var�v� � fx�� � � � � xn��g�

� The single terminal vertex v with value � is denoted by �� By de�nition

all branches leading to � have an associated weight w � ��

There is no non�terminal vertex v such that child��v� � childr�v�� value � ��

and factor � �� and there are no two nonterminal vertices v and u such that

v � u� Furthermore� there exists an index function index�x� � f�� � � � � n � �g

such that the following holds for every nonterminal vertex� If child��v� is

also nonterminal� then we must have index�var�v�� � index�var�child��v���� If

childr�v� is nonterminal� then we must have index�var�v�� � index�var�childr�v����

De�nition ����� A fevbdd hcf � wf � f i denotes the arithmetic function cf �

wf �f where f is the function f denoted by f � hx� f�� fr� value� factori� The ter�

�Here� we will only describe the �rational rule� for weight normalization which requires

the use of fractions� See ���	 for the �GCD rule� which requires a multiplicative weight to be

associated with both edges�
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minal node � represents the constant function f � �� and hx� f�� fr� value� factori

denotes the arithmetic function f � x � �value � factor � f�� � ��� x� � fr �

As an example� we construct the various function graphs based on the di�erent

decompositions of function f given in its tabular form in Figure ������

f�x� y� z� � ����� x���� y��� � z� � ���� x���� y�z � �������

���� x�y�� � z� � ���� x�yz �

�
x��� y��� � z� � �x��� y�z �

�xy��� z� � �xyz

� �� � x��� � y��� � z��
�� � ��� y��z������ � �������

��� x��y���� � z��
�� � ��� y��z������

� ��� ��x�
�

�
�

�



�y�

�



�

�

�
z� � ��� y�z�� � �����
�

��� x��y�
��

�
�

�



z� � ��� y�z���

Equation ������� is in a form that directly corresponds to the function de�

composition for MTBDDs or ADDs and the tabular form� Equations �������

and �����
� re�ect the structure of the decomposition rules for evbdds and

fevbdds� respectively� The di�erent function graphs are shown in Figure ������

A path in an fevbdd corresponds to an assignment of values to the variables

associated with the path� The value of a PBF f�x�� � � � � xn���� for a given

assignment �x�� � � � � xn��� is obtained as follows�

De�nition ����� Given a fevbdd hcf � wf � f i representing f�x�� � � � � xn��� and

a function � that for each variable x assigns a value ��x� equal to either � or

�� the function FEVeval is de�ned as�

FEVeval�hcf � wf � f i��� ��
cf f is the terminal node �
cf � wf � FEVeval�hvalue� factor� child��f �i��� ��variable�f �� � �
cf � wf � FEVeval�h�� �� childr�f �i��� ��variable�f �� � �
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Figure ���� Example of various function graphs�
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Figure ���
 fevbdd representation of the four output functions of a

	�bit adder�

An example of a fevbdd representing a Boolean function with complement

edges is given in Figure ������ This fevbdd represents the four output functions

of a 
�bit adder� It has the same topology �except for the terminal edges� as the

corresponding obdd depicted in the same �gure� As it is shown in this example�

fevbdds successfully extend the use of evbdds to represent Boolean functions

as they inherently o�er a way to represent complement edges� Furthermore�

the Boolean operation �not� can now be performed in constant time since it

only requires manipulation of the weights of the root node�
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A fevbdd�based matrix package was introduced in 	
�� This package was used

to solve the Chapman�Kolmogorov equations� Experimental results showed

that in the majority of cases fevbdds win over the corresponding evbdd rep�

resentation of the matrices in terms of number of nodes and overall memory

consumption� In general� however� since the memory consumption per node of

the fevbdd is higher than that of the evbdd� if the number of nodes in the

fevbdd and evbdd are the same �for example� due to the sparse structure of

matrices�� then evbdds will require less memory�

��
 SUMMARY

Edge Valued Binary Decision Diagrams �evbdd� are a novel data structure for

representing discrete functions� evbdds generalize robdds and are particularly

useful for performing both integer and Boolean operations� This extension to

the word level provides a basis for a variety of applications� including veri��

cation �where the speci�cation can be expressed in the arithmetic domain��

multiple output decomposition of logic functions� discrete function optimiza�

tion and others� In this chapter we showed how evbdds can be used to e�ciently

represent and manipulate various types of spectra of Boolean functions� In par�

ticular� we showed how the probability spectrum and the Reed�Muller spectrum

of a Boolean function can be computed directly on an evbdd without having

to resort to traditional methods that require matrices of exponential size� The

relation between the probability spectrum and the Reed�Muller coe�cients of

a Boolean function was utilized to develop an algorithm for constructing the

evbdd that represents the Reed�Muller form when the polarity of one or more

variables is changed� The current direction of this work is to utilize this algo�

rithm to develop e�cient heuristics for generating a near minimal Reed�Muller

form of a Boolean function� In addition� we showed an extension of evbdds

which associates both an additive and a multiplicative weight with the true

edges of the function graph in order to achieve more compact representations�

and in some cases� more e�cient operations�
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