EDGE VALUED BINARY DECISION
DIAGRAMS

Sarma B.
K. Vrudhula and Massoud Pedram and Yung-Te

Lai

Department of Electrical and Computer Engineering
Unwersity of Arizona

Tuscon, Arizona

and

Department of Electrical Engineering - Systems
Unwersity of Southern California

Los Angeles, California

and

Hitachi Labs

179 FEast Tasman Dr.

San Jose, California

Abstract— We describe a canonical and compact data structure, called
Edge Valued Binary Decision Diagrams (EVBDD), for representing and ma-
nipulating pseudo Boolean functions (PBF). EVBDDs are particularly useful
when both arithmetic and Boolean operations are required. We describe
a general algorithm on EVBDDs for performing any binary operation that is
closed over the integers. Next, we discuss the relation between the proba-
bility expression of a Boolean function and its representation as a pseudo
Boolean function. Utilizing this, we present algorithms for computing the
probability spectrum and the Reed-Muller spectrum of a Boolean function
directly on the EvBDD. Finally, we describe an extension of EVBDDs which
associates both an additive and a multiplicative weight with the true edges

of the function graph.

2 CHAPTER 1

1.1 INTRODUCTION

The development of efficient techniques for representing and manipulating Boolean
functions lies at the heart of much of the recent advances in logic synthesis, ver-
ification and testing. Reduced, ordered binary decision diagrams (ROBDD) [3,
4, 5] and their numerous variants, provide such a representation, and thus have
become ubiquitous in many problems that arise in computer-aided design of

digital systems.

In many applications it is often convenient and more efficient to represent and
manipulate Boolean functions at the word level or in the integer domain. For
example, in attempting to verify data path components that perform various
types of arithmetic operations, it is easier to specify the behavior in the integer
domain, and transform the logic implementation into a similar representation.
Other applications where integer level representations are preferred are spectral
analysis of Boolean functions [16], multiple output decomposition [1, 14, 23, 26],
etc. The advantages of integer level representations is not just limited to logic
design. A large collection of discrete, or combinatorial optimization problems
that involve binary or integer variables, but where the range of the objective
function is some finite subset of integers, also require compact representations

and algorithms for their manipulation [26].

In this chapter, we describe a canonical and compact representation of pseudo
Boolean functions, called Edge Valued Binary Decision Diagrams (EVBDD) [21,
26]. EVBDDs can be used to efficiently represent and manipulate integer valued
functions. Since Boolean functions are a subset of pseudo Boolean functions,
EVBDDs can also be used to represent Boolean functions. This allows the con-
struction of general procedures for performing both arithmetic and Boolean
operations. Following a description of EVBDDs and their properties, we show
how certain spectral transformations on Boolean functions can be carried out
on EVBDDs. One particular transform, called the probability spectrum (PS) [19],
will be examined. The PS of a Boolean function has important applications in
testing of digital circuits [19]. Additionally, there is a direct relation between
the PS and the Reed-Muller (RM) coefficients of a Boolean function [19]. We

present an algorithm that transforms an EVBDD representation of a Boolean

EVBDD 3

function to another EVBDD that represents its PS. Next, we show how the
EVBDD representation of the PS can be transformed into another EVBDD that
represents the RM spectrum. Finally, we show that by associating both an
additive and a multiplicative weight with the edges of an EVBDD, we can de-
velop a more compact representation of pseudo Boolean functions. The new
data structure, which was proposed in [39] and is called Factored Edge Valued
Binary Decision Diagram, reduces complexity of certain arithmetic operations

and allows direct implementation of the complement edges.

1.2 PSEUDO BOOLEAN FUNCTIONS

Definition 1.2.1 A pseudo Boolean function (PBF) f(xg,...,n_1), witha; €
{0, 1}, is a polynomial that is linear in each variable and whose coefficients are
elements of the set of integers T. The general representation of a PBF is of the

form

- i
Z Qig,ooin gy w0 w € 40,1, a5y, , €Z(1.2.1)
(igrrip—1)

i;e{0,1}

In (1.2.1),if ago,..0 = 0, then f(zq,...,2,_1) are said to be constant-free.

With respect to a specific ordering (xg, #1,...,2,-1) of the variables, (1.2.1)

can be expressed as

f(an"'axn—l) =

ctzola+ f(zr, s en_1)) + (1 —zo)(B+ frlze, -, 20-1))(1.2.2)

where fo(x1, -, @2n-1) and fr(21, -, 2n_1) are constant-free, and ¢, o, 3 € 7.

For the sake of brevity, the right side of (1.2.2) will be indicated by a 6-tuple,
(¢, n—1, fe, fr, a, B). The representation given in (1.2.2) is analogous to

the Shannon decomposition of a Boolean function. However, (1.2.2) is not in

4 CHAPTER 1

standard or canonical form. To see what this means, consider the function
flzo, z1, ®a) =34 2wy — Twowy — brora + 6122+ 321 — dry22. Below are

two different representations of this function in the form of (1.2.2).

f($0a$1a$2) —
1 + l‘0(4 - 4l‘1 - 51‘2 + l‘ll‘z) + (1 - l‘o)(? + 3l‘1 - 51‘1l‘2) = (123)
8 + l‘o(—3 - 4l‘1 - 51‘2 + l‘ll‘z) + (1 - l‘o)(—5 + 3l‘1 - 5l‘1l‘2)(124)

In fact there are an infinite number of expressions of the form given in (1.2.2)
that denote the same function. Therefore, given two 6-tuples,
(e1, ®o, fo, fr, a1, B1), and (e, o, 9¢, 9r, @2, P2), one cannot deter-
mine whether or not these two representations denote the same function by
simply checking the equality of the components. Among all the expressions of
the form (1.2.2), we designate that one in which # = 0 to be the standard or
canonical form. Then two such representations denote the same function if and

only if the corresponding components of their canonical forms are equal.

1.3 EDGE VALUED BINARY DECISION
DIAGRAMS

An Edge Valued Binary Decision Diagram (EVBDD) is a graph representation

of a pseudo Boolean function, that is expressed in standard form, e.g., (1.2.2)

with 8 = 0.

Definition 1.3.1 An EVBDD is a tuple {c¢,f), where ¢ is a constant, and { is

a directed acyclic graph consisting of two types of nodes:

1. A non-terminal node v described by a 4-tuple
(var(v), child,(v), child.(v), value), where var(v) € {zg, -, ¥n-1},
childy(v) and child,.(v) are EVBDDs that represent the subexpressions
fo(er, .. en_1) and fr(®1, ... 2n_1) in (1.2.2) and value = « in (1.2.2).

2. The single terminal node, denoted by 0, which represents the value 0.

EVBDD 3

Figure 1.3.1 EVBDD representation of the pseudo Boolean function
shown in (1.2.2) (8 = 0).

Definition 1.3.2 An EVBDD (c,f) denotes the arithmetic function ¢ + f :
{0, 1} — integer where f is the function f denoted by t = (x, 1, f, value).
The terminal node 0 represents the constant function f = 0, and (x, 1, 1., value)
denotes the arithmetic function f = x - (value + fo) + (1 —) - fr.

Figure 1.3.1 shows a general EVBDD representation of (1.2.2).

1.3.1 Reduced and Ordered EVBDDs

The decomposition of a PBF given in (1.2.2) assumes a specific ordering of the
variables. This means that there is an index function index(z) € {0,...,n—1},
such that for every non-terminal node v, either child,(v) is a terminal node
or index(var(v)) < index(var(child,(v))), and either child,(v) is a terminal
node or index(var(v)) < index(var(child,(v))). If v is the terminal node, then
index(v) = n. Such an EVBDD is said to be ordered. An EVBDD is reduced if
there is no non-terminal node such that child,(v) = child,(v) with value = 0,
and there are no two nodes u and v such that u = v. We only consider reduced,

ordered EVBDDSs.

6 CHAPTER 1

Figure 1.3.2 EVBDD of f(zo, %1, z2) = 3+ 250 — Tzoz1 — Swox2 +

61‘01‘11‘2 —|— 31‘1 — 51‘11‘2.

Example 1.3.1 Consider the function f(wg,x1,2) given in (1.2.4). With

respect to the ordering (xy, x1, ©2), the function can be decomposed as follows:

f(l‘o, xq, l‘z) = 3—|—2l‘0—7l‘0l‘1 —51‘0l‘2+6l‘0l‘1l‘2+3l‘1 —51‘1l‘2

3 + l‘o(? - 4l‘1 - 51‘2 + l‘ll‘z) + (1 - l‘o)(3l‘1 - 51‘11‘2).

2—4dzy —bros+xiws = 2+ w1(—4—4ws)+ (1 —21)(—bxs)
321 —bx1xs = 04 21(3 —b5xa) + (1 —21)(0)
—4—4ry = —4422(—4+0)+ (1 —22)(0)
—bxy = 0+ 22(=b+0)+ (1 —x2)(0)
3—bxs = 3+ x2(=5+0)+(1—22)(0).
Figure 1.3.2 shows the EVBDD representation of f(xg, 1, 22). a

A path in an EVBDD corresponds to an assignment of values to the variables
associated with the path. The value of a PBF f(xy, -+, @p—1), for a given
assignment (zg, -+, &p_1) is obtained by summing the values along the path

as follows.

EVBDD 7

Definition 1.3.3 Given an EVBDD (¢,f) representing f(xo,...,2n—1) and a
funetion @ that for each variable r assigns a value ®(x) equal to either 0 or 1,
the function EVeval is defined as

f is the terminal node 0O

EVeval({c,f), ®) = { CEVeval((c + value, child,(£)), ®) ®(variable(f)) =1
EVeval({c, child,(f)), D) S (variable(f)) =0

An extension of oBDDs, called Multi-valued Decision Diagrams (MDDs), was
given in [38]. In an MDD, a nonterminal node can have more than two chil-
dren and a terminal node assumes integer values. All operations are carried
out through the CASE operator, which although works for arbitrary discrete
functions, cannot directly perform arithmetic operations. Recently, another
extension to OBDDs, called Multi-Terminal Binary Decision Diagram (MTBDD)
was presented in [6, 8]. An MTBDD corresponds to a fully exzpanded version
of an EVBDD. In general, for functions where the number of distinct terminal
values is large, an MTBDD will require larger number of nodes than an EVBDD.
However, for functions where the number of distinct terminal values is small,
an MTBDD may require less storage space depending on the number of nodes

in the corresponding graphs.

An EVBDD requires n + 1 nodes to represent 27tz + ...+ 2%, (an n-
bit integer), while an MTBDD requires 2"t — 1 nodes to represent the same
function. When there are only two different terminal nodes (e.g., 0 and 1),
EVBDDs, MTBDDs, and OBDDs are equivalent in terms of the number of nodes
and the topology of the graph [26]. In this case, an EVBDD will require more
space to represent the the edge-values. The worst case time complexity for
performing operations on EVBDDs is the same as that for MTBDDs. However,
many operations satisfy certain properties [26] that can be exploited so that

EVBDDs are much more efficient than MTBDDs.

In [17] a useful calculus for manipulating pseudo-Boolean functions (referred by
authors as A-Transforms) has been described. Also, to represent such pseudo-
Boolean functions, a graph representation called Semi-Numeric Decision Di-
agrams (snDD) is introduced. In snDDs apart from standard BDD nodes,

various operator nodes are also allowed; an operator node corresponds to basic

8 CHAPTER 1

arithmetic operations such as +, -, *. Also, numeric values are allowed to be

stored graph terminals. Thus snDDs contain MTBDDSs or ADDs.

1.3.2 Operations on EVBDDSs

Let {c¢, f), with £ = (=, £, f., vs), and (¢g, g), with g = (y, g¢, g, vy),
be EVBDDs that represent two PBFs. We present a procedure, called apply,
that computes {¢p, h) = (¢y,) op (cg, g), where op is any binary operator
that is closed over the integers. Examples of op include the integer arithmetic
operators, such as +, —, and multiplication by a constant; relational operators,
minimum and maximum, logical shift, and modulo ¢, for some constant c.
Furthermore, if the EVBDD represents a Boolean function, then apply can be

used directly to perform Boolean operations, as well.

Let h = {(var(h), hy, h,, v;), and consider the case where index(z) <
index(y). This means that y will appear below # in h and var(h) = z. Now,
when =1, (¢f, f)o=1 = (¢ + vy, £o), and when 2 = 0, (¢f, f)y=0 = (¢cy,).
Therefore, (cp, h)o=1 = {(en,, he) = {cs + vy, £o) op {¢g, g), and (¢}, h)o=p =
(eh,, hy) = {cs, 1) op (cg, g). Once the left and right children of (cs, h) have
been computed, they have to be combined and the result must be expressed in
the canonical form. The step involved in this standardization is expressed as

follows:

z(cn, + he) + (1 = z)(cp, + hy)
= cn, +x(cn, — e, + he) + (1 = z)(hy).

Therefore, the result returned is
(Cha h) = (Chr’ <l‘, hz, hTa Chy _Chr>)'

Figure 1.3.3 shows this final step. A similar situation exists if index(x) >

index(y).

The steps involved in the procedure apply are shown in Figure 1.3.4. There are

a set of terminal or default cases specific to each operator, the results of which

EVBDD 9

Figure 1.3.3 Combining the left and right children and converting to

a canonical form.

can be returned without any further computation. As with ROBDD implemen-
tations, the efficient construction and manipulation of EVBDDs is made possible
through the use of two tables that permit sharing of previously computed sub-
graphs without having to reconstruct them in the course of a computation.
Thus, at any time only one EVBDD for each distinct function is ever main-
tained. The first table, called the unique_table, contains a unique entry for
each EVBDD node. The second table, called the computed_table maintains the
correspondence between a function that has been computed and the node in
the unique_table. Thus in the course of a computation, computed_table is first
checked, and if the result is there, it is returned. Otherwise, after the operation
1s performed, the node associated with the new EVBDD is added to unique_table
and the function denoted by the node is entered into computed_table, along with
a pointer to the node in unique_table. Additional enhancements such as the use

of complement edges [26] are also possible.

Steps 4, 5, 13 and 14 of apply may generate new EVBDDs since equality of two
EVBDDs (cf, f) and {(¢q4, g) requires ¢; = ¢4 and f and g to be isomorphic. This
implies that the time complexity of apply is not simply O(|(cs,£)| - |{¢eqg,8)|),
where | (¢cy,f) | and | (¢4, g) | denote the number of nodes in EVBDDs (c;,f)
and (cg,g). A complete analysis of the time complexity of apply is beyond the
scope of this paper. Details appear in [26]. However, most of the operators in

question satisfy certain properties which can be exploited to reduce the time

10 CHAPTER 1

apply({cy,t), (cq,8),0p)

1 if (terminal_case({cy,T),{cq,8),0p)
return({c¢,T) op {cq,2)));

2 if (comp_table_lookup({cy,f),{cq, 8),0p, ans))
return(ans);

3 if (index(f) > index(g)) {

4 (o 81) = (cq + value(g), childi(g));
5 (cr+8r) = (cg, child,(g));

6 var = variable(g);

7}

8 else {

9 <ng7g1> = <cgr7gf‘> = <Cg7g>;

10 var = variable(f);

1}

12 if (index(f) < index(g)) {

13 (¢, f1) = {cy + value(f), child(f));
14 (cy,.fe) = {cy, child,(T));

15}

16 else { {(cy,,f1) = {cy,.,£:) = {cf,T);}

17 <chl7hl> = apply((ch,f1>, <cgl,g1>,op);

18 (cn,, he) = apply({cy,,Tx), (cq,, 8r), 0P);

19 if ({cn,, 1) == {cn,, hy)) return ({cp,, h1});
20 h = find_or_add(var, hy, hy, c, — cp,.);

21 comp_table_insert({cy,f),{cq,8), 0p, (ch,,h));
22 return ({cs,,h));

Figure 1.3.4 Procedure apply.

complexity. As a result, the time complexity of binary arithmetic operations,
Boolean operations, and relational operations is O(| (c¢,f)| - [{cg,g)|). Thus,
when Boolean functions are represented by EVBDDSs, the time complexity is the

same as 1n the case of ROBDDs.

1.3.3 Some Applications of EVBDDs

In this section we present a summary of some important applications of EVBDDs

that have been in investigated [26].

EVBDD 11

Integer Linear Programming: Integer linear programming (ILP) is an NP-hard

problem that appears in many applications. In [18] an OBBD based approach for
solving 0-1 programming problems is presented. For operations involving inte-
gers such as conversion of linear inequality constraints into Boolean functions
and optimization of non-binary objective functions, BDDs are not directly ap-
plicable. This shortcoming limits the caching of intermediate computations to
only Boolean operations. Our approach to solving the ILP is to combine the
benefits of EVBDDs (e.g., subgraph sharing and caching of intermediate results)
with the state-of-art 1ILP techniques. In [26], we describe an algorithm using
EVBDDs that computes optimal solution to a given linear objective function
subject to linear constraints. Even without the use of sophisticated bounding
techniques, experimental results show that the EVBDD based ILP solver is as

efficient as a commercial ILP package.

Hierarchical Verification: The process of logic verification is to show the equiv-

alence between the specification and the implementation. 0BDDs can be used
to verify logic circuits, only at the Boolean level. For example, to verify a 64-
bit adder, one would have to first derive the 0BDDs (0bdd;y,,) for each of the
65 outputs of the logic circuit and the 0BDDs (0bdd;pe.) from the 65 Boolean
expressions of each output function and then show equivalence. This would
only show that each of the 65 outputs does realize the corresponding Boolean
expression. However, since EVBDDs can be used to represent discrete inte-
ger and Boolean functions, they provide a means to verify the a logic circuit,
where the specification is expressed in the integer domain. Thus the specifi-
cation of a 65-bit adder would simply be « + y + ¢, where ¢ is the carry-in.
If (bo,b1,...,by_1) represent the outputs of a 65-bit adder, then the verifica-
tion process would first construct 65 EVBDDs for the b;’s and construct a single
EVBDD for 2° x by + ...+ 254 x bgs. This EVBDD would be compared with the
EVBDD of the specification, thus showing that the adder does indeed perform
addition. Details of the use of EVBDDs for verification are described in [21].

Decomposition of Multiple OQutput Boolean Functions: The decomposition of

Boolean functions had been the subject of extensive research. Much of the

classical work on decomposition based on Karnaugh maps [1, 9] and cubes [34],

12 CHAPTER 1

and more recently using 0BDDs [2, 7, 23, 36], are applicable to single Boolean
functions. EVBDDs allow decomposition of multiple Boolean functions. In [26] a
set of EVBDD based algorithms for decomposition of single and multiple output
functions are described. This includes disjunctive and non-disjunctive decom-

position, and decomposition of completely and incompletely specified functions.

1.4 THE PROBABILITY TRANSFORM
AND ITS SPECTRUM

Many properties of Boolean functions that are difficult to deduce in the Boolean
domain are often very easy to establish using an alternate representation. The
alternate representation is called the spectral domain. A spectral transforma-
tion of a Boolean function of n variables is typically represented in the following

form:

TpZp = Ra, (1.4.1)

where Z, is a 2" x 1 vector representing the truth table of the function, and
T, 1s a 2™ x 2" transformation matrix.]an is a 2" x 1 vector, and is called the
spectrum of the Boolean function. Different transformation matrices generate
different spectra. Some of the more extensively studied transformations are the
Hadamard, Walsh and Reed-Muller [16, 33, 29]. These transforms have found
extensive use in function classification, verification, logic synthesis, testing and

fault diagnosis.

The key obstacle in using (1.4.1) is that the transformation matrix is of size
27 x 2", Thus (1.4.1) can be used in practice only when n is small. This is
where EVBDDs play an important role. In situations where 7, has a recursive
structure, the transformation given in (1.4.1) can be carried out directly on the

EVBDD representation of the Boolean function.

In this section, we examine one particular transform, called the probability
transform , which is also known as the algebraic transform . The fundamental
properties of this transform and its extensive applications to testing were inves-

tigated by Kumar [19]. However, many of the results presented in [19] require

EVBDD 13

computations whose complexity is exponential in the number of variables. The
probability spectrum of a Boolean function is directly related to the pseudo
Boolean representation of the function. Using this relation, and the fact that
EVBDDs provide a canonical and compact representation of PBFs, we present
an algorithm to compute the probability spectrum directly on the EVBDD. The
resulting structure is called a spectral EVBDD. The only difference between an
EVBDD and the corresponding spectral EVBDD is in the interpretation - the sum
of the values along the edges of a path in a spectral EVBDD is the spectral coeffi-
cient associated with the input assignment. After showing how the probability
spectrum can be computed using EVBDDs, we show how the spectral EVBDD
can be transformed, so that the resulting structure represents the Reed-Muller

spectrum of a Boolean function. The resulting structure is called an RMEVBDD.

Let f(xo, -+, 2n—1) be a Boolean function. Let X; = Pr(z; = 1), with X; €
[0,1], and F(Xq, -+, Xpn-1) = Pr(f(zo, -, 2n-1) = 1). F(Xo, -+, Xn_1) is
called the probability expression of f(xg, -+, 2n-1). The probability expres-
sion F/(Xg, -, Xp_1) is obtained by the repeated application of the following
rules [19, 31]:

Prizi=1) = 1-X;
Pr(mi/\xi = 1) = X;
Pr(ivfa=1) = Fi+TFy—IFs,
where F; = Pr(f; = 1).
The probability expression F'(Xg,- -, X,,_1) represents a real valued function

whose domain and range are [0, 1] and [0, 1], respectively. Now, if the variables
X; are restricted to be integers that can assume either 0 or 1, (i.e., X; € {0, 1}),

then the expression F(Xy, -+, X,_1) is the pseudo Boolean representation of

f(an o 'axn—1)~

Example 1.4.1 Consider f(xg,®1,22) = Toxy V x122. Applying the above

rules, we obtain

F(Xo, X1, X2) = XoX1 X5 — Xo X1 + X3, (1.4.2)

14 CHAPTER 1

Now the pseudo Boolean representation of f(xo, €1, x2) is the same as the right

side of (1.4.2), with X; € {0,1}. O

Definition 1.4.1 (from [19]) With respect to the ordering, (Xo, -, Xn-1),

the probability spectrum of a Boolean function f(xg, -, xn_1) is a vector §f =
[s0,81, -, 89m_1]T, where s; is the coefficient of the term Xé”Xil X

F(Xo, -+, Xn_1), and {(igiy ... 4n_1) is the binary representation of the integer

2.

Example 1.4.2 Consider the probability expression given in (1.4.2). Erxpand-

ing the expression into a canonical sum of products form, we obtain
F(Xo,X1,X2) = 0-X3X?XJ 40 - XIXPX2 +1-X0Xx{Xx9+0-X0x] X}
+ 0 X XPXS +0- XgX)Xg + (—1) - XgX{ X5 +1- XX/ X,.

The probability spectrum §f =[001000 —11]7 a

Theorem 1.4.1 (from [19]} Define a 2" x 2™ matriz P, as follows:

—_ _ Pn—l 0
PO B 1’ Pn B _Pn—l Pn—l

Let 7 be a 2" x 1 vector of values of flzo, -, 2n_1). Then the probability
spectrum §f 15 given by

S;=P,x Z. (1.4.3)

O

We now show how the transformation given in (1.4.3) can be carried out on an

EVBDD representation of f. With respect to the ordering (zg, -+, zn_1), Zn
can be partitioned as [Z9_,, ZL_|]T, where Z°_, (Z}_,) corresponds to the

min-terms of f with g = 0 (¢ = 1). Then (1.4.3) can be expressed as
3:‘? = |: Pn_l 0 i| |: ,Ztg_l :| = |: gn_l X 22_1 ~
S} Pn—l X Zrll—l — -1 X Zr?—l

(1.4.4)

EVBDD 15

In (1.4.4), Z% | and §JQ (2711—1 and §}) correspond to the right (left) children
of the EVBDD of f(xo, -, 2n-1), and the resulting spectral EVBDD, respec-
tively. Thus, (1.4.4) states that to compute the spectral EVBDD we perform the

following steps recursively:

1. replace the right child with the spectral EVBDD of the right child,

2. replace the left child with the spectral EVBDD of the left child minus the
spectral EVBDD of the right child.

Note: Since an EVBDD is reduced, a node of the form v = (x,f 1 0) would
never appear. However, the spectral transform of the subgraph rooted at v
would result in a node v' = (,0,1’,0), where ' is the result of spectral trans-
form when applied to the right child of v. For this reason, the algorithm for
computing the spectral transform must keep track of the level of each node.
If the index of the variable associated with the node currently being visited
is greater than its level, then an a new EVBDD, rooted at a node of the form
v’ 1s returned. The basic steps of the procedure that converts an EVBDD of a

Boolean function to a spectral EVBDD is shown in Figure 1.4.1.

Example 1.4.3 Consider the Boolean function f(xo,x1,22) = Tox1 V 2122 of
Ezxample 1.4.1. Its representation as a PBF s given in Equation 1.4.2. Using
this, its EVBDD representation is shown Figure 1.4.2. The execution of the
procedure evbdd to_spevbdd on the EVBDD of Figure 1.4.2 results in the spectral
EVBDD shown wn Figure 1.4.3. Summing the values along the edges of the
spectral EVBDD will result in the spectral coefficients shown in Example 1.4.2.
O

16 CHAPTER 1

evbdd_to_spevbdd(ev, level, n)

if (level == n) return ev;

if (ev == 0) return 0;

if (index(ev) > level) {
right = evbdd_to_spevbdd(ev, level + 1, n);
left =0;
return new_evbdd(level,le ft, right);

right = evbdd_to_spevbdd(child,(ev), level 4+ 1, n);
sp1 = evbdd_to_spevbdd(child;(ev), level + 1, n);
left = evbdd_sub(spi, right);

return new_evbdd(level,le ft, right);

© 00~ O U WA

—_ =
=]

—

Figure 1.4.1 Procedure to convert an EVBDD to a spectral EVBDD.

Figure 1.4.2 EVBDD of f(zo,x1,%2) = Toz1 V 2122,

1.5 REED-MULLER COEFFICIENTS

The standard symbolic interpretation of an 0BDD results in a sum of products
representation of a Boolean function. It is well known [29, 33, 41], that another
canonical representation is possible if only AND and XOR operators are used.

The resulting expression is called the Reed-Muller (RM) representation of the

EVBDD 17

Figure 1.4.3 Spectral EVBDD of the EVBDD shown in Figure 1.4.2.

function. Specifically, if f(zq, -, 2n-1) is a Boolean function, then the RM

representation of f has the form
fleo, @n_1) = a1 B ag@n_1 D a1n_2® - B agn_1F&1 - - Tp_1, (1.5.1)

where a; € {0,1}, and & is either complemented or un-complemented variable

ZTq.

We assume that each variable on the right side of (1.5.1) appears either as
complemented or un-complemented, but not both. Digital circuits built using
the RM form have a number of useful properties. They belong to a class of
easily testable networks since test sets are independent of the function realized
by the circuit and depend linearly on the number of inputs [32]. This has
motivated interest in minimization of RM forms. Minimizing an RM form
requires determining the polarity of each variable so that the resulting RM

expression for the function has the least number terms.

The RM coefficients of a Boolean function, represented by an EVBDD can be

obtained using a transformation nearly identical to the one given in Theorem
1.4.1. The resulting representation will be called an RMEVBDD. Let ;{f denote

the RM coefficients of a Boolean function f, ordered in the same way as §f

18 CHAPTER 1

(see Theorem 1.4.1). Define a 2" x 2" matrix R, as follows:

Then the RM spectrum Ef is given by

A =Ry X Zn. (1.5.2)

The RM spectrum can also be computed from the probability spectrum [19].

The relation is simply

Ap = |5¢| mod 2. (1.5.3)

Thus, the RMEVBDD can be generated using either (1.5.2) or (1.5.3). Thus,
to transform an EVBDD of a Boolean function to an RMEVBDD, line 10 of the
procedure evbdd_to_spevbdd shown in Figure 1.4.1 has to be modified as follows:

10 left = evbdd_add(sp;, right);

Example 1.5.1 Figure 1.5.1 shows the RMEVBDD of the function f(xg,x1,22) =
Toxy V x1x2 of Example 1.4.1. It was derived from the EVBDD shown in Fig-
ure 1.4.2. In an RMEVBDD, a path from the root to the terminal node that
involves a right edge of a node v, such that var(v) = x;, corresponds to a prod-
uct term wn which x; is not present in the RM representation. For example,
consider the path corresponding to the assignment zog = 0,21 = 1,29 = 1, in
the RMEVBDD shown in Figure 1.5.1. This assignment corresponds to a path
that includes the right edge of a node v, with var(v) = xg. Therefore, this path
corresponds to the term x1xo. The associated RM coefficient is the sum of the

edge values along this path, 1.e., 0 + 0 + 1 + —1 = 0. a

There are 2" RM forms for a function f(zg, -, #,-1), corresponding to the

2" possible combinations of polarities for each variable. From (1.5.3), we see

EVBDD 19

Figure 1.5.1 RMEVBDD of the EVBDD shown in Figure 1.4.2.

that finding the minimal RM expression of a function requires identifying the
polarity vector that will result in the least number of odd terms [19]. The
following theorem shows the effect of changing the polarity of a variable in the

RMEVBDD representation of a Boolean function.

Theorem 1.5.1 Let E and E' represent the RMEVBDDs of
Flxo, - 21, i, ®ig1, - Tn—1) and f(xo, -, -1, i, Tig1, -, Tn_1), rEspec-
tively. Then E’ is obtained from E by performing the following transformation

on every node u, such that var(u) = x;.

child, (u) < (childy(u) + child,(u)) mod 2.

Figure 1.5.2 shows the procedure to switch the polarity of a variable in an

RMEVBDD.

20 CHAPTER 1

/* swith_polarity switches the polarity of
a variable in an RMEVBDD.

ev is an RMEVBDD. 1 is the index of the
variable whose polarity is to be switched.

switch_polarity(ev, level, i, n)

{

1 if (level == n) return ev;

2 if (ev == 0) return 0;

3 if (index(ev) > level) {

4 right = 0;

5 return new_evbdd(level, child;(ev), right);
61

7 if (index(ev) ==1) {

8 spr = evbdd_add(child;(ev), child,(ev));

9 right = mod2(sp,);

10 return new_evbdd(level, child;(ev), right);
1}

12 left = switch_polarity(child;(ev),level 4+ 1,1, n);
13 right = switch_polarity(child, (ev),level + 1,1, n);
14 return new_evbdd(level, le ft, right);

—

Figure 1.5.2 Procedure to switch the polarity of a variable in an RMEVBDD.

EVBDD 21

1.6 FACTORED EDGE VALUED BINARY
DECISION DIAGRAMS

Factored Edge Valued Binary Decision Diagrams (FEVBDD) are an extension
to EVBDDs which were presented in [39]. By associating both an additive and a
multiplicative weight with the true-edges, FEVBDDs offer a more compact rep-
resentation of linear functions, since common sub-functions differing only by an
affine transformation can now be expressed by a single subgraph. Additionally,
they allow the notion of complement edges to be transferred from 0BDDs to

FEVBDDs.

Definition 1.6.1 An FEVBDD is a tuple (¢, w,f), where ¢ and w are constant
values, and f 1s a rooted, directed acyclic graph consisting of two types of ver-

tices: 1

1. A non-terminal wvertex v is represented by a 5-tuple
(var(v), childy(v), child, (v), value, factor) where value and factor are ra-

tional numbers and var(v) € {xg, ..., #n_1}.

2. The single terminal vertex v with value 0 is denoted by 0. By definition

all branches leading to 0 have an associated weight w = 0.

There is no non-terminal vertex v such that child,(v) = child,(v), value =0,
and factor = 1, and there are no two nonterminal vertices v and u such that
v = u. Furthermore, there exists an index function index(z) € {0,...,n — 1}
such that the following holds for every nonterminal vertex. If childy(v) is
also nonterminal, then we must have index(var(v)) < index(var(child,(v))). If

child, (v) is nonterminal, then we must have index(var(v)) < index(var(child,(v))).

Definition 1.6.2 A FEVBDD (c¢,wy,) denotes the arithmetic function c; +
wy - f where f is the function f denoted byt = (x, £, {. value, factor). The ter-

1Here, we will only describe the “rational rule” for weight normalization which requires
the use of fractions. See [39] for the “GCD rule” which requires a multiplicative weight to be
associated with both edges.

22 CHAPTER 1

minal node 0 represents the constant function f = 0, and (x,f,, £, value, factor)
denotes the arithmetic function f = x - (value + factor - fo) + (1 —) - fr.

As an example, we construct the various function graphs based on the different

decompositions of function f given in its tabular form in Figure 1.6.1.

fle,y,2) = 1B(1-—2)1-p)(1—2)+6(1—2)1—-y)z+ (1.6.1)
51 —2)y(l —z)+2(1 — x)yz +
132(1— y)(1 — 2) + Ta(l — y)z +
bey(l — z) + 2zyz
= 154a(=2+y(=8+2(=3)) + (1 — y)(2(=6))) + (1.6.2)
(1 =2)(y(=10 + 2(=3)) + (1 = y)(2(-9)))

= B9t) (163
(1 =)+ 32)+ (1= 9)2).

Equation (1.6.1) is in a form that directly corresponds to the function de-
composition for MTBDDs or ADDs and the tabular form. Equations (1.6.2)
and (1.6.3) reflect the structure of the decomposition rules for EVBDDs and
FEVBDDSs, respectively. The different function graphs are shown in Figure 1.6.1.

A path in an FEVBDD corresponds to an assignment of values to the variables

associated with the path. The value of a PBF f(xy, -+, @p—1), for a given
assignment (zg, -+, #p_1) is obtained as follows.
Definition 1.6.3 Given a FEVBDD (c;, we,f) representing f(zo, ..., 2n_1) and

a function ® that for each variable r assigns a value ®(x) equal to either 0 or
1, the function FEVeval is defined as:

FEVeval({cy,wy,T), @) =

cy f is the terminal node 0O
cr + wy - FEVeval({value, factor, child,(f)), ®) @ (variable(f)) =1
¢ + wy - FEVeval({0, 1, child, (f)), @) S (variable(f)) =0

EVBDD

Figure 1.6.1 Example of various function graphs.

23

24 CHAPTER 1

Figure 1.6.2 FEVBDD representation of the four output functions of a
3-bit adder.

An example of a FEVBDD representing a Boolean function with complement
edges is given in Figure 1.6.2. This FEVBDD represents the four output functions
of a 3-bit adder. Tt has the same topology (except for the terminal edges) as the
corresponding 0BDD depicted in the same figure. As it is shown in this example,
FEVBDDSs successfully extend the use of EVBDDs to represent Boolean functions
as they inherently offer a way to represent complement edges. Furthermore,
the Boolean operation ‘not’ can now be performed in constant time since it

only requires manipulation of the weights of the root node.

EVBDD 25

A FEVBDD-based matrix package was introduced in [39]. This package was used
to solve the Chapman-Kolmogorov equations. Experimental results showed
that in the majority of cases FEVBDDs win over the corresponding EVBDD rep-
resentation of the matrices in terms of number of nodes and overall memory
consumption. In general, however, since the memory consumption per node of
the FEVBDD 1is higher than that of the EVBDD, if the number of nodes in the
FEVBDD and EVBDD are the same (for example, due to the sparse structure of

matrices), then EVBDDs will require less memory.

1.7 SUMMARY

Edge Valued Binary Decision Diagrams (EVBDD) are a novel data structure for
representing discrete functions. EVBDDs generalize ROBDDs and are particularly
useful for performing both integer and Boolean operations. This extension to
the word level provides a basis for a variety of applications, including verifi-
cation (where the specification can be expressed in the arithmetic domain),
multiple output decomposition of logic functions, discrete function optimiza-
tion and others. In this chapter we showed how evbdds can be used to efficiently
represent and manipulate various types of spectra of Boolean functions. In par-
ticular, we showed how the probability spectrum and the Reed-Muller spectrum
of a Boolean function can be computed directly on an EVBDD without having
to resort to traditional methods that require matrices of exponential size. The
relation between the probability spectrum and the Reed-Muller coefficients of
a Boolean function was utilized to develop an algorithm for constructing the
EVBDD that represents the Reed-Muller form when the polarity of one or more
variables is changed. The current direction of this work is to utilize this algo-
rithm to develop efficient heuristics for generating a near minimal Reed-Muller
form of a Boolean function. In addition, we showed an extension of EVBDDs
which associates both an additive and a multiplicative weight with the true
edges of the function graph in order to achieve more compact representations,

and in some cases, more efficient operations.

26

CHAPTER 1

REFERENCES

(1]

(2]

[10]

[11]

[12]

[13]

[14]

R. L. Ashenhurst, “The decomposition of switching functions,” Ann. Computa-
tion Lab., Harvard University, vol. 29, pp. 74-116, 1959.
M. Beardslee, B. Lin and A. Sangiovanni-Vincentelli, “Communication based

logic partitioning,” Proc. of the Furopean Design Automation Conference, pp.
32-37, 1992.

K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation of a BDD
package,” Proc. of the 27th Design Automation Conference, pp. 40-45, 1990.

R. E. Bryant, “Graph-based algorithms for Boolean function manipulation,”
IEEE Transactions on Computers, C-35(8): 677-691, August 1986.

R. E. Bryant, “Symbolic Boolean manipulation with ordered binary-decision
diagrams,” Computing Surveys, Vol. 24, No. 3, pp. 293-318, Sept. 1992.

E. M. Clarke, M. Fujita, P. C. McGeer, K. .. McMillan, and J. C.-Y. Yang,
“Multi-terminal binary decision diagrams: An efficient data structure for matrix
representation,” International Workshop on Logic Synthesis, pp. 6a:1-15, May

1993.
S-C. Chang and M. Marek-Sadowska, “Technology mapping via transformations

of function graphs,” Proc. International Conference on Computer Design, pp.
159-162, 1992.

E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. C.-Y. Yang, “Spectral
transforms for large Boolean functions with applications to technology mapping,”
Proc. of the 30th Design Automation Conference, pp. 54-60, 1993.

H. A. Curtis, A New Approach to the Design of Switching Circusts, Von Nostrand,
Princeton, N.J., 1962.

C. R. Edwards, “The application of the Rademacher-Walsh transform to Boolean
function classification and threshold-logic synthesis,” IFEEF Transactions on
Computers, C-24, pp. 48-62, 1975.

B. J. Falkowski, I. Schafer and M. A. Perkowski, “Effective computer methods for
the calculation of Rademacher-Walsh spectrum for completely and incompletely
specified Boolean functions,” IEFE Transaction on Computer-Aided Design, Vol.
11, No. 10, pp. 1207-1226, Oct. 1992.

P. L. Hammer and S. Rudeanu, Boolean Methods in Operations Research and
Related Areas, Heidelberg, Springer Verlag, 1968.

P. . Hammer and B. Simeone, “Order relations of variables in 0-1 program-
ming,” Annals of Discrete Mathematics, 31, North-Holland, pp. 83-112, 1987.
S. He and M. Torkelson, “Disjoint decomposition with partial vertex chart,”

International Workshop on Logic Synthesis, pp. p2a 1-5, 1993.

EVBDD 27

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

M. Helliwell and M. Perkowski, “A fast algorithm to minimize multi-output
mixed-polarity generalized Reed-Muller forms,” Proc. 25th Design Automation
Conf., pp. 427-432, 1988.

S. L. Hurst, D. M. Miller and J. C. Muzio, Spectral Techniques in Digital Logic,
London, U.K. : Academic, 1985.

J. Jain, J. A. Abraham, J. Bitner, and D. S. Fussel, “Probabilistic verification of
boolean functions,” Formal Methods in Systems Design, 1(1), pp. 63-115, July

1992.
S-W. Jeong and F. Somenzi, “A new algorithm for 0-1 programming based on

binary decision diagrams,” Logic Synthesis and Optimization, Sasao ed., Kluwer
Academic Publishers, pp. 145-165, 1993.

S. K. Kumar, Theoretical Aspects of the Behavior of Digital Circuits Under
Random Inputs. Technical Report DISC/81-3, Dept. of Electrical Engineering-
Systems, University of Southern California, Los Angeles, CA., Sept. 1981.

Y-T. Lai and S. Sastry, “HINTS: A hardware interpretation system,” Interna-
tional Workshop on Formal Methods in VLSI Design 1991.

Y-T. Lai and S. Sastry, “Edge-valued binary decision diagrams for multi-level
hierarchical verification,” Proc. of 29th Design Automation Conf., pp. 608-613,
1992.

Y-T. Lai, S. Sastry and M. Pedram, “Boolean matching using binary decision di-
agrams with applications to logic synthesis and verification,” Proc. International
Conf. on Computer Design, pp.452-458, 1992.

Y-T. Lai, M. Pedram and S. Sastry, “BDD based decomposition of logic functions
with application to FPGA synthesis,” Proc. of 30th Design Automation Conf,
pp. 642-647, 1993.

Y-T. Lai, K-R. Pan, M. Pedram, and S. Vrudhula, “FGMap: A technology map-
ping algorithm for Look-Up Table type FPGAs based on function graphs,” In-
ternational Workshop on Logic Synthesis, 1993.

Y-T. Lai, M. Pedram and S. B. K. Vrudhula, “FGILP: An integer linear program
solver based on function graphs,” Proc. Int’l Conf. on Computer Aided Design,
November 1993, pages 685-689.

Y-T. Lai, M. Pedram, and S. B. Vrudhula, “EVBDD-based Algorithms for lin-
ear integer programming, spectral transformation and function decomposition,”
IEFE Transactions on CAD, vol. 13, no. 8, pp. 959-975, Aug. 1994.

Y-T. Lai, M. Pedram, and S. B. Vrudhula, “Formal verification using edge-valued
binary decision diagrams,” to appear in IEFFE Trans. on Computers, 1996.
H-T. Liaw and C-S Lin, “On the OBDD-representation of general Boolean func-
tions,” IEEE Trans. on Computers, C-41(6): 661-664, June 1992.

28

[29]

[30]

[31]

[32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

CHAPTER 1

D. E. Muller, “Application of Boolean algebra to swithcing circuit design and
error detection,” IEEFE Trans. on Computers, vol. C-21, pp. 6-12, 1974.

G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization,
Wiley, New York, 1988.

K. P. Parker and E. J. McCluskey, “Probabilistic treatment of general combi-
national networks,” IFEE Transactions on Computers, vol. C-24, pp. 668-670,

June 1975.
S. M. Reddy, “Easily testable realizations for logic functions,” IEEE Trans. on

Computers, vol. C-21, pp. 1183-1188, 1972.

[. S. Reed, “A class of multiple-error-correcting codes and their decoding
scheme,” IRF Trans., vol. I'T-4, pp. 38-49, 1954.

J. P. Roth and R. M. Karp, “Minimization over Boolean graphs,” IBM Journal.,
pp. 227-238, April 1962.

A. Sarabi and M. Perkowski, “Fast exact and quasi-minimal minimization of
highly testable fixed polarity AND/XOR canonical networks,” Proc. 29th Design
Automation Conf., pp. 30-35, 1992.

T. Sasao, “FPGA design by generalized functional decomposition,” Logic Syn-
thesis and Optimization, Sasao ed., Kluwer Academic Publishers, pp. 233-258,

1993.
D. Singh, J. Rabaey, M. Pedram, F. Catthoor, S. Rajgopal, N. Sehgal and

T. Mozdzen. “Power-conscious CAD tools and methodologies: a perspective,”
Proc. of the IEFE, April 1995.

A. Srinivasan, T. Kam, S. Malik and R. Brayton, “Algorithms for Discrete Func-
tion Manipulation,” Proc. Int. Conf. CAD, pp. 92-95, 1990.

P. Tafertshofer and M. Pedram, Factored FVBDDs and Their Application to
Matriz Representation and Manipulation, CENG Technical Report 94-27, De-
partment of EE-Systems, University of Southern California, October 1994 (Also
to appear in Formal Methods in System Design, Kluwer Academic Publishers,
1996).

J. S. Wallis, “Hadamard Matrices,” Lecture Notes No. 292, Springer-Verlag, New
York, 1972.

X. Wu, X. Chen and S. L. Hurst, “Mapping Reed-Muller coefficients and the
minimization of Exclusive-OR switching functions,” Proc. IEF, vol. E129, pp.
15-20, 1982.

