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IntroductionIntroduction

! Sources of chip power dissipation
! Chip temperature model
! Thermal effects in interconnects
! Scaling trends and implications
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Sources of Chip Power DissipationSources of Chip Power Dissipation

! Dynamic Power: ∝∝∝∝ CV2f most significant

! Leakage Power: increasing with scaling

! C dominated by interconnects

! Affects interconnect temperature

! Dynamic Power: ∝∝∝∝ CV2f most significant

! Leakage Power: increasing with scaling

! C dominated by interconnects

! Affects interconnect temperature

Devices: Close to Heat SinkDevices: Close to Heat Sink

Interconnects: Away from Heat SinkInterconnects: Away from Heat Sink

! Joule Heating: I2R! Joule Heating: I2R
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Chip Temperature ModelChip Temperature Model

● 1-D Heat Conduction

Heat Sink

Package

Si Substrate

Rn

TDie

TO = 25 °C

P/A

● TDie = 120 °C (180 nm Node)
● Rn = 4.75 cm2 °C/W







++++====

A
P

RT nODie

● Assuming same Packaging
and Cooling Technologies

(Same Rn)
TDie at Other Technology

Nodes Calculated
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Thermal Effects in InterconnectsThermal Effects in Interconnects

! An inseparable aspect of electrical power
distribution and signal transmission
through the interconnects

! Arise due to self-heating (or Joule
heating) of interconnects caused by
current flow

! Thermal effects impact interconnect
electromigration reliability and design
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! ∆∆∆∆T increases with increasing tox

Self Heating under DC Stress (IRPS 96)

Thermal impedance θθθθj,
defined by ∆∆∆∆T = P x θθθθj
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Impact of Scaling Using Low-k (IEDM 96)

Metal

SiO2 SiO2
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(Gap Fill)

Metal

DC Conditions

! As W decreases SH increases. ! Low-k increases SH by 10-15%
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! Scaling Effects (ITRS ’99)

! As Temperature Increases

! Chip Power and Area increases
! Negligible Change in Power Density
! Current Density in Metal Lines Increases
! Number of Metal Levels Increases

! Electromigration (EM) Time to Failure Decreases
! Increased ρρρρ (T) Wire Delay Increases

Scaling Trends and ImplicationsScaling Trends and Implications

Chip Temperature Distribution ?
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Thermal Conductivity of Dielectrics

( ITRS ’99 )

Air

HSQ

SiO2

Polyimide

180 nm100 nm 100-130 nm 130 nm

70 nm
<50 nm



6

ISPD 2001ISPD 2001

Full Chip Thermal AnalysisFull Chip Thermal Analysis

● Three Dimensional Heat
Conduction
● Steady State, Uniform Heat

Generation (q’’’), Constant
Properties (k)

,02 ====
′′′′′′′′′′′′++++∇∇∇∇

k
q

T

( Interconnect )

02 ====∇∇∇∇ T

( Others )

● Worst Case Simulation
– Uniform jrms for all Metal

Lines ( ITRS ’99 )

Si SubstrateSi Substrate

ILDILD

Cu IMD

ILDILD

InterconnectInterconnect

x

z

y
TDie

q ′′′′′′′′′′′′

P/A
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● Negligible
Change in
Power Density

( ITRS ’99 )

● TDie = 133±15°C

● Increase in Tmax
Due to Joule
Heating of
Interconnects
( FEM Simulation )

Scaling Effects (2) :
Maximum Chip Temperature
Scaling Effects (2) :
Maximum Chip Temperature
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Scaling Effects (3) :
Temperature Distribution
Scaling Effects (3) :
Temperature Distribution
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Scaling Effects (4) : Effects on
Reliability & Performance
Scaling Effects (4) : Effects on
Reliability & Performance
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Scaling Trends and Implications
(Summary)

Scaling Trends and Implications
(Summary)

! Scaling trends that cause increasing thermal
effects:

! increasing interconnect levels
! increasing current density
! low-k dielectrics
! increasing thermal coupling
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! Interconnect Performance Optimization
! High-Current Effects: ESD
! Analysis of Non-uniform Chip Temperature
! Temperature Dependent Performance
! Circuit Optimization: Clock Skew
! Summary
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Electromigration (EM)

! Transport of mass in metal interconnects under
an applied current density

! EM lifetime reliability modeled using Black’s
equation given by,








==== −−−−

mB

n

Tk
Q

expjATF

TTF is the time-to-fail

A is a constant that depends on line geometry and
microstructure

j is the DC or average current density

Q is the activation energy for EM ( ~ 0.7 eV for AlCu)

Tm is the metal temperature

Reliability ImplicationsReliability Implications
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! Accelerated EM stress data yields A, Q, and n in
Black’s equation, and a value of log-normal σσσσLN

! Typical goal: achieve a 10 year lifetime

! EM stress data + Black’s equation gives a
technology limit to the maximum allowed current
density ( javg ) for the required failure rate and a
desired lifetime at a reference temperature
Tref ( ~ 100 0C)

! The javg limit does not comprehend self heating

Typical EM Analysis

Reliability ImplicationsReliability Implications
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Current Density Definitions (DAC 99)

! Peak, Average, and RMS current densities:

! For an unipolar waveform:

! EM is determined by javg, and self-heating by jrms

A

I
j peak
peak ==== (((( ))))dttj

T
j

T

avg ∫∫∫∫====
0

1 (((( ))))∫∫∫∫====
T

rms dttj
T

j
0

21

A is the cross sectional area of interconnect, T is the time period of the
current waveform.

T

ton

Ipeak

Irms

Iavg= IDC

r = ton/T

peakrms jrj ====peakavg jrj ====

r is the duty factor

Reliability ImplicationsReliability Implications
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! EM lifetime given by:

! Due to self-heating: Tm = Tref + ∆Tself-heating

Impact of Self-Heating on EM (DAC 99)








==== −−−−

mB

n

Tk
Q

expjATF

(((( )))) θθθθRRITTT rmsrefmheatingself
2====−−−−====∆∆∆∆ −−−−

Rθθθθ is the effective thermal impedance
given by,

effins

ins
WLK

t
R ====θθθθ

Weff is the effective metal width to account for quasi-2D heat conduction.

Reliability ImplicationsReliability Implications

L

Silicon

tins

Metal

insulator

Wm

Kins

Tm

Tref

q

tm
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! Typically, design rules specify javg from EM and jrms
from self-heating separately.

! Self-consistent approach: comprehends EM and
self-heating simultaneously.

! The lifetime at any javg and metal temperature Tm,
should be equal to or greater than the lifetime
value (e.g., 10 year) under the design rule current
density (j0).

Self-Consistent Design (Hunter 97)

2
0

refB

2
avg

mB

j

Tk
Q

exp

j

Tk
Q

exp 










≥≥≥≥









Reliability ImplicationsReliability Implications
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! Using the relationship between javg, jrms, jpeak
and r for an unipolar waveform described
earlier, it can be shown that,

! Incorporating the j2rms and j2avg values from
yields the self-consistent equation,

Self-Consistent Equation

r
j

j
2
rms

2
avg ====

(((( ))))
(((( )))) effinsrefm

mmmmins

refB

mB2
0 WKTT

TWtt

Tk
Q

exp

Tk
Q

exp

jr
−−−−



















====
ρρρρ

This is a single equation in the single unknown temperature Tm

Reliability ImplicationsReliability Implications
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Reliability ImplicationsReliability Implications
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Low-k/Cu: Implications for Current Density Limits

● Self-consistent jrms and jpeak decrease significantly as low-k
materials are introduced.

ISPD 2001ISPD 2001

Reliability ImplicationsReliability Implications
Implications for Interconnect Technology

● As r decreases, material changes (increasing j0) will become
ineffective in increasing jpeak.

100

200

300

400

500

600

700

800

0.0001 0.001 0.01 0.1 1

Duty Cycle r

S
el

f-
C

o
n

si
st

en
t

M
et

al
T

em
p

er
at

u
re

T
m

[0 C
]

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

M
ax

im
u

m
j p

ea
k
[A

/c
m

2 ]

Air

j0
X 105 A/cm2

6.0

9.0

13.5

20.3

SiO2

SiO2



13

ISPD 2001ISPD 2001

Reliability ImplicationsReliability Implications
Implications for Current Density Limits

! Comparison with AlCu
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● Thermal effects reduce the advantage of Cu as low-k
materials are introduced
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! Thermal effects predominant in semi-global and
global interconnects which are:
!Away from the Si substrate
! Long
! Typically split into buffered segments

! Long interconnects can be optimally buffered.

Semi-Global and Global Wires

sopt s
lopt

Performance OptimizationPerformance Optimization
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Performance Based Current Density
(Signal Lines)

● jrms (max) occurs close to the repeater output due to the
distributed nature of the interconnect.

! 0.25 µµµµm and 0.1 µµµµm technology

! Full 3-D Interconnect capacitance extracted

! Accurate lopt and sopt values determined by SPICE
simulations

jrms (max)

sopt sopt

lopt

Performance OptimizationPerformance Optimization
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! Effect of Thermal coupling Included (NTRS Based)
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! Electrostatic Discharge (ESD)

! A short duration (< 200 ns), high current (> 1 A)
event

! Can cause open circuit failure of metals and
latent damage that impact EM reliability

High-Current EffectsHigh-Current Effects

Non Steady-State ScenariosNon Steady-State Scenarios
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! Failure current densities are much higher than under normal
circuit conditions
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! Self-heating characteristics of AlCu lines under short-
pulse stress conditions (Electron Device Letters 97)

● Metal 1, 2, & 3 show
identical SH

● Higher SH in Metal 4 is
due to smaller surface
area to volume ratio

● Interconnect failure
temperature is ~ 1000 0C

Non Steady-State Self-HeatingNon Steady-State Self-Heating
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Open Circuit Failure (IRPS 2000)

● Passivation fracture due to the expansion of critical volume
of molten AlCu. (@ 1000 0C)

● Independent of overlying dielectric thickness.

Metal 4

~ 12 µµµµm

Metal 1

~ 12 µµµµm

High-Current EffectsHigh-Current Effects

ISPD 2001ISPD 2001

Significant Electromigration Performance
Degradation

1 µµµµm 0.15 µµµµm

Unstressed AlCu Stressed AlCu

Latent Interconnect Damage (IRPS 2000)

High-Current EffectsHigh-Current Effects
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Summary (1)Summary (1)
! Thermal Analysis including Interconnect Joule

Heating based on ITRS ’99

! Peak Temperatures in ICs Increase with Technology
Scaling in Spite of Constant Power Density

! Significant Implications for Performance and Reliability
! Advanced Chip Cooling Techniques may be Necessary

! Thermal Effects and Reliability

! Thermal Effects Strongly Impacts EM
! Self-Consistent Analysis: Thermal + EM
! Point-to-Point Interconnects Optimized for Performance

Meets Reliability Based Current Density Limits
! High-Current Design Rules Must be Followed for I/O

and ESD Protection Circuit Interconnects
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Interconnect TemperatureInterconnect Temperature
L

tox

tmInterconnect

OxideV
ia

V
ia

Substrate(Tref )

(Tline )

Heat equation in Interconnect (DAC 2001)

2

2
line

m

d T Q

dx k
= −

2
2 2

2

( )
( ) ( )line

line ref

d T x
T x T x

dx
λ λ θ= − −

λλλλ and θθθθ are constants
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Solution to Heat EquationSolution to Heat Equation
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Non-Uniform Substrate TemperatureNon-Uniform Substrate Temperature

! Due to different switching activities,
substrate temperature is generally non-
uniform.
!DPM, Functional block clock gating
! Thermal time constant is much higher that

signal propagation constant
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Non-uniform Interconnect
Thermal Profile

Non-uniform Interconnect
Thermal Profile

!Long global interconnects span large
area
! Experience substrate thermal non-

uniformity with high probability

! Assuming a uniform substrate thermal
profile results in delay estimation errors
! Introduces error in wire-planning and

optimization steps
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Temperature Dependence of
Resistance

Temperature Dependence of
Resistance

! Resistance is dependent on Temeprature

!ρρρρ0 is the resistance per unit length at
reference temperature

!ββββ is the temperature coefficient of
resistance (1/°C)

! Non-Uniform line temperature ⇒⇒⇒⇒ non-
uniform resistance profile
!Unit length capacitance is not affected

0( ) (1 ( ))r x T xρ β= + ⋅



22

ISPD 2001ISPD 2001

Non-Uniform Temperature
Dependent Delay

Non-Uniform Temperature
Dependent Delay

! Distributed RC delay model (DAC 2001)

∆∆∆∆xrd

CL

L

0 0 00 0
( ( ) ) ( )( ( ) )

L L L

d L Lx
D R C c x dx r x c d C dxτ τ= + + +∫ ∫ ∫

0 0 0 0 00 0
( ) ( ) ( )

L L

LD D c L C T x dx c xT x dxρ β ρ β= + + −∫ ∫

D0 is the Elmore delay model at 0 °°°°C
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Delay Degradation with
Uniform Tref(x)

Delay Degradation with
Uniform Tref(x)

! With uniform thermal profile (0.25 µµµµm):

! 5-6% increase for each 20-degree increase in long
global lines
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! Effect of exponential thermal profiles:
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! Direction of Thermal Gradient is Important
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Directional Thermal ProfileDirectional Thermal Profile

! Increasing (decreasing) thermal profile is
equivalent to decreasing (increasing)
sizing profile for uniform resistance wire

! Increasing thermal profile has better
performance than that of decreasing
thermal profile (optimal wire sizing)

T(x)T(x) T(x)T(x)

xx xx



24

ISPD 2001ISPD 2001

Presentation OutlinePresentation Outline

! Introduction
! Thermal Effects and Reliability
! Interconnect Performance Optimization
! High-Current Effects: ESD
! Analysis of Non-uniform Chip Temperature
! Temperature Dependent Performance
! Circuit Optimization : Clock Skew
! Summary
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Clock Net RoutingClock Net Routing

! Clock is the most vulnerable signal to the
underlying thermal non-uniformity
!Have long global segments in the highest

metal layers
! delay variations affect skew

! Clock nets must have near-zero skew
among their sinks to guarantee correct
functionality of the circuits
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H-Tree’sH-Tree’s
! H-Tree or bottom-up merging techniques

! Balancing loads seen at merging point in
H-Tree to have zero-skew at two sides of
each branch

1

2

2

3

3

3

3
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Branching Point (CICC 2001)Branching Point (CICC 2001)

! Equal load at each sink: middle point
is the branching point (l)

!With non-uniform thermal profile,
branching point dependent on the
profile

l L-l

p q

x
1

2 2
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Branching Point cont’dBranching Point cont’d

! Using thermally dependent delay, optimal
branching location (l*) is:

! With symmetric non-uniform thermal
profile, the branching point is still at l*=L/2

*

*

0

( ) 0
l

T x d x l Aβ + − =∫
A is constant
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Movement of Branching PointMovement of Branching Point

! In gradually decreasing (increasing)
thermal profile, optimal length l* has
to be less than (greater than) L/2.

T(x)T(x) T(x)T(x)

xx xxL/2L/2 L/2L/2
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Thermally Dependent MergingThermally Dependent Merging

! Thermal non-uniformity can
introduce a significant skew in the
clock tree

!Thermally-dependent bottom-up
merging must be used to minimize
the skew
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Results (CICC 2001)Results (CICC 2001)

9.57911µµµµ=300, σσσσ=700

0.01000µµµµ=1000, σσσσ=400

2.40979.5TH=170, TL=130

3.63968.66TH=170, TL=110

2.651021TH=170, TL=130

3.981032TH=170, TL=110

5.421042TH=170, TL=90

7.781210µµµµ=2000, σσσσ=1000

5.24957.5TH=170, TL=90

( )T x ax b= +

H LT T
a

L

−= Lb T=

( ) bxT x a e−= ⋅

Ha T=1
ln( )H

L

T
b

L T
=

2

2

( )

2
max( )

x

T x T e
µ

σ
− −−

= ⋅

l=L/2
skew%

l=l*paramsTline(x)
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Effects of Non-Uniform
Temeprature on EDA Flow

Effects of Non-Uniform
Temeprature on EDA Flow

! Interconnect non-uniform thermal
profile can affect many EDA flow
steps
! Optimal layer assignment
! Buffer insertion
! Wire sizing
! Gate sizing
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Summary (2)Summary (2)

! Impact of Non-Uniform Substrate Temperature

! Different switching activities in the
substrate cause thermal gradients

! Interconnect temperature is strongly
dependent on substrate thermal profile

! As technology scales, effect of substrate
temperature becomes more important
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Summary (2)Summary (2)
! Performance dependency

!Delay model for non-uniform line temperature
presented

!Delay based on uniform worst case line temperature
is not sufficient

!Direction of thermal gradients is important

! Signal Integrity : Clock Skew
!Non-uniform substrate temperature introduces skew

in the clock tree
!Bottom-up merging techniques must consider non-

uniform interconnect thermal profile
! Skew can be minimized by suitable merging


