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Abstract 
In this paper, we present a new technique for calculating the output waveform 
of CMOS drivers for cross-coupled RC loads. The proposed technique is 
based on an effective capacitance calculation for each driver and an efficient, 
provably convergent, iteration scheme between the coupled drivers. Our 
technique can easily handle different input arrival times, transition times, and 
polarities, and can be extended to multiple cross-coupled drivers in a 
straightforward manner.  Experimental results show that the new technique 
exhibits high accuracy (less than 4% error in average).  

1. Introduction 
As we continue to exploit deep submicron (DSM) technologies to design faster 
and smaller circuits, we must revisit the problem of calculating the gate 
propagation delay. This is an important design problem that is becoming more 
involved because of the highly nonlinear behavior of CMOS logic gates in the 
DSM region. Since interconnect modeling and RC model order reductions 
have advanced significantly over the past several years, it is reasonable to 
assume that we can accurately extract and model the various R and C parasitics 
as well as the capacitive coupling between interconnect lines. However, since 
we are stuck in a pattern of computing gate delays only when grounded linear 
capacitors load the gate, we are immediately faced with the problem of load 
modeling for the purpose of gate delay calculation [15]. 

   Modeling the coupling capacitors is the most difficult step in calculating the 
load. Sometimes this problem is addressed by modeling the coupling 
capacitors as elements to ground, with modified values of capacitances. For 
example, for opposite direction switching of two identical coupled lines, 
switching at the same instance of time, the coupling capacitance can be 
accurately modeled as twice the amount of line capacitance to ground. 
Although such approximation tends to yield pessimistic delay values, in 
general, it does not provide an upper bound on the delay for many realistic 
coupling scenarios [15,21]. 

   An example of VLSI routing is depicted in Figure 1. If there are significant 
coupling capacitances among these lines, then transitions on some subset of 
lines (aggressors) can affect the output behavior of the remaining lines 
(victims). Furthermore, because of different signal arrival times, slew rates, 
and switching behavior (falling or rising) of transitions on the aggressor lines, 
the output waveforms of the victim lines may vary by a lot [15,21]. 

 
Figure 1: An example VLSI routing scenario 

   To analyze noise, due to capacitance coupling, one can start with a reduced 
order coupled interconnect model and calculate the signals on a quiet victim 
line by superimposing the coupled signals from all other lines. Such a model, 
while inexact, can provide a reasonable approximation since the nonlinear 
CMOS gate of the non-switching victim line is behaving like a transistor in its 
linear region of operation, therefore, is modeled fairly well by a linear resistor. 
However, when the victim line itself is also switching, the problem becomes 
much more complex. As the victim line switches, the impedance of its driving 
gate changes by orders of magnitude, thereby, influencing the amount of 
coupling voltage. Obviously, such effects can accurately be modeled in SPICE, 
but due to the large circuit sizes, it is desirable to perform such analyses at the 
highest possible level of abstraction. 

1.1 Gate Delay Calculation for Capacitive Loads 
The gate propagation delay is  divided  into  two terms: the intrinsic  gate delay  
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and the (external) gate load delay. The intrinsic gate delay is due to the native 
characteristics of the CMOS devices (e.g., transistors) in the gates/cells. More 
precisely, it is equal to gate propagation delay under zero load condition. The 
load delay captures the timing effect of the load on the gate propagation delay. 
   Figure 2(a) depicts a CMOS gate, which drives a purely capacitive load (CL), 
where one of its inputs switches with a signal transition time of Tin causing the 
output of the gate to change. The gate propagation delay is a function of the 
input transition time and the output load. In commercial ASIC cell libraries, it 
is possible to characterize various output transition times (e.g. 10%, 50%, and 
90%) as a function of the input transition time and output capacitance. i.e.,                    

                                              tα=fα (Tin, CL)                                           (1) 
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Figure 2: (a) A gate driving a capacitive load, (b) definitions of tαααα terms 

where α% denotes the percentage of the output transition, tα is the output delay 
with respect to the 50% point of the input signal, and fα is the corresponding 
delay function. The delay description function can be obtained in various 
ways. Two common approaches for the gate propagation delay computation are 
based on (1) the use of a Thevenin equivalent circuit for the driver, which is in 
turn composed of a voltage source and a series resistance, and (2) the delay 
tables. The first approach is difficult to deal with and is not as accurate as the 
second approach, which is currently in wide use especially in the ASIC design 
flow. 

   The algorithm for finding the output waveform of a gate is reviewed next. 
Given: 1) the capacitive load, CL, 2) the input transition time, Tin, 3) the 50% 
transition point of the input waveform, δ; the output waveform is obtained as 
follows: 
Draw_Output_Waveform (δ, Tin, CL) 

1. For α=10%, 50%, and 90% do 
tα=Calc_Delay (δ, Tin, CL, Table(Tin, CL, α)) 

2. Draw the output waveform according to above data 

Calc_Delay (δ, Tin, CL, Table(Tin,CL,α)) 
1. From Table(Tin,CL,α) according to Tin and CL, find the 50%  
input to α% output propagation delay, add δ to this value, and call it tα 
2. Return tα 

   In VDSM technologies, we cannot neglect the effect of interconnect 
resistances of the load. Using the sum of all load capacitances as the capacitive 
load is a simple, yet quite pessimistic, approximation [7]. A more accurate 
approximation for an nth order load seen by the gate/cell (i.e., a load with n 
distributed capacitances to ground) is to use a second order RC-π model [3, 5]. 
Equating the first, second, and third moments of the admittance of the real load 
with the first, second, and third moments of the RC-π load [19], we can find 
C1, Rπ, and C2 as shown in Figure 3. It follows that for accurate gate delay 
calculation, we can use a four-dimensional delay table, where the dimensions 
are Tin, C1, Rπ, and C2. However, this is costly in terms of storage and 
computational requirements. Therefore, the “effective capacitance” approach 
has been proposed [4,8] whereby the RC-π load is approximated by an 
equivalent capacitance. Consequently, it is possible to continue to use a two-
dimensional table lookup to calculate the propagation delay to the output 
quantile point (i.e., 10%, 50%, and 90%). 
   The crosstalk capacitances affect the output transition time of each node of 
the load. Indeed, this effect has become more apparent in VDSM technologies 



   

where the coupling capacitances between interconnect lines have become quite 
important in terms of their relative magnitude compared with the area plus 
fringing capacitances of these lines. It is thus quite important to directly model 
the effect of the coupling capacitances on the gate output waveforms. An even 
more accurate approximation for this case is to consider n drivers where each 
of them drives an RC-π load. Obviously, there may be coupling capacitances 
between the near-end points and far-end points of the RC-π load as well as 
capacitive couplings between the near-end output terminals of each driver and 
the input terminals of the other drivers. The general load model for two drivers 
is shown in Figure 4 [3, 5,16, 17]. 

Gate /Cell

T
in Rπ

C
1

C
2

 
Figure 3: A gate/cell, which drives an RC-ππππ    calculated load 

   Given a complicated load with these two types of capacitive couplings (load-
to-load and input-to-load couplings), one can use moment matching techniques 
to model the load and parasitic networks as an RC network depicted in Figure 
4. In other words, given an extracted netlist, it is possible to calculate the 
precise values of all the R and C elements in Figure 4, where capacitances 
could be positive or negative. This calculation is not the focus of our paper, 
which starts by assuming that the various R and C values of the model of 
Figure 4 are already known. For accurate gate delay calculation, we may start 
from a multi-dimensional delay table, where the dimensions are the input 
transition times, the difference between the 50% transition points of the input 
waveforms, values of capacitances to ground, coupling capacitances, and 
shielding resistances, etc. However, this is extremely costly (if practical at all) 
in terms of the storage and computational requirements. Therefore, we ought to 
develop an alternative approach that allows us to avoid constructing and 
relying on such tables. 
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Figure 4: Two cross coupled CMOS gates each driving an RC-π π π π  load and 

exhibiting 1) interconnect coupling and 2) input-output coupling 

    In this paper, we present an algorithm, which calculates the output 
waveform of each driver driving a general load considering coupling 
capacitances in deep submicron technologies as shown in Figure 4. Using the 
algorithms, we can find the output waveform of each driver where the input 
transitions can have falling or rising behavior and could have overlap and etc. 
We show that our algorithm provides accurate results that are in a very good 
match for some important points of the output waveform of the CMOS drivers 
(e.g., 10%, 50% and 90%).  

   The remainder of this paper is organized as follows. Section 2 reviews 
previous works done to compute effective capacitance and describe our new 
algorithm to evaluate output waveform for RC-π load. Section 3 will solve the 
problem for the case of two drivers that drives a capacitive load in the presence 
of coupling capacitance. Section 4 will solve the problem for the case of 
resistive loads as shown in Figure 4. The results will be shown in section 5 and 
finally the conclusions are presented in Section 6.         

2. Effective Capacitance Calculation  
2.1 Prior Work 

Many research results have been reported for calculating the interconnect 
propagation delay. These papers are simulation-based [6,7,9] or rely on 
analytical derivations [1,11]. Similarly and more recently, a number of 
research results have been published that focus on the loading effect of the RC 
wires on the gate propagation delay [8,9,12,13].  

   The effective capacitance is a function with two parameters: (1) 
characteristics of the output voltage waveform of the driving cell and (2) 
characteristics of the load, or more precisely, the driving point admittance of 
interconnects. If two drivers produce the same output waveform when they are 
faced with the same load, then the two cells are considered to be equivalent in 
terms of calculating Ceff [12]. Consider the circuit depicted in Figure 3. If Rπ 
goes to infinity, then the gate/cell will see only C1 as its load. On the other 

hand, if Rπ goes to zero, then the gate/cell will see Ctot=C1+ C2. Therefore, the 
effective capacitance that the driver experiences, can be written as:  
                               21 kCCCeff +=     where   10 ≤≤ k                        (2) 

   By using a table of circuit simulation results and a pair of two-dimensional 
delay tables, Macys et al. [12] calculated a value for the effective capacitance. 
In their work, the effective capacitance is a function of the total capacitance in 
the RC-π model (Ctot), the gate output slew rate, and the Elmore delay [1] of 
the load. The authors approximate the RC-π load with an effective capacitance 
such that the output voltage waveforms of the driving cell passes through some 
critical voltages (e.g., 0 and 0.75Vdd) at the same instances in time. They also 
normalize the four model parameters (output slew time and three π model 
parameters) to two parameters and use a table of circuit simulation results to 
find the effective capacitance by exploiting an iteration-based procedure. 
However, Macys’ approach is not based on any analytical derivation and is 
very sensitive to the simulation table entries.  

   Using a two-piece output waveform, Qian et al. propose an effective 
capacitance calculation approach that approximates the output waveform of a 
single-stage gate [10]. The authors calculate the effective capacitance by 
equating the charges at the gate output when using the driving-point 
admittance of the load and using a single effective capacitance as the load. 
Average charges for both loads models are equated until the gate output 
voltage reaches the 50% threshold. Qian’s effective capacitance approach is 
costly in terms of its computational calculations and requires a large number of 
iterations (e.g., 5 to 10 iterations). It also involves empirical equations that 
assume fast input transitions. 

   Kahng and Muddu [11,13] propose a number of effective capacitance 
algorithms. In their latest approach [13], they state that by using the voltage of 
output pin of the gate/cell, they can find a non-iterative and fast method for 
calculating the effective capacitance that accurately matches the output 
waveforms in a range from 0.3Vdd to 0.6Vdd.  However, finding the output 
transition time (from the complex set of equations that the authors present) can 
be very costly. Furthermore, in reality, the driver resistance in their model is a 
function of the output load and input transition time and can thus vary greatly. 
However, the authors use a single value for the driver resistance corresponding 
to the case that the driver sees the total capacitances of a load.  

   In [19] authors calculate an effective capacitance, which approximately 
matches both 50% propagation delay and output transition time with 
reasonable accuracy. Their approach is analytical and has good performance. 
However, their analytical expressions can be applied to low-order circuits and 
are not suitable for high-order circuits (with more storage elements).  

   Furthermore, the previous papers do not prove the convergence of their 
iterative algorithms. In this paper, we propose an optimal lookup-table based 
effective capacitance algorithm for both speed and accuracy; such that using 
the capacitances; we can approximate the voltage waveform of the output 
terminal of the gates, which is less sensitive with respect to lookup table. 

2.2 A New Effective Capacitance Calculation 
Algorithm 
Problem Statement: Given is a CMOS driver where its input rise time is 
Tin, and an output load modeled by an RC-π circuit which is shown in Figure 6, 
find the output waveform of the driver. 

   Due to the shielding effect of the resistance, the effective capacitance can be 
written as C1+kC2 where 0<k<1. Our algorithm gives an iterative approach for 
calculating k. Consider a unit step voltage source that drives an RC circuit in 
Figure 5(a). The current flowing into the RC circuit in Laplace domain is 
calculated as [18]: 
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Figure 5: Effective capacitance concepts 
    
   The total charge induced into the capacitance up to time T is equal to the 
area, which is shown in Figure 5(b). In this case, it can be calculated as: 
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   We can replace the RC load with a single effective capacitance and calculate 
the amount of charge dumped into this capacitance for the same unit step input 
as shown in Figure 5(c). By matching the charge dumped into this load with 
Equation (4), we have: 

                                        ( )
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T
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effC C e
−

= −                                       (5) 

   According to Equation (5), Ceff depends on the time up to which the charge is 
matched as well as the R and C values. The same observation holds for a ramp 
input [20]. 
   According to the above discussion, the effective capacitance for an RC-π 
model load (depicted in Figure 6) can be written as: 

                                ( )2
1 2(1 )outk t R C

effC C e Cπ−= + −                               (6) 

where k is a dimensionless constant and tout is the gate output transition time. 
Macys [12] showed that the effective capacitance calculation is a function of 
only three parameters α, β, and γ, where; 
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   In addition, Macys showed that if we provide the table that relates these three 
variables for each technology, where the table is independent of the input 
transition time and the gate configuration, the table could be used for any 
different combinations of load parameters. Therefore; 
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which results in 
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   If we replace the output transition time (tout) by 50% propagation delay we 
can rewrite the equation as: 
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where β’ is the ratio between the 50% propagation delay and the RπC2 product, 
and kt is a fixed value which can be obtained from a lookup table (compiled 
from circuit simulation results) and which is constant for the calculated α and 
β’. Figure 7 reports the kt values for different α and β’ values in a 0.1µm 
CMOS technology. The figure shows that the table of kt values is only a 
function of α and β' and remains constant for three different configurations of 
the gate and input waveform. It should be noted that kt is decreasing with 
respect to α and β’ and achieves its maximum at the minimum values of α and 
β’, as seen in Figure 7. The advantage of this approach, with respect to Macy’s 
approach, is that first; we have an equation that helps us understand the 
behavior of the effective capacitance. Second, by writing the sensitivity 
function of the output transition time with respect to kt (for our approach) and 
γ  (for Macys’ approach),  it can be proven that our approach results in a more 
stable effective capacitance estimation. More precisely, 
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Figure 6: An inverter driving an RC-ππππ load 

Experimental results show that coefficient “coeff” is strictly smaller than one. 
In particular, the results for 30 different cases in 0.1µm technology are 
tabulated in Figure 8, which show that this coefficient is always less than one. 
We conclude that our approach is less sensitive compared to Macy’s approach. 
To make the equations hold for 10% output transition point, we ought to derive 
a new lookup table for the kt. The same holds for the 30%, 70%, and 90% 
output percentile points. 
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   In order to solve the proposed problem in section 5, we need to have the 
voltage waveform of the far-end capacitance for the RC-π load. If we apply a 
ramp input with rise time Tr to an RC load, the output waveform equation 
would be: 
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where t is the time variable and Vdd is the final value of the input voltage 
waveform as shown in Figure 9. Therefore, to find the delay for the time it 
takes for the output waveform to reach the α percentile point (tα), we need to 
solve the following nonlinear equation: 

                                                   ( )V t Vout ddαα =                                            (15) 

   Instead, according to Equation (14), if Tr/RC values of two different circuit 
configurations are equal, their tα/RC values are also equal. Therefore, instead 
of solving the nonlinear Equation (15), we can make a table of delays, where 
for each Tr/RC, for each α percentile point, we have tα/RC. For example, 
suppose we have a circuit where its input transition time is Tr and it drives an 
RC load. We need to find the time that the output waveform reaches its 50% of 
Vdd. Then from its corresponding table in Figure 9, for the Tr/RC, we find 
tα/RC and thus, t50. 

   Our algorithm for calculating the output waveform is as follows. Given the 
following information for a particular timing path of a cell; the input slew time, 
Tin, the π-load model parameters,(C1,Rπ,C2), gate propagation delay from 50% 
transition point of input waveform to α% transition point of the output 
waveform, Table(50%-α%), the kt table, Table(kt), we perform the following 
steps: 
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Figure 9: RC propagation delay calculation based on Table lookup 
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   Draw_for_RC-ππππ_Load (Tin, Load Parameters)  
1. For α=10, 50, and 90 do 

a. Find_Transition_Point (Tin, C1, Rπ, C2, 
                                             Table (50%-α%),Table(kt)) 

2. Draw output waveform according to the results 

   Find_Transition_Point (tin ,C1,C2,Rπ,Table(50%-α%), Table(kt)) 
1. Guess an initial value for Ceff 
2. Compute α from the load values 
3. Obtain tα from Table (50%-α%) based on values of Ceff and 

tin 
4. Compute β' from tα and load elements 
5. Find kt from Table (kt) according to α and β' 
6. Calculate Ceff from Equation (10) 
7. Find the new value of tα for the obtained Ceff from 

Table(50%-α%) 
8. Compare the new tα with the old tα 
9. If not within acceptable tolerance, then return to step 4 until 

tα converges 
10. Return tα 

   Experimental results demonstrate that this algorithm gives accurate results 
with fast convergence. Next, we prove that the algorithm converges 
independently of the initial guess.  

Theorem 1: Iterative Equation (10) always converges independently of the 
initial guess. Furthermore, its solution is unique. 

Proof: Per reference [23], the iterative equation for finding the solution to 
x=f(x) will converge for any initial input and its solution is unique, if  
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d

f x
dx

<                                               (16) 

   In this case, to prove the convergence of the equation, we prove: 
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   Therefore, the proposed iterative effective capacitance equation always 
converges to its unique solution, independently of initial value of Ceff.   !!!! 

3. Crosstalk for Coupled Capacitive Loads 
Problem Statement: Two CMOS drivers, a and b, are given where their 
corresponding input transition times are tin(a) and tin(b) and there is a δ=δb−δα 
delay between their input waveforms where δα and δb denote the 50% 
transition points of the input waveforms of driver a and b, respectively. Also, 
the corresponding capacitive loads are Ca and Cb and there is a capacitive 
coupling between the two output loads with value Cc. Furthermore, the output 
waveform of drivers a and b are tout(a) and tout(b), respectively. The objective is 
to find the output waveform of the two drivers. In fact, we must solve a 
nonlinear equation: 

                                      ( , , , ) 0L CS T C C Tin out =                                        (19) 

where; 

        ( ) ( )
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   This is, however, a difficult undertaking. Thus, we look for a better solution. 
Many different scenarios could arise under this problem statement. For 
example, the input voltages may independently have a falling or rising 
transition; there could be a non-zero positive or negative skew between their 
50% input transition times, the slew rates of the two inputs can widely differ, 
etc. According to circuit theory, we can model the coupling capacitance by a 
Miller capacitance to ground [21] for each scenario. A simple approximation 
can be obtained as follows. Taking the circuit in Figure 10 as a two-port 
network, in order to model the coupling capacitance as an equivalent 
capacitance to the ground, we suppose that the equivalent circuit has the same 

current sink and the same voltage waveforms at the output terminals of the 
drivers. Using this assumption, we have [22]: 
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   To calculate the effective capacitance to ground for driver a, by integrating 
the current over the period from the rising time of the output of driver a, to the 
switching threshold point, tth, we have; 
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Figure 10: Two gates driving capacitive load with capacitive crosstalk 

where ∆Vb is the voltage transition of voltage waveform of the output of the 
driver b, when the voltage waveform of the output of the driver a transits from 
0 to a voltage threshold at which we are interested in finding the propagation 
delay. For example, if the effective capacitance to ground of inverter a for 
calculating 50% output transition point is needed, then ∆Vb becomes the 
output voltage transition of driver b, from when the output waveform of driver 
a transits from 0 to its 50% transition point as shown in Figure 12. The same 
calculation may be performed for driver b. Therefore; 
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Figure 11: Definition of voltages for Equations (22) and (23) 

Therefore, the algorithm is as follows:  

Find_Waveforms_Capacitive_Cross_Coupled(δ(a),δ(b),tin(a), tin(b),Ca,Cb Cc) 
1. Guess an initial value for output capacitive load and  
         put it CL(a) and CL(b) (for example CL(a)=Ca+Cc) 
2. tout,a=Draw_Output_Waveform(δ(a),tin(a),CL(a)) 
3. tout,b=Draw_Output_Waveform(δ(b),tin(b),CL(b)) 
4. Repeat until the output waveform converges 
a. For (Vth,a,Vth,b)={(50%,50%),(50%,90%), 
               (90%,50%), (50%,10%), (10%,50%)} do 

  Find_Output(tout,a,tout,b,Vth,a,Vth,b,CL(a), CL(b),Cc) 
 

Find_Output(tout,a,tout,b,Vth,a, Vth,b, CL(a), CL(b), Cc) 

1. ( ) ( ) (1 )
,

L a L a
VbC C Cc Vth a

∆
← + − And ( ) ( ) (1 )

,
L b L b

VaC C Cc Vth b

∆
← + −  

2. Update tout,a and tout,b 
3. If tout,a and tout,b tolerance are within acceptable range, then 
a. Return tout,a and tout,b 
4. Find_Output (tout,a,tout,b,Vth,a,Vth,b,CL(a),CL(b),Cc) 

   This algorithm can easily be extended to handle a collection of N cross-
coupled drivers. In practice, we may encounter cases where the output 
waveform behaves like the voltage waveform shown in Figure 12. In such a 
case, we need to generate delay estimates for more percentile points of the 
output waveform. As shown in Figure 12, if we apply curve fitting for upper 
points and lower points, we can predict the output waveform of the gate. This 
technique works fine if the magnitude of distortion does not exceed over some 
threshold voltages which for each horizontal lines drawn in Figure 12, we have 
more than one point. At this point we need to prove that the proposed 
algorithm converges to a unique solution independently of the initial guess for 
the effective capacitance to ground. 



   

Theorem 2: The “Find_Waveforms_Capacitive_Cross_Coupled” algorithm 
converges to its unique solution independently of the initial guess for the value 
of the effective capacitance to ground. 

Proof: In this algorithm, instead of attempting to solve the rather complicated 
Equation 19, we solve the problem by an iterative technique, which can be 
described as follows: 

        ( , )
( , ( , ))

( , )
out in L EFF

out in L C out
EFF C out

T F T C C
T F T C G C T

C G C T

= + ⇒ = + =
         (24) 

   To prove that the above equation converges, we use Equation 16. More 
precisely, we show that [23]: 

                         
( )( , ( , )) 1in L C out

out
F T C G C T

T

∂ + <
∂

                            (25) 

   In addition, we assume the G and F functions have the following forms: 

    ( )( )
( )( )

1 1 ( )1 ( )

2 ( ) 2 2 ( )

11
( , ) ( , )

1 1

f a c g out ag out a
C out c in L eff

g out b f b c g out b

k C C k tk t
G C T C F T C C

k t k C C k t

 + −−   = + =   −  + −    

    (26) 

where kfi (i=1,2) is the rate of output transition time change to output load 
change for the ith driver and kgi (i=1,2) is the ratio of Miller factor changes to 
output transition time changes. Therefore; 
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   The worst-case value of kfi (i=1,2) is when the drivers are weak, where in 
0.1µm technology is in the order of 103(S/F). Also according to [21], the miller 
factor could vary from –1 to 3, therefore, for the worst-case in 0.1µm 
technology, kgi (i=1,2) is in the order of 107(1/S) and the coupling capacitance 
is in the order of 10-11(F) in the worst-case. Therefore, the condition in 
Equation (27) always holds and the product is always less than 1, which proves 
the convergence of the iterative algorithm.   !!!! 
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Figure 12: Approximating the output waveform with curve fitting in the 

case of non-monotone response 

4. Crosstalk for Coupled RC Loads  
Problem Statement: The problem statement is the same as the one in 
Section 3 except that the load is now the one that is depicted in Figure 13. We 
are interested in determining the output waveforms at the near ends.  

tin,a to ut,n(a)

tin,b tout,n(b)

C1,c
C1,a

C1,b

C 2,c

C 2,b

C 2,a

Rπ,a

Rπ,b

C (a,b)

C (b,a)

tout,f(a)

tout,f(b)

 
Figure 13: A general format of two gates driving resistive and capacitive 

loads considering crosstalk 

   Empirical gate/cell level models remain popular for timing analysis, even for 
full custom designs. In [14] a gate/cell level modeling methodology was 
developed which achieves compatibility with RC interconnect loading through 
an “effective capacitance” approximation. Dartu and Pileggi in [15] extended 
this waveform-based gate model to consider the problem of calculating the 
delay (and response waveform) when there is a significant amount of coupling. 
In particular, they present algorithms for obtaining the best and the worst gate 
delays in the presence of coupling capacitances. In their paper, the authors use 
a Norton equivalent model for the gates to do the analysis. What we do for this 
problem is to partition the circuit with the two cross-coupled drivers into two 
separate sub-circuits, each with a single driver and loaded by an RC-π load. By 

applying the “Find_Output“ algorithm of Section 3, we first decouple the 
drivers and next by applying the “Draw_for_RCπ_Load” algorithm of Section 
2, we estimate the output waveforms of the two drivers. Finally, we go thru a 
number of iterations to determine the exact output waveform of each sub-
circuit. The algorithm to find the output waveforms is as follows: 

Find_Output_Waveforms (tin,a,tin,b, Load Parameters) 
1. Model each coupling capacitance as a capacitance to ground 
2. (tout,n(a),tout,f(a))=Draw_for_RCππππ_Load(tin,a, Load Parameters)  
3. (tout,n(b),tout,f(b))=Draw_for_RCππππ_Load(tin,a, Load Parameters)  
4. Repeat 

a. For  (Vth,a,Vth,b)={(50%,50%),(50%,90%), (90%,50%), 
                                     (50%,10%), (10%,50%)} do  

1. Update_Voltage_Waveforms(Voltage  
         Waveforms, Vth,a, Vth,b, Load Parameters) 

5. Until the output waveforms converges 

Update_Voltage_Waveforms (Voltage Waveforms, Vth,a, Vth,b,  
                                                   Load Parameters) 

1. Update equivalent Miller capacitance values by using  
         Equations (22) and (23) 
2. Draw_for_RCππππ_Load (tin,a, Load Parameters)  
3. Draw_for_RCππππ_Load (tin,b, Load Parameters)  
4. If voltage waveforms are within acceptable tolerance,  
         then return values  
5. Update_Voltage_Waveforms (Voltage Waveforms, Vth,a,  
        Vth,b, Load Parameters) 

   The proof of convergence for this iterative approach is similar to the proof in 
Section 3. It is omitted here due to space limitation. 

5. Experimental Results 
We performed a large number of simulations on different circuits in 0.1µm 
CMOS technology and report the results here. We considered different ranges 
of coupling capacitances, driver sizes and loads. In Table 1, we compare the 
results of the algorithm proposed in Section 2, “Draw_for_RCπ_Load”, with 
those obtained from Hspice simulations for three different percentile points of 
the output transition time. The increments for α and β’ of the kt table were 
taken as 0.1 and 1, respectively. Table 1 shows that our algorithm comes 
within 1% of Hspice. In Table 2, we compare the results of the algorithm 
proposed in Section 3, “Find_Waveforms_Capacitive_Cross_Coupled”, with 
the results obtained by Hspice. We achieved a mere 3% error for different 
cases. In Table 3, we applied the algorithm proposed in Section 4 to the 
complex load configuration of Figure 13 and compared its results with Hspice. 
Again, we observed a small error (about 6% on average.). These results are 
reported after 3 iterations. Also, in the experiments, the k=Ceff/(C1+C2), varies 
from 0.15 to 0.90.  

6. Conclusion 
As we go toward VDSM technologies, the effect of interconnect resistance and 
coupling capacitance must be carefully taken into account. The interconnect 
resistance reduces the cell delay via shielding the far-end capacitances, 
whereas, the coupling capacitances increases the gate propagation delay. Gate 
load delay calculation requires accuracy, and using delay tables is essential for 
accurate delay calculation for given capacitive load and input transition times. 
The gate delay can widely vary as a function of the input transition times, 
driver strengths, and the skew between the transitions, and the output load 
configurations. In this paper, we presented three efficient iterative algorithms 
with provable convergence property, which have low computational 
complexity and result in highly accurate results. To use the delay tables, we 
approximated the load with an effective capacitance, which is equivalent to the 
real load in terms of its propagation delay (at 10%, 50%, and 90% percentile 
points). The algorithms proposed for calculating gate propagation delay results 
in high accuracy with 6% error on average. 
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Table 1: Simulation results for output waveform evaluation algorithm for RCππππ load (proposed in Section 2) for 0.1µµµµm technologies (3 iterations). 

Driver and Load Parameters 
10% propagation delay 

(from 50% of input to 10% 
of output) 

50% propagation delay (from 
50% of input to 50% of 

output) 

90% propagation delay (from 
50% of input to 90% of output) 

Tin 

(pS) 
Wp(λ)/ 
Wn(λ) 

C1(fF) R(Ω) C2(fF) 
Our 
App.  
(pS) 

Hspice 
(pS) 

Error
% 

Our App. 
(pS) 

Hspic
e (pS) 

Error% 
Our 

Approac
h (pS) 

Hspice 
(pS) 

Error% 

400 100/50 500 100 900 169 165 2.4 711 703 1.1 1705 1696 0.5 
200 150/75 1500 200 400 147 144 2.1 640 635 0.8 1515 1491 1.6 
100 50/25 250 80 1000 190 186 2.1 1186 1168 1.5 2960 2890 2.4 
100 150/75 1000 500 1250 90 87 3.4 486 476 2.1 1825 1802 1.3 
600 80/40 350 150 1000 199 193 3.1 845 834 1.3 2095 2080 0.7 
300 200/100 1000 450 1650 102 105 2.8 401 392 2.3 1650 1647 0.1 
50 200/100 1500 650 2050 85 84 1.2 461 456 1.1 2047 2037 0.4 

250 20/10 450 350 650 426 419 1.7 2586 2572 0.5 6420 6348 1.1 
150 160/80 850 1000 1500 86 82 4.9 349 336 3.9 1642 1621 1.3 
550 150/75 1300 400 1900 185 181 2.2 721 707 2.0 2560 2495 2.6 
350 120/60 1600 500 1500 205 203 0.9 1012 1000 1.2 3145 3097 1.5 
450 30/15 500 100 600 149 142 4.9 515 503 2.4 1190 1149 3.7 

Avg.      2.6   1.7   1.4 
                                          ***All inputs are rising. 

Table 2: Simulation results for capacitive load considering crosstalk (cf. section 3) for 0.1µµµµm technologies (3 iterations). 

Driver A Driver B Load Parameters 
50% propagation delay  

of driver A 
50% propagation delay  

of driver B 

Tin 

(ps) 
Wp(λ)/ 
Wn(λ) 

50% 
Coord.

(pS) 

Tin 

(ps) 
Wp(λ)/ 
Wn(λ) 

50%   
Coord. 

(ps) 
Ca (fF) Cb (fF) Cc (fF) 

Our 
Appoach 

(pS) 

Hspice 
(pS) 

Err. 
% 

Our 
Approach 

(pS) 

Hspice 
(pS) 

Err% 

100 100/50 50(R) 200 150/75 150 (F) 500 400 500 645 637 1.3 465 458 1.5 
100 100/50 50(R) 200 150/75 250 (F) 500 400 500 570 550 3.6 475 464 2.4 
100 100/50 50(F) 200 150/75 150 (F) 500 400 500 281 271 3.7 185 177 4.5 
200 150/75 100(F) 350 250/125 750 (F) 1000 900 1500 705 697 1.1 253 241 4.9 
200 150/75 100(R) 350 250/125 750 (F) 1000 900 1500 602 595 1.2 681 670 1.6 
350 120/60 175(F) 150 80/40 650 (R) 700 800 500 521 505 3.2 995 975 2.1 
350 120/60 175(R) 150 80/40 650 (R) 700 800 500 415 405 2.5 402 391 2.8 
400 250/125 200(R) 350 120/60 500 (R) 1100 900 1000 341 325 4.9 286 279 2.5 
400 250/125 200(F) 350 120/60 900 (R) 1100 900 1000 356 346 2.9 1189 1149 3.5 

Avg.          2.7   2.9 
                             ***F: Falling input, R: Rising input 

Table 3: Simulation results for general load considering crosstalk (cf. Section 4) for 0.1µµµµm technologies (3 iterations). 

Driver A Driver B Load Parameters 
50% propagation 
delay of driver A 

50% propagation 
delay of driver B 

Tin 
(ps) 

Wp(λ)/ 
Wn(λ) 

50% 
Coor. 
(pS) 

Tin 
(ps) 

Wp(λ)/ 
Wn(λ) 

50%   
Coor. 
.(pS) 

C1,a R1,π C2,a C1,b R2,π C2,b C1,c C2,c C(a,b) C(b,a) 
Our 
App 
(pS) 

Hspice 
(pS) 

Err  
(%) 

Our 
App. 
(pS) 

Hspic 

(pS) 
Err 
(%) 

100 100/50 50(R) 200 150/75 150(F) 300 100 800 800 300 999 400 500 100 150 675 630 7.1 1109 1050 5.6 
100 100/50 50(F) 200 150/75 250(F) 600 200 400 500 400 800 450 650 200 350 985 945 4.2 470 442 6.3 
200 150/75 100(F) 350 250/125 750(F) 500 300 400 600 200 900 350 250 300 100 717 688 4.2 485 466 4.1 
350 120/60 175(F) 150 80/40 650(R) 600 500 500 400 200 500 450 500 350 400 535 512 4.5 1430 1390 2.9 
400 250/125 200(R) 350 120/60 500(R) 700 350 900 500 300 600 350 250 450 150 513 489 4.9 522 495 5.4 
200 150/75 100(R) 350 250/125 750(F) 800 500 950 450 350 900 250 450 350 300 511 489 4.5 407 391 4.0 
400 250/125 200(F) 350 120/60 900(R) 250 150 650 350 125 800 650 350 125 275 312 291 7.2 1345 1296 3.8 

Avg.                 5.2   4.6 
                 ***F: Falling input, R: Rising input 


