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Abstract

This paper presents a zero-skew gated clock routing technique
for VLSI circuits.  The gated clock tree has masking gates at
the internal nodes of the clock tree, which are selectively
turned on and off by the gate control signals during the active
and idle times of the circuit modules to reduce switched
capacitance of the clock tree.  This work extends the work of
[4] so as to account for the switched capacitance and the area
of the gate control signal routing. Various tradeoffs between
power and area for different design options and module
activities are discussed and detailed experimental results are
presented

1.  Introduction

Clock gating is an effective way of reducing power dissipation
in digital circuits.  In a typical synchronous circuit, e.g. a
general purpose microprocessor, only a portion of the circuit is
active at any given time.  By shutting down the idle modules
in the circuit, we can prevent the circuit consuming
unnecessary power.  In addition, we can shut down a portion
of the clock tree by masking off the clock at the internal node
of the tree using an AND-gate.  This prevents unnecessary
switching in the clock tree and saves power in the clock tree in
addition to the power savings in the modules.

In this paper, we address an instance of the gated clock
routing problem.  In our gated clock tree, we insert gates
immediately after every internal node of the clock tree to
minimize the dynamic power consumption.  These gates also
serve as buffers and can be sized to adjust the phase delay of
the clock signal.  They are turned on and off by the control
signals generated from a centralized gate controller.  An
instance of the gated clock tree is shown in Figure 1, where
the sinks correspond to the locations of modules and the
Steiners are the internal nodes of the clock tree.

A gate in the clock tree must be enabled (i.e. the control signal
is true) whenever any of its descendant gates are enabled.
This suggests that the control signal of a gate is the OR
function of the control signals of its descendant gates.
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In [5], a gated clock tree topology construction based on
module activity patterns was suggested.  The authors used
high-level synthesis information to extract the activity
patterns.  However, the routing of the clock tree and the
control signals, the actual power dissipation and the area of
them were not considered.  In contrast, our method considers
all of these. In addition, we propose a method for clock tree
construction based on the instruction statistics of the
processor. This can be extracted from instruction level
simulation of the processor with a number of benchmark
programs. The instruction statistics are used to extract the
activities of the nodes and the switching activities of the
control signals as will be discussed in the following sections.
More precisely, we will investigate how the probabilistic
information (instruction statistics) and the geometrical
information (sink locations) are used to guide the low power
clock routing.

The remainder of this paper is organized as follows.  Section 2
gives the terminology and the precise problem statement.
Section 3 describes how the probabilities of the gate control
signals are calculated. Section 4 presents the clock tree
construction algorithm.  Sections 5 and 6 show our
experimental results and conclusions.

Figure 1: Gated clock tree
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2. Problem  Definition

We assume that the topology of the clock tree is full binary,
that is, every non-leaf node has exactly two children.
However, the tree is not necessarily a balanced tree (depth of
leaf nodes may not be the same).  Let T be the rooted clock
tree topology.  Let {M1, M2,…,MN} be the modules.  If there
are N modules, there are N–1 internal nodes.  Let {v1,
v2,…,v2N-1} be the nodes of the clock tree where {v1, v2,…,vN}
are leaves and the rest are internal nodes of the tree.  Let {e1,
e2,…,e2N-2} be the edges of the tree.  We identify each point vi,
except the root, of the rooted topology T with edge ei, so ei

connects vi to its parent in T.  Let | ei | be the length of edge ei.

We assume that the controller is located at the center of the
chip.  The control signal routing is a star routing as shown in
Figure 1.  We denote the controller tree as S.  We label each
edge in the controller tree as ENi.  Edge ENi controls the gate
on edge ei of the clock tree.  The signal probability of ENi

(probability that ENi is 1) is denoted as P(ENi) and the
transition probability of ENi (probability that ENi changes
logic value per cycle) is denoted as Ptr(ENi).   Let | ENi | be the
length of edge ENi.

2.1 Switched Capacitance of the c lock tree

Consider a clock tree without gates.  For a particular edge ei ,
the power dissipation on the edge ei is given by
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where c0, α, f , Vdd are the unit wire capacitance, transition
probability of the clock net, the clock frequency, and the
supply voltage, respectively.  For the clock net, α = 2 since
there is one rising and one falling edge in every clock cycle.
So the above equation becomes
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With the masking gates, this power is dissipated only when the
control signal is on.  Thus the power dissipation in edge ei is
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During the layout synthesis step, Vdd and f are fixed
parameters, hence we can use the switched capacitance as an
exact measure of the power dissipation.  The switched
capacitance w(ei) of an edge ei is given by
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There may be a load capacitance associated with each node of
the clock tree.  Including the node capacitance Ci at node vi,
the switched capacitance of ei is given by
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The total switched capacitance in the clock tree is therefore
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2.2  Switched capacitance in the controller tree

Similarly, from Equation (1), we can see the switched
capacitance of edge ENi  is
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where Cg is the input capacitance of the AND gate.  The total
switched capacitance in the controller tree is
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The objective of our gated clock routing is to find trees T and
S so as to minimize
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subject to zero skew constraints.  Notice that the signal
probability of ENi determines the switched capacitance in the
clock tree whereas its transition probability determines the
switched capacitance in the controller tree.

3. Computation of P(ENi) and Ptr(ENi)

To calculate W(T) and W(S), we need to compute the signal
probabilities P(ENi) and the transition probabilities Ptr(ENi).
Let P(Mi) be the probability that Mi is active (i.e. Mi receives
the clock signal).  Suppose vi has modules M1, M2,…,Ml at the
leaves.  If any of these modules are active, then ENi must be
turned on.  Thus P(ENi) is given by
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To find Ptr(ENi), we need the module activation statistic over
consecutive clock cycles.  Let AT(Mi) be a two-bit activation
tag  which represents the module activities in two consecutive
clock cycles.  For example, AT(Mi) = 01 means that Mi is idle
in the current clock cycle and becomes active in the next clock
cycle. AT(Mi) can have four possible values and their
corresponding logic value transitions of ENi are shown below.

1. AT(Mi) = 00  (ENi stays at 0)

2. AT(Mi) = 01  (ENi makes a 0 to 1 transition)

3. AT(Mi) = 10  (ENi makes a 1 to 0 transition)

4. AT(Mi) = 11  (ENi stays at 1)



Cases 1 and 4 do not cause transition of ENi, so we just need
to consider cases 2 and 3 for the computation of the transition
probability.

If Register Transfer Level (RTL) simulation is used to find
these probabilities, a huge number of clock-by-clock module
usages have to be recorded.  Certainly, the time complexity
will be very large, especially for general-purpose
microprocessors. So we propose a method for computing
activities using more efficient instruction level simulation of
the processor and knowledge about the RTL description of the
processor.

3.1 RTL description

For simplicity, we assume that the microprocessor has four
instructions and six modules throughout the rest of this
section.  The RTL description of each instruction tells us what
modules are used to execute each instruction. For example, we
may have the following RTL description of the instructions.

Instruction Used Modules
I1 M1, M2, M3, M5

I2 M1, M4

I3 M2, M5, M6

I4 M3, M4

Table 1: RTL description of instructions

3.2 Instruction stream

By simulating the processor at the instruction level with a
number of benchmark programs, we can trace the instructions
that are executed.  For example, our instruction stream for 20
clock cycles may be given as follows.

I1 I2 I4 I1 I3 I2 I2 I1 I2 I1 I3 I2 I1 I3 I1 I2 I1 I1 I4 I2

From this, we can find any probabilities by scanning the
instruction stream.  For example, M1 appears in I1 and I2, and
these two instructions occur 15 times in the stream, so P(M1) =
15/20 =  0.75.  If a node vi in the clock tree has two leaf nodes
M5 and M6, any instructions that use either of these modules
should contribute to the signal probability of ENi. I1 and I3 are
such instructions, so P(ENi) = P(M5 ∪ M6) = 11/20 = 0.55.
The transition probability of this ENi is also found by scanning
the instruction stream.  We examine every two consecutive
instructions during the scanning and count the number of
transitions of ENi (01 transition when both M5 and M6 are idle
in the current clock cycle and any of M5 and M6 are active in
the next clock cycle;  10 transition is the reverse of this).  We
can see that Ptr(ENi) = 10/19= 0.526 (there are 19 transitions).

However, the instruction stream can be very long.  To get
accurate instruction statistics, we may need some millions of
instructions.  Because some instructions are rarely executed,
the instruction stream should be very long to get reasonable
probability value for the rare instructions.  Therefore, the
above brute-force method is very expensive.

To overcome this problem, we propose a method that
computes all the necessary probabilities from the tables that
can be generated by scanning the instruction stream just once.

3.3 Table-driven probability computation

Instruction Frequency Table (IFT) enlists the probability that
each instruction is executed on the average.  By scanning the
previous instruction stream, we have the IFT in Table 2.

Instruction I1 I2 I3 I4

Probability 0.4 0.35 0.15 0.1

Table 2: Instruction Frequency Table

To find P(M5 ∪ M6), we simply add the two probabilities of I1

and I3 in Table 2, which is 0.55.  Any signal probability
P(ENi) can be found using Table 1 and Table 2 without
rescanning the instruction stream.  It was shown in [4] that the
time complexity of computing this probability is O(KL), where
K is the total number of instructions and L is the maximum
number of used modules for any instructions (K = L = 4 in our
example).

Instruction Transition-Module Activation Table (IMATT)
enlists AT(Mi) for every possible combination of two
consecutive instructions.  In addition, IMATT keeps the
probability that the two instructions occur in two consecutive
clock cycles.  By scanning the previous instruction stream, we
have IMATT in Table 3.

Prob. Instr.
Trns.

M1 M2 M3 M4 M5 M6

0.057 I1→I1 11 11 11 00 11 00
0.158 I1→I2 11 10 10 01 10 00
0.158 I1→I3 10 11 10 00 11 01
0.057 I1→I4 10 10 11 01 10 00
0.184 I2→I1 11 01 01 10 01 00
0.057 I2→I2 11 00 00 11 00 00
…. … … … … … … …
0.000 I4→I4 00 00 11 11 00 00

Table 3: Instruction Transition-Module Activation Table

For example, I1→I3 occurs three times in the instruction
stream.  So its probability is 3/19 = 0.158.

Assume that vi has leaf nodes M1, M2,…,Ml. In order for ENi to
make a 01 transition, at least one of AT(Mk), k=1,…,l should
be 01 while the remaining AT(Mk)s should be either 00 or 01.
Likewise, in order for ENi to make a 10 transition, at least one
of AT(Mk), k=1,…,l should be 10 while the remaining AT(Mk)s
should be either 00 or 10.  All other cases force ENi to remain
at 0 or 1.  Alternatively, we perform logical OR over all the
AT(Mk)s and if its result is 10 or 01, we have transitions on
ENi.  For example, if vi has leaf nodes M2, M3, M5 and M6,
I1→I2 causes ENi to make a 10 transition since the OR of the
four corresponding table entries is 10. For each row in Table
3, if the corresponding modules’ activation tags cause ENi to



make a transition, the probability on that row should be added
to the transition probability of ENi. The time complexity of
computing the transition probability of ENi is O(K2N), where
K is the total number of instructions and N is the total number
of modules.

4. Clock  Tree  Construction

4.1 Delay modeling

To estimate the phase delay of the clock tree, we use the
Elmore delay model as was used in [6] for zero-skew clock
routing.  Inserting gates reduces the subtree capacitance in the
Elmore delay computation, thereby reducing the phase delay.

4.2 Minimum switched capacitance heuristic

Bottom-up merging followed by top-down placement method
is commonly used in clock routing. In [2], the merging sector
is a line segment with slope ±1, which represents the possible
locations of the Steiner node where its two subtrees are
merged.  These merging sectors are found in bottom-up
fashion. The actual locations of the Steiner nodes are
determined in top-down fashion (see an example in Figure 2).
The nearest-neighbor heuristic of [3] greedily merges two
nodes when the geometric distance between the corresponding
merging sectors is minimum.  Our method is also greedy, but
the merging sequence is determined by the switched
capacitance.

Let ms(vi) be the merging sector of vi.  Suppose we try to
merge (ms(vi), ms(vj)) and the root of the merged tree is vk. We
can uniquely determine |ei|, |ej| such that the zero skew
constraint is satisfied.  As mentioned before, we assume that
the gate controller is located at the center of the chip.  Let this
center be CP.  To compute the switched capacitance in an
edge of the controller tree, we need to estimate the distance
between the gate location (location of the Steiner node) and
the CP.  Since we do not know the exact locations of the
Steiner nodes during the bottom-up phase, we approximate the
edge length of the controller tree as the distance between the
CP and the middle point of the merging sector.  Let this

distance be dist(CP, mid(ms(vj))).  Then the switched
capacitance SC after the merge of (ms(vi), ms(vj)) is
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When we merge subtrees bottom-up, we merge sectors that
result in the smallest switched capacitance as given in
Equation (3).  Detailed algorithm for the clock tree
construction is similar to [4].  We summarize the algorithm
outline below (SC is short for switched capacitance).

PROCEDURE GatedClockRouting
Input: Instruction Stream,
            RTL description of each instruction,
            Sink locations;
Output: Clock Tree Layout with gates

begin
scan the instruction stream and create IFT and ITMAT;
find P(ENi) and Ptr(ENi) for every sink;
compute SC between every pair of sinks;

     // bottom-up merge
     repeat

pick the pair ms(vx), ms(vy) whose SC is minimum
create new node vk;
compute P(ENk) and Ptr(ENk);
find ms(vk);
remove node vx, vy;

   for each remaining node vn

determine |ek|, |en| satisfying zero-skew;
compute SC between vk, vn;

           end for
     until only the root is left

     // top-down placement
     place internal nodes vk within each ms(vk);
end PROCEDURE

Scanning the instruction stream and the creating the tables
take O(B), where B is the length of the stream.  The second
and the third statements take O(N (KL + K2N)) and O(N2)
respectively.  Since L < N, the combined complexity is
O(K2N2).  The repeat loop iterates N times and within each
iteration, the dominating complexity is the probability
computation which takes O(K2N).  So the overall complexity
is O(B + K2N2).

4.3 Reduction of Gates

Inserting gates at every node of the clock tree may result in
large area and increase complexity of the control circuit and

Figure 2: An example of bottom-up merging sequence
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the routing of the enable signals. Especially, since the routing
of enable signals is a star routing, its area can be bigger than
the clock tree routing if we do not reduce the number of gates.
There are cases when inserting gates hardly reduces switched
capacitance. We can think of three cases when a node does not
need a gate.

1. Activity of the node is close to 1,

2. Switched capacitance of the node is very
small,

3. Activity of the parent node is almost the
same as activity of the node.

Case (1) is obvious since there is no time frame during which
the node can be shut off.  In case (2), the node's switched
capacitance is so small that having a gate can only reduce
switched capacitance marginally.  In case (3), there is very
little increase in activity when we go up from the node to its
parent.  In this case, it is not necessary for both the node and
its parent to have gates. Only the parent will have a gate, and
the resulting switched capacitance is at most slightly higher
than the case that both nodes have gates.

However, these gate removal schemes may remove so many
gates in the tree that the phase delay of the clock signal may
increase rapidly.  So we included a rule for enforcing a gate
insertion regardless of those three schemes whenever the
subtree capacitance of the node reaches, say 20Cg, where Cg is
the input capacitance of a gate.

5. Experimental  Results

We implemented our algorithm in C++ on a Sun Sparc 20
workstations.  For sink locations (module locations) and the
sink load capacitance, we used the benchmarks r1-r5 from [6].
The instruction stream and the used modules for each
instruction are generated according to a probabilistic model of
the CPU when it executes typical programs. The benchmark
characteristics are shown in Table 4. The length of the
instruction stream was 100 thousands for all the benchmarks.
The average number of used modules per instruction is about
40% for all the benchmarks (this can be seen in the column
labeled Ave(M(Ii))). That is, about 40% of the modules are
active at any given time on the average.

Bench No. of sinks No. of instr Ave(M (Ii))
r1 267 64 107
r2 598 89 240
r3 862 108 345
r4 1093 120 438
r5 3101 160 1240

Table 4: Benchmark characteristics for gated clock routing

Note that the power consumption of the gated clock tree will
be at least 40% of the ungated clock tree as a result.

5.1 Buffered clock tree vs. gated clock tree

Buffered clock tree is a commonly used method in current
clock routing. The buffered clock tree is constructed using the
nearest neighbor heuristic and the size of a buffer is assumed
to be half the size of AND-gates.  The comparison among
buffered clock tree, gated clock tree and gated clock tree with
gate reduction heuristic is shown in Figure 3.

As can be seen from the figure, if the gate reduction heuristic
is not applied, the gated clock routing is worse than the
conventional buffered clock routing.  The major overhead in
switched capacitance and the area comes from the star routing.
After the gate reduction, it consumes about 30% less power
than the buffered clock routing. There is still however an area
overhead.

5.2 Impact of average module act ivity

If the average activity is too high, then there is little room for
power savings.  The average module activity vs. switched
capacitance is shown in Figure 4.  As the average module
activity increases, the power consumption difference between
the two routing methods diminishes.  Thus the gated clock
routing is more effective when the module activity is low.

Figure 3: Comparison among different clock routing
methods.  Switched capacitance in pF, area in 106 λ
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5.3 Optimum number of gates

If there are a lot of gates, then the switched capacitance in the
clock tree is reduced, but the switched capacitance and the
area of the controller tree is increased.  On the contrary, if
there are too few gates, the switched capacitance in the clock
tree will be increased.  Intuitively, there will be an optimum
number of gates that minimizes the total switched capacitance.
This is shown in Figure 5.

We controlled the number of gates by giving different
parameters in the gate reduction heuristic. When there are
many gates, the controller tree dominates the switched
capacitance and the area.  As the number of gates is reduced,
the switched capacitance in the controller tree is reduced but
that of the clock tree is increased.  In the figure, the optimum
gate reduction for lowest power is at 55%.

6. Conclusion

We presented a gated clock routing which has lower switched
capacitance over buffered clock trees. We presented a clock
topology generation heuristic based on the module activities
and the sink locations. We proposed a method to find the
signal probability and the transition probability of the gate
control signals from the tables generated from the instruction
stream.

Our experimental results showed that there is an optimum
number of gates for lowest switched capacitance.  Our results
help a designer choose trade-off among the power, area and
the complexity of the routing.

In this paper, we assumed a centralized gate controller.
However we are also investigating a distributed controller for
reduced star routing area.  This is illustrated in Figure 6.

Assume that the chip is square and its side is of length D.
Then the longest edge length of the star tree is D/2.  Assuming
the average edge length is half of this (D/4), the total routing
area is GD/4 where G is the number of gates.  If we divide the
chip into k equal sized partitions (where k is power of two),
then each partition has G/k gates and the average edge length

is kD 4/ .  Therefore the total routing area is
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As the number of partition increases, the star routing area is

reduced by a factor of k .  Feasibility of the distributed
controllers and their impact on the design complexity of the
controller logic in currently under investigation.
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Figure 4: Average module activity (x-axis) vs. switched
capacitance (y-axis) for benchmark r1

Figure 5: Gate reduction vs. switched capacitance and area
for benchmark r1

Figure 6: (a) one centralized controller vs. (b)
four distributed controllers
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