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Theoretical Bounds for Switching Activity Analysis in Finite-State Machines

Abstract - The objective of this paper is to provide lower and upper bounds for the switching

activity on the state lines in Finite State Machines (FSMs). Using a Markov chain model for the

behavior of the states of the FSM, we derive theoretical bounds for the average Hamming

distance on the state lines which are valid irrespective of the state encoding used in the final

implementation. Such lower and upper bounds, in addition to providing a target for any state

assignment algorithm, can also be used as parameters in a high-level model of power, and thus

provide an early indication about the performance limits of the target FSM. Experimental results

obtained for the mcnc’91 benchmark suite show that our bounds are tighter than the bounds

reported previously by other researchers and can be effectively used in a high-level power

estimation framework.

1. Introduction

Since power consumption has become a critical issue in the development of digital systems, tools

that can control the power budget during the various phases of the design process are in high

demand [1]. Given an initial specification of the behavior of the system, several synthesis/

optimization steps are required to generate a final, efficient implementation. Synthesis systems

typically take a hardware description language (HDL) model of a design as the initial input. The

synthesis path is usually composed of several steps that can be summarized as follows: high-level

synthesis, state assignment of the symbolic states of the FSM describing the control part, logic

synthesis and library binding. 

This paper targets the very first step in this synthesis flow where the FSM characterizing the

control part of the high-level representation is typically described in the form of a State Transition

Graph (STG) and each state is represented in a symbolic form. Such an investigation is motivated

by the fact that, despite the significant efforts invested in the research of low-power systems, little

has been done from the perspective of theoretical aspects involved in the design and application

of such systems. More precisely, most of the work done so far has targeted only algorithms for

state assignment [2-4], re-encoding [5] or synthesis [6] for low-power. In a complementary effort,
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the problem of bus encoding for low-power has been tackled by several researchers [7-10].

However, little has been done in the area of finding good theoretical bounds for the average

switching activity in FSMs or on buses. Preliminary results in this direction have been recently

reported in [11, 12].

The particular subject this paper addresses is related to the derivation of theoretical bounds for

FSM switching activity. More precisely, our objective is to find lower and upper bounds on the

switching activity of the state lines, directly from an abstract STG description, far before the state

assignment is actually made. Such lower and upper bounds, in addition to providing a target for

any state assignment algorithm, can also be used as parameters in a high-level model of power,

and thus provide an early indication about the performance limits of the target FSM. To be more

specific, consider the typical representation of a standard FSM in Fig.1a. In Fig.1b, we represent a

portion of the STG which describes the behavior of the FSM. 

Fig.1: The FSM model

Depending on the actual encoding used in the final implementation of the FSM, the state lines s

may switch more or less frequently. The amount of switching on the state lines is best

characterized by the average Hamming distance between the codes assigned to consecutive states.

What we aim in this paper is to provide lower and upper bounds for the average Hamming

distance on the state lines s which are valid regardless of the state encoding used in the final

implementation. These bounds can be later combined with the average Hamming distance

extracted from the statistics of the vector sequence at the primary inputs x and primary outputs y,

and used to derive performance limits in terms of total power consumption in the target FSM. The

main advantage of doing so lies in the independence of the results from the actual implementation

which gives more flexibility to the designer.

A similar issue was addressed by Tyagi in [11]. In that paper, the author introduces two lower

bounds on the average Hamming distance per transition which emphasize the qualitative

dependence of the average Hamming distance on the number of bits used for encoding. An

interesting “by-product” of these lower bounds is a greedy state assignment algorithm. In [12],

lower and upper bounds for the average switching activity on an information channel (typically, a

bus) are provided. However, their applicability in the case of FSMs is severely limited by the fact

that they are achievable merely through compression techniques rather than encoding techniques
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(which is the case for FSMs). 

In this paper we improve over Tyagi’s work by providing not only tighter lower bounds, but

also upper bounds for the average Hamming distance. The new lower and upper bounds we

propose in this paper are easy to understand and are based on either the informational energy or

the topology of the FSM. Together with a technology-independent measure for the circuit

complexity, they can be used to generate performance limits in terms of total power consumption.

In this paper, we target only lower and upper bounds for the switching activity, although in

order to be useful for high-level power analysis, they have to be used in conjunction with an

estimator for the area (complexity) of the target circuit. This is very important from a practical

point of view, since it provides an estimate for the range where total power values lie, early in the

design cycle. As pointed out in [16], for control circuits, one can use a power model that depends

on the switching activities on the primary inputs, primary outputs and state lines:

where NI and NO denote the number of external input plus state lines and external output plus

state lines for the FSM, C0 and C1 are regression coefficients which are empirically derived from

low-level simulation of previously designed standard cell controllers, αI and αO denote the

switching activities on the external input plus state lines and external output plus state lines, and

finally NM denotes the number of minterms in an optimized cover of the FSM and is related to the

area of the two-level implementation of the circuit. Thus, having computed lower and upper

bounds on the total power consumption of the sequential circuit, we can derive lower and upper

bounds on the total power values. 

Other efforts in the direction of estimating the area (complexity) of a circuit have been

presented in [17, 18], but the problem is far from being solved. In [17], a measure of the circuit

area is deduced by using the average number of literals per essential prime implicant. A multiple-

output circuit is transformed into a single-output equivalent circuit and its area is estimated using

the results in [19] for single-output boolean functions. In [18], as an estimate for the area of the

target circuit, the authors propose a measure which is linear in the number of nodes in Binary

Decision Diagram (BDD) associated with the circuit. However, since we want to keep the

independence from the actual implementation of the circuit, none of these approaches is directly

applicable in our case because the state encoding is unknown. Thus, we need an encoding-

independent measure for the complexity of the circuit. Our proposed measure is based on the size

of the minimal symbolic cover of the FSM [20]. 

The paper is organized as follows. In Sections 2 and 3, we present the lower and upper

bounds, the complexity of their calculation and discuss their relationship with other possible

bounds. The applicability of the lower and upper bounds in a high-level power model is discussed

P C0 αI NI NM⋅ ⋅ ⋅ C1 αO NO NM⋅ ⋅ ⋅+∝
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in Section 4 and the experimental results are presented in Section 5. Section 6 concludes the paper

and summarizes our main contribution.

2. Informational lower and upper bounds on FSM switching

In this section we present the theoretical framework for determining lower and upper bounds on

FSM switching activity. Formally, the problem to be solved can be formulated as follows:

“Given the behavior of the input data and the behavioral description of a controller in the form of

the STG associated with the FSM, find lower and upper bounds on the average Hamming distance

of the state lines, for a fixed length encoding of the states.”

Behavior of the input data refers to the actual steady state and conditional probabilities for the

primary inputs, assuming that the inputs are obtained using a Markov generator. In the following,

we assume that the state lines of the FSM are modeled as a lag-one Markov chain1 characterized

by the stochastic matrix Q = (qij)1 ≤ i,j ≤ n, where n is the number reachable of states of the FSM

and qij = p (s = j | s’ = i) is the conditional probability of the FSM being in state i given that it was

previously in state j. These probabilities, along with the steady state probability vector p = (pi)1 ≤ i

≤ n, can be found using standard techniques for probabilistic analysis of FSMs as proposed in [13]

(applicable only for uncorrelated input streams) or [14] (applicable for any high-order Markov

source for the primary inputs). Alternatively, having the STG of the FSM, a very fast functional

simulation can be performed for a typical input data stream and the set of reachable states can be

extracted along with the characteristics of the underlying Markov chain. From here on, we will

refer to lag-one Markov chains as simply Markov chains.

Definition 1. (Average Hamming distance) Given a fixed length encoding of the states of a

Markov chain, the average Hamming distance of the chain is given by:

where Q = (qij)1 ≤ i,j ≤ n is the matrix characterizing the chain, p = (pi)1 ≤ i ≤ n is the steady state

probability vector, and dij is the Hamming distance between the codes assigned to states i and j.

Example 1: Consider the Markov chain in Fig.2, where each edge from state si to state sj is

labeled with the conditional probability qij. The steady state probability vector is given by p = (1/

1.While in general the Markov chain corresponding to the state lines may be characterized by a high-order Markov
chain, for the purpose of estimating the average Hamming distance, modeling the states as lag-one Markov chains is
sufficient.

d̃ pi qij dij⋅ ⋅
1 i j, n≤ ≤

∑=
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3 1/6 1/6 1/6 1/6). Assuming a random encoding of the states such that code (s1) = ‘000’, code (s2)

= ‘001’, code (s3) = ‘110’, code (s4) = ‘010’, code (s5) = ‘101’, then the average Hamming

distance of the chain is given by:

 

Fig.2: An example of a Markov chain

This means that, for this particular encoding, an average number of 1.33 transitions is

obtained when the graph in Fig.2 is traversed in a random manner. On the other hand, if we

assume a Gray-type encoding given by: code (s1) = ‘000’, code (s2) = ‘001’, code (s3) = ‘011’,

code (s4) = ‘111’, code (s5) = ‘110’, the average number of transitions changes to:

Definition 2. (Average Hamming distance from state i) The average Hamming distance from state

i is defined as:

.

Example 2: For the Markov chain in Fig.2, for the first encoding we have:

, , ,

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

s5 s1

s2

s3
s4

d̃
1
3
--- 0.5 1⋅ ⋅

1
6
--- 0.5 1 0.5 3⋅+⋅( )⋅

1
6
--- 0.5 2⋅ 0.5 1⋅+( )⋅

1
6
--- 0.5 3⋅ ⋅

1
6
--- 0.5 2⋅ 0.5 2⋅+( )⋅+ + + +

1.33 transitions step⁄

=

=

d̃
1
3
--- 0.5 1⋅ ⋅

1
6
--- 0.5 1 0.5 1⋅+⋅( )⋅

1
6
--- 0.5 1⋅ 0.5 2⋅+( )⋅

1
6
--- 0.5 1⋅ ⋅

1
6
--- 0.5 2⋅ 0.5 2⋅+( )⋅+ + + +

1 transition s⁄ tep

=

=

d̃i qij dij⋅
j 1=

n

∑=

d̃1 0.5 1⋅ 0.5= = d̃2 0.5 1 0.5 3⋅+⋅ 2= = d̃3 0.5 2⋅ 0.5 1⋅+ 1.5= =
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, ,

whereas for the second encoding we have: 

, , ,

, .

Note 1: Given a fixed length encoding of the states, there is a simple relationship between the

average Hamming distance of a Markov chain and the average Hamming distance from a fixed

state of the chain: . Thus, if we find lower and upper bounds for , we will also

obtain lower and upper bounds for . 

To begin with, we give the following useful result:

Lemma 1. If {ai}1 ≤ i ≤ n and {bi}1 ≤ i ≤ n are two sets of positive real numbers, then the following

holds:

with equality if and only if aibj = ajbi for any i ≠ j.

Proof: It results from the inequality 

with equality if and only if aibj = ajbi for any i ≠ j.�

Using the above result, we present lower and upper bounds based on the information-theoretic

concept of informational energy [15]:

Definition 3. (Informational energy) Given a discrete stochastic process characterized by steady

state probabilities {pi}1 ≤ i ≤ n, the informational energy is defined as . 

The above concept can be extended to the more general case of Markov chains as follows:

Definition 4. (Informational energy associated to a state) Given a Markov chain characterized by

the stochastic matrix Q = (qij)1 ≤ i,j ≤ n, the informational energy for state i is defined as

. 

d̃4 0.5 3⋅ 1.5= = d̃5 0.5 2 0.5 2⋅+⋅ 2= =

d̃1 0.5 1⋅ 0.5= = d̃2 0.5 1 0.5 1⋅+⋅ 1= = d̃3 0.5 1⋅ 0.5 2⋅+ 1.5= =

d̃4 0.5 1⋅ 0.5= = d̃5 0.5 2 0.5 2⋅+⋅ 2= =

d̃ pi di
˜⋅

i 1=

n

∑= di
˜

d̃

ai bi⋅
i 1=

n

∑ ai
2

i 1=

n

∑ bi
2

i 1=

n

∑⋅≤

ai
2

i 1=

n

∑ bi
2

i 1=

n

∑⋅ ai bi⋅
i 1=

n

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

2

– ai bj⋅ aj bi⋅–( )2

i j≠
∑ 0≥=

E pi
2

i 1=

n

∑=

Ei qij
2

i 1=

n

∑=
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Lemma 2. For a fixed k-bit encoding, the average Hamming distance from state i satisfies the

following double inequality:

                                                      (1)

with equality if and only if qildij = qijdil (for the upper bound) and qil(k - dij) = qij(k - dil) (for the

lower bound) for any l ≠ j, l ≠ i, and j ≠ i.  represents the informational energy

associated to state i.

Proof: It results directly from Lemma 1 applied to the sets {dij}j ≠ i and {qij}j ≠ i for a fixed i. �

Lemma 2 basically breaks the bounds of the average Hamming distance from a given state

into two terms: one characterized by the informational energy (that is, by the topology and

parameters of the underlying Markov chain) and the other characterized by the actual Hamming

distances given by the encoding. Since the informational energy is encoding-independent, we

need to find lower and upper bounds on the encoding-dependent sums that appear in (1).

Lemma 3. Let ti be the number of outgoing edges (excluding the self edges) from state i. For a

fixed k-bit encoding, the following inequalities hold:

 and  

where mi, ni are chosen such that  and .

Proof: For a fixed k-bit encoding and a given state, there is a number of  codes at distance 1, a

number of  codes at distance 2, etc.1. Thus, assuming that there are ti outgoing transitions

from state i, to obtain an upper bound for the two sums, we need to assign the Hamming distances

in decreasing (increasing) order until all edges are exhausted. Hence, the above inequalities are

satisfied.�

Lemmas 2 and 3 can be further combined to compute encoding-independent lower and upper

bounds for the average Hamming distance of a Markov chain:

Theorem 1. For a fixed k-bit encoding, the average Hamming distance of a Markov chain satisfies

1.The same observation has been used in [11].

k qij

j i≠
∑⋅ Ei qii

2–( ) k dij–( )2

j i≠
∑⋅– di

˜ Ei qii
2–( ) dij

2

j i≠
∑⋅≤ ≤

Ei qij
2

j

∑=

k dij–( )2

j i≠
∑ k l–( )2 k

l⎝ ⎠
⎛ ⎞⋅

l 1=

mi

∑≤ dij
2

j i≠
∑ k l– 1+( )2 k

l 1–⎝ ⎠
⎛ ⎞⋅

l 1=

ni

∑≤

k
l⎝ ⎠

⎛ ⎞

l 1=

mi 1–

∑ ti< k
l⎝ ⎠

⎛ ⎞

l 1=

mi

∑≤ k
l 1–⎝ ⎠

⎛ ⎞

l 1=

ni 1–

∑ ti< k
l 1–⎝ ⎠

⎛ ⎞

l 1=

ni

∑≤

k
1⎝ ⎠

⎛ ⎞

k
2⎝ ⎠

⎛ ⎞
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where ,

, and the notation is the same as in Lemma 3. The

complexity of computing these bounds is O (t) where  is the total number of transitions

(excluding self transitions) and n is the number of states in the underlying Markov chain.

Proof: It results immediately from Lemma 2, Lemma 3 and Definition 2.�

Example 3: For the Markov chain in Fig.2, we have , ,

, , and . Thus, assuming that we target a k = 3 bit

encoding, the bounds for the average Hamming distance from each state are:

,

,

,

,

.

Based on these, we get the following bounds for the average Hamming distance of the chain:

Note 2: The bounds are achieved exactly if conditions in Lemma 2 are met for every state i and

the topology of the Markov chain permits the assignment of Hamming distances as in Lemma 3.

The bounds presented in this section are easy to compute and give an interesting insight into

the relationship between the informational energy associated with a Markov chain and the

possible values for the average Hamming distance for a fixed length encoding. However, as we

pi d̃i min,⋅
i

∑ d̃ pi d̃i max,⋅
i

∑≤ ≤

d̃i min, k qij

j i≠
∑⋅ Ei qii

2–( ) k l–( )2 k
l⎝ ⎠

⎛ ⎞⋅
l 1=

mi

∑⋅–=

d̃i max, Ei qii
2–( ) k l– 1+( )2 k

l 1–⎝ ⎠
⎛ ⎞⋅

l 1=

ni

∑⋅=

t ti

i 1=

n

∑=

E1 q11
2– 0.25= E2 q22

2– 0.5=

E3 q33
2– 0.5= E4 q4

2– 0.25= E5 q55
2– 0.5=

0.5 3 0.5⋅ 0.25 3 1–( )2⋅–= d̃1 0.25 32⋅≤ ≤ 1.5=

1 3 1⋅ 0.5 3 1–( )2 3 1–( )2+[ ]⋅–= d̃2 0.5 32 22+( )⋅≤ ≤ 2.55=

1 3 1⋅ 0.5 3 1–( )2
3 1–( )2

+[ ]⋅–= d̃3 0.5 3
2

2
2

+( )⋅≤ ≤ 2.55=

0.5 3 0.5⋅ 0.25 3 1–( )2⋅–= d̃4 0.25 32⋅≤ ≤ 1.5=

1 3 1⋅ 0.5 3 1–( )2 3 1–( )2+[ ]⋅–= d̃5 0.5 32 22+( )⋅≤ ≤ 2.55=

0.75
1
3
--- 0.5⋅ 1

6
--- 1⋅ 1

6
--- 1⋅ 1

6
--- 0.5⋅ 1

6
--- 1⋅+ + + += d̃

1
3
--- 1.5⋅ 1

6
--- 2.55⋅ 1

6
--- 2.55⋅ 1

6
--- 1.5⋅ 1

6
--- 2.55⋅+ + + +

≤

≤ 2.03=
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shall see later in this paper, these bounds are not tight enough. We present in the next section an

alternative way to derive tighter bounds for the average Hamming distance. 

3. Combinatorial lower and upper bounds on FSM switching

In this section, we prove formally that the bounds we are about to present are indeed tighter than

the information theoretic bounds presented in the previous section and, in addition, better than the

simple bound  used in [11]. The notation is the same as in the previous section. We first

give the following result:

Lemma 4. Assuming that {qij}1 ≤ j ≤ n is sorted in non-increasing order, for a fixed k-bit encoding,

the average Hamming distance from state i satisfies the following double inequality:

                                                                                  (2)

where , , and mi, ni are as in Lemma 3.

Proof: Because {qij}1 ≤ j ≤ n is sorted in non-increasing order, by assigning the codes in increasing

(decreasing) order of their Hamming distances, we obtain a lower (upper) bound for the average

Hamming distance from state i. Indeed, knowing that there are exactly  codes at distance l,

assigning in a greedy fashion the lowest (highest) Hamming distance to the edges with the highest

probability, we get that:

 and

.

We define the series , , and take mi, ni such that

 and . In other words, for the first inequality, if the outgoing

transitions are sorted according to their probabilities, then the first a1 edges are assigned a

pi qij⋅
i j≠
∑

l qij

j al=

al 1+ 1–

∑⋅
l 1=

mi

∑ di
˜ k l– 1+( ) qij

j bl=

bl 1+ 1–

∑⋅
l 1=

ni

∑≤ ≤

al 1 k
m⎝ ⎠

⎛ ⎞

m 1=

l 1–

∑+= bl 1 k
m 1–⎝ ⎠

⎛ ⎞

m 1=

l 1–

∑+=

k
l⎝ ⎠

⎛ ⎞

qi1 1⋅ … q
i

k
1⎝ ⎠

⎛ ⎞ 1⋅ q
i

k
1⎝ ⎠

⎛ ⎞, 1+
2⋅ … q

i
k
1⎝ ⎠

⎛ ⎞, k
2⎝ ⎠

⎛ ⎞+
2⋅ …+ + + + + + d̃i qij dij⋅

j i≠
∑=≤

qi1 k⋅ q
i

k
0⎝ ⎠

⎛ ⎞, 1+
k 1–( )⋅ … q

i
k
1⎝ ⎠

⎛ ⎞, k
2⎝ ⎠

⎛ ⎞+
k 1–( )⋅ …+ + + + d̃i qij dij⋅

j i≠
∑=≥

al 1 k
m⎝ ⎠

⎛ ⎞

m 1=

l 1–

∑+= bl 1 k
m 1–⎝ ⎠

⎛ ⎞

m 1=

l 1–

∑+=

ami 1– ti ami
≤ ≤ bni 1– ti bni

≤ ≤



Submitted to TVLSI - Special Issue on Low-Power Design

10

distance of 1, the next a2 - a1 are assigned a distance of 2 etc., until all ti edges are exhausted. A

similar rationale is used for the second inequality. Thus, the lower and upper bounds in (2) are

satisfied. �

Note 3: The bounds given in (2) are tight, that is, for a fixed state i, we can always find an

encoding which achieves these bounds. For instance, for state s2 in Fig.2, assuming that code (s2)

= ‘001’ is fixed, then it is sufficient to consider code (s1) = ‘000’ and code (s3) = ‘011’ to achieve

the lower bound of  transition/step. On the other hand, if we consider

the same code for s2, code (s1) = ‘110’ and code (s3) = ‘111’, we achieve the upper bound of

 transitions/step.

Based on the above lemma, we give the following result which holds for any k-bit encoding of

the states of a Markov chain:

Theorem 2. For a fixed k-bit encoding, the average Hamming distance of a Markov chain satisfies

the following:

                                                       (3)

where the notation is the same as in Lemma 4. The complexity of computing these bounds is

, where  is the total number of transitions (excluding self transitions) and n

is the number of states in the underlying Markov chain.

Proof: Since  and thus, using the result in Lemma 4 we get exactly the above

claim. 

As far as the complexity is concerned, we note that the critical step in computing the above

bounds is sorting the outgoing transitions according to their probability. For a state with ti

outgoing transitions, this takes O(ti log ti). Since ti ≤ n, doing this for all the states in the Markov

chain cannot take more than O(t log n). �

Example 4: For the Markov chain in Fig.2, assuming a 3-bit encoding, the inequalities in Lemma

4 and Theorem 2 may be written as follows:

, ,

, ,

d̃2 0.5 1 0.5 1⋅+⋅ 1= =

d̃2 0.5 3 0.5 2⋅+⋅ 2.5= =

pi l qij

j al=

al 1+ 1–

∑⋅
l 1=

mi

∑⋅
i 1=

n

∑ d̃ pi k l– 1+( ) qij

j bl=

bl 1+ 1–

∑⋅
l 1=

ni

∑⋅
i 1=

n

∑≤ ≤

O t nlog⋅( ) t ti

i 1=

n

∑=

d̃ pi di
˜⋅

i 1=

n

∑=

0.5 1 0.5⋅= d̃1 3 0.5⋅≤ ≤ 1.5= 1 1 0.5⋅ 1 0.5⋅+= d̃2 3 0.5⋅ 2 0.5⋅+≤ ≤ 2.5=

1 1 0.5⋅ 1 0.5⋅+= d̃3 3 0.5⋅ 2 0.5⋅+≤ ≤ 2.5= 0.5 1 0.5⋅= d̃4 3 0.5⋅≤ ≤ 1.5=
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 and hence, we get the bounds for :

Note 4: The bounds in Lemma 4 are always achievable if each state i is considered in isolation.

However, the bounds in Theorem 2 may not be achievable for the whole graph due to the

constraints which result from the specific structure of the Markov chain. For example, for the

Markov chain in Fig.2, if code (s3) = ‘011’, to achieve the lower bound for state s3, we should

have code (s4) = ‘111’ and code (s5) = ‘010’. But this encoding does not achieve the lower bound

for state s4 which requires s5 to be at a Hamming distance of 1.

Corollary 1. The bounds in Theorem 2 are always tighter than the bounds from Theorem 1.

Proof: Using Lemma 1, we have the following inequalities for a fixed state i:

and

Thus, the bounds in Theorem 2 are tighter than the bounds given in Theorem 1.�

As we can see, we can trade-off the quality of the bounds versus the time spent for their

computation. The informational energy-based bounds are easier to compute (in about O(t) time),

1 1 0.5⋅ 1 0.5⋅+= d̃5 3 0.5⋅ 2 0.5⋅+≤ ≤ 2.5= d̃

0.75
1
3
--- 0.5⋅

1
6
--- 1⋅

1
6
--- 1⋅

1
6
--- 0.5⋅

1
6
--- 1⋅+ + + += d̃

1
3
--- 1.5⋅

1
6
--- 2.5⋅

1
6
--- 2.5⋅

1
6
--- 1.5⋅

1
6
--- 2.5⋅+ + + +

≤

≤ 2=

k l– 1+( ) qij

j bl=

bl 1+ 1–

∑⋅
l 1=

ni

∑

qi1 k⋅ q
i

k
0⎝ ⎠

⎛ ⎞, 1+
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but they are not as tight as the bounds given in Theorem 2 (computed in O(tlogn) time). 

Note 5: The lower bound derived in Theorem 2 is always better than the simple bound 

used in [11], which is not achievable unless each transition has a Hamming distance of 1. Indeed,

we have the following:

Corollary 2. The simple lower bound  and the lower bound in Theorem 2 satisfy:

that is, the lower bound in Theorem 2 is always tighter than the simple lower bound .

Proof: It is sufficient to observe that  and thus the

above claim is satisfied. �

Differently stated, although our lower bound may not be achievable, it is still tighter than the

simple bound. As we shall see in the experimental part, in most of the cases, the global and local

lower bounds given in [11] are worse (i.e. looser) than the simple bound, and hence, are worse

than our lower bound.

4. An application of switching bounds in power estimation of sequential circuits

In this section, we will show how our theoretical bounds can be used in a high-level power

estimation framework for sequential circuits. We assume that the behavior of the target circuit is

specified as a STG and the state encoding (and therefore the final implementation) has not been

determined yet. 

Having computed lower and upper bounds for the switching activity, in order to be useful for

high-level power analysis, they have to be used in conjunction with an estimator for the area

(complexity) of the target circuit. We note that, since we want to keep the independence from the

actual implementation of the circuit, the approaches described in the introduction [16-19] are not

directly applicable in our case because the state encoding is unknown. Thus, we need an

encoding-independent measure for the complexity of the circuit. For this reason, in this paper we

use the following piecewise linear model for the power consumption of a sequential circuit:

pi qij⋅
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∑

pi qij⋅
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                                                                         (4)

where SWi, SWs, SWo are the switching activities (or, equivalently, the average Hamming

distances) of the primary inputs, state lines and primary outputs, respectively. The term #SPI

represents the minimum number of symbolic prime implicants needed in a two-level

implementation of the sequential circuit. The terms Vdd and f represent the voltage supply and the

clock frequency, respectively. 

Since we do not know the final state assignment and basically need only a rough measure for

the complexity of the target circuit, we use the minimum number of prime implicants from a

symbolic cover of the FSM (#SPI) [20, 21]. To obtain this number, given a FSM, we first assign

one-hot codes to all the states. Then symbolic minimization is applied on the one-hot coded

machine using multi-valued logic minimization. The result is a symbolic cover of the FSM. Each

element of the symbolic cover is a symbolic prime implicant, that is a 4-tuple (x, S, S’, y) where S

is the set of states which transit to the same next state S’ and assert the same output y when the

input combination is x. The set of symbolic prime implicants has also been used in [3] for finding

an optimal state assignment targeting low-power design of sequential circuits. 

The number of symbolic prime implicants in the minimal symbolic cover (given by #SPI) is

an upper bound on the size of the minimal boolean cover of the target FSM [20] and can be used

in conjunction with the switching activity information to derive power values. In general, the

coefficients α, β, γ of the piecewise linear model in (4) depend on #SPI, SWi, SWs, and SWo. To

find these coefficients, we resort to least mean square regression techniques [22]. 

Fig.3: Estimated vs. exact power for mcnc’91 benchmarks
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power consumption obtained using the model in (4) for 100 random implementations of each

benchmark circuit from the mcnc’91 suite. As we can see, there is a very good match between the

exact and estimated values of total power and, on average, the error is 2.36% (with a maximum of

36.44%). 

It should be pointed out that, typically, the coefficient corresponding to the state lines (β) is

one order of magnitude larger than the other two coefficients. As a consequence, it is expected to

have a very strong dependence between the total power values and the switching activity (or

average Hamming distance) on the state lines. From this perspective, it is clearly important to

have tight lower and upper bounds for the average Hamming distance of the state lines.

5. Experimental results

In this section we provide our experimental results for a subset of mcnc’91 benchmark suite. In

particular, we are interested in assessing the effectiveness of the proposed lower and upper bounds

in FSM switching activity analysis and how these bounds can be used in a high-level power

estimation framework. To this end, we target three sets of experiments:

 a) The first set of experiments shows a comparison between different theoretical bounds for

average Hamming distance (Table 1). To do this, based on the STG of each circuit, we extract the

values for the conditional and steady state probabilities for the underlying Markov chain. Then,

we compute our values for the minimum and maximum switching activity considering a minimal

length encoding (i.e., logn bits where n is the total number of states reachable). We give in Table 1

the values for the lower and upper bounds based on informational energy (columns 2, 3) and the

tighter bounds computed as in Section 3 (columns 4, 5). For comparison, we also provide the

simple lower bound (column 6) and the local and global lower bounds computed as in [11]

(columns 7, 8). 

As we can see in Table 1, our best lower bound (column 4) is larger (that is, tighter) than the

simple bound (column 5) which assumes that every edge is assigned a Hamming distance of 1.

We also note that in some cases, the lower bound based on informational energy (column 2) is

also better than the simple lower bound. Moreover, the lower bounds computed as in [1] are in all

cases lower (that is, looser) than our proposed lower bounds and also the simple lower bound. The

reason is that the entropy factor in local and global approaches from [11] captures the dynamic

information in an STG, whereas K1, roughly speaking, captures a worst-case “static” measure.

When the two differ a lot (structure of the static graph and the dynamic use of it), negative values

are possible. Generally, this is when the base switching is likely to do better [23].

1. K has been defined in [11] as .1

2
dij

-------

1 i j, n≤ ≤
∑
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b) Second, to see how these bounds change when the number of bits used for encoding varies,

we chose a typical example (circuit tbk) and computed the lower and upper bounds for different

encoding lengths (Fig.4). For this set of experiments, the bounds were computed as in Section 3.

Table 1: Comparison of different theoretical bounds for the average Hamming distance

Circuit LB (inf) UB (inf) LB (comb) UB (comb) LB (simple)
LB (local) 

[11]
LB (global) 

[11]

bbara 0.1854 0.8003 0.2228 0.7851 0.2228 -0.3601 -0.9743

bbsse 0.7336 1.2667 0.7402 1.2441 0.7008 0.4584 0.0921

bbtas 0.3986 1.2983 0.4418 1.2799 0.4418 0.0030 -0.1276

beecount 0.7143 1.3089 0.7143 1.2857 0.7143 0.2905 0.0421

cse 0.2768 0.7719 0.2834 0.6613 0.2519 -0.5166 -1.4496

dk14 1.0000 2.7425 1.0000 2.7142 1.0000 0.1106 0.0669

dk16 0.9524 4.1454 0.9624 4.1238 0.9624 0.4127 0.2323

dk17 0.7777 2.2234 0.8428 2.1853 0.8408 0.2595 -0.3570

dk27 1.0000 2.5926 1.0000 2.5497 1.0000 0.1749 0.0413

dk512 1.0000 3.5356 1.0000 3.5027 1.0000 0.1666 -0.0552

ex1 0.5901 2.8842 0.7651 2.7727 0.7651 0.1432 -0.3522

ex2 0.7161 4.7164 1.0000 4.5528 1.0000 0.1586 -1.3630

ex3 0.8507 3.5243 1.0000 3.4604 1.0000 0.2931 -0.2876

ex4 0.8394 3.6825 0.9048 3.5872 0.9048 0.0133 -0.1497

ex5 0.7017 1.8275 0.7547 1.7981 0.7119 0.3516 -0.3465

ex7 0.8173 2.4667 0.9467 2.4210 0.9467 0.2887 -0.1884

keyb 0.3723 1.2939 0.4488 1.2441 0.4488 -0.1087 -0.9561

kirkman 0.7355 2.8026 0.7533 2.7922 0.7533 0.1550 -1.2543

mark1 0.7706 2.1092 0.7742 2.0968 0.7742 0.1830 -0.2352

mc 0.5714 1.1429 0.5714 1.1429 0.5714 0.0350 -0.1496

planet 0.7971 6.0511 0.9999 5.8889 0.9999 -0.0282 -0.5198

s1 0.1716 4.2261 0.7961 3.7175 0.7961 0.0420 -0.3045

sand 0.4375 2.2845 0.4947 2.2433 0.4718 0.1297 -0.4265

sse 0.7336 1.2667 0.7402 1.2441 0.7008 0.4584 0.0921

tav 1.0000 2.0000 1.0000 2.0000 1.0000 0.0000 0.0000

tbk 0.5056 1.6028 0.5238 1.5873 0.4603 -0.1148 -0.8332

train11 0.5860 2.1115 0.6029 2.0931 0.6029 0.3096 -0.4764

train4 0.5246 0.9494 0.5296 0.9357 0.5296 0.3779 0.1558
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Fig.4: A typical case (circuit tbk)

As we can see in the first graph, the lower bound reaches the simple lower bound value after

the encoding length reaches 6 bits, while the upper bound increases linearly with the encoding

length (second graph). Although these bounds may not be achievable, we can draw the conclusion

that increasing the number of bits used for encoding beyond some limit will bring only marginal

reductions in the lower bound for switching activity on the state lines (and thus in the minimum

achievable total power consumption).

 c) The third set of experiments illustrates how the theoretical results from Section 3 can be

applied in a high-level power estimation environment (Table 2). For the same set of circuits that

was used in Section 4, to derive the power estimation model, we compute the number of symbolic

prime implicants of a minimal cover (#SPI) using multiple-valued logic minimization. In

addition, using the STG information and the structure of the underlying Markov chain, we

compute, as in Section 3, the lower and upper bounds of the switching activity on the state lines.

Then, based on the model proposed in Section 4 and using the theoretical bounds from Section 3

(columns 2, 3), we derived lower and upper bounds for the total power consumption of each

circuit. We also provide the minimum and maximum power values obtained over 100

implementations with random state encodings which use the same number of bits (columns 4, 5).

The power values were obtained using an in-house gate level power simulator developed under

SIS.
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As we can see, in most cases, the maximum and minimum power values over all random

implementations is within the bounds we proposed. There are, however, 4 instances in which the

bounds are violated and these correspond to the cases when the power model given in equation (4)

of Section 4 gives the highest errors for estimated power values. For these cases, the bounds for

total power values are violated by 12.38% on average.

Table 2: Bounds for total power values (μW @ 20MHz and Vdd = 5V)

Circuit LB (comb) UB (comb) LB (rand) UB (rand)

bbara 260.61 485.03 305.68 425.26

bbsse 795.19 1477.70 824.85 1372.41

bbtas 230.50 555.78 231.39 470.48

beecount 488.91 575.16 415.73 702.62

cse 579.38 821.84 604.71 782.47

dk14 717.21 965.27 721.53 943.10

dk16 557.88 1924.70 1133.90 1348.66

dk17 447.99 991.21 558.18 879.20

dk27 436.46 1024.40 561.07 895.71

dk512 500.83 1483.90 737.14 1156.16

ex1 1208.00 2722.60 1572.66 2319.51

ex2 534.61 2037.00 823.13 1621.94

ex3 508.51 1499.30 789.77 1205.71

ex4 713.14 1801.80 852.72 1466.09

ex5 375.67 786.18 457.85 679.09

ex7 488.24 1476.00 695.79 1262.40

keyb 597.78 1351.50 595.75 1309.30

kirkman 719.02 1667.80 786.89 1453.06

mark1 748.94 1825.70 812.32 1662.99

mc 284.09 469.45 281.79 401.79

planet 1893.20 4577.80 2723.32 3318.19

s1 1282.40 1853.80 1390.52 1713.35

sand 1290.90 2188.70 1555.95 1776.51

sse 795.18 1477.70 824.85 1372.41

tav 525.23 945.23 525.23 735.23

tbk 951.47 962.90 796.02 1089.03

train11 315.78 894.36 488.74 667.98

train4 237.97 362.74 247.50 347.81
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6. Conclusion

In this paper, we have presented lower and upper bounds for the average switching activity on the

state lines in FSMs. As the main theoretical contribution, we improve over the previous work by

providing a tighter lower bound and a new upper bound for the average Hamming distance

between the states of the target FSM. Our theoretical bounds are encoding-independent, and

therefore can be used in a high-level power estimation framework to provide an early indication

about the performance limits of the target FSM. Preliminary results are encouraging and show the

effectiveness of using these bounds for estimating the range for total power values.
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