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Previous Work

= Gate Sizing Only

+ Discrete sizing: P. Chan ’'90, O. Coudert '96

+ Continuous sizing: A. Dunlop '85, M. Berkelaar '90
= Fanout Optimization Only

+ Discrete buffer sizes: H. Touati '90, P. Cocchini '98

+ Continuous buffer sizes: D. Kung '98, P. Rezvani
'99
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Motivation (Cont’d)
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= Interleaved Gate Sizing and Fanout
Optimization, Y.Jiang '98

+ For each multi-pin net in the circuit, try out both
gate sizing and buffer insertion, and implement
the one that yields a better solution

= Integrated Gate Sizing and Fanout
Optimization
+ This is the focus of our presentation

Gate Sizing Delay Model
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The interconnect capacitance is ignored




Buffer Insertion Delay Model
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s Delay of buffer a=r(p+g-h) where p, gand h
denote the intrinsic delay, logical effort and
electrical effort, respectively

= Under a required time constraint on g;, the
load of g; /s minimized when A,=h,=...=h,
= The path delay of the optimal buffer chain is
calculated as
dbUf/,j =X, Uptg Ij7/,j)

Buffer Tree Formulation

= Difficulty
+ Topology of buffer tree is unknown
= Solution

+ Recursively split the buffer tree into separate
buffer chains

Formulation
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Implementation




Merge and Split Transformations

= When gains of 6,, b,,, b,,are the same, the
timing and input capacitance properties are
preserved by the merge/split transformations

Buffer Tree Construction Example
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and build the individual
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Complete Delay Model for Simult.
Gate Sizing and Fanout Optimization
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Global Problem Formulation
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= G(V,A) : the circuit netlist
= Vertex set I/: gates in circuit

= Edge set A : source to sink connections
minimize cycleTime
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= This problem formulation is solved in one step. No
iterations are needed.




Global Problem Formulation (Cont'd)
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= Exact formulation
= ngates and e edges
= 2(n+e) variables

+ 2n. 2 variables for each gate for the gate arrival
time and the gate size

+ Ze: 2 variables for each edge for the gain and the
stage count in the buffer chain

= edge constraints
+ 1 timing constraint for each edge

Definition of Critical Section
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= Refer to the set of A most critical paths in the
circuit as the critical path set and denote it by
Ctk)

s Refer to all immediate non-critical fanout
gates of the critical path set as the neighbor
set and denote it by Ne(k)

= The critical section refers to the union of C¢k)
and Ne(k)




Critical Section Problem Formulation
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minimize cycleTime
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= This problem formulation needs to be solved in a
number of iterations. After each iteration, the circuit
timing is recalculated.

= a;, slack;’ : arrival time and slack time of g;from
previous iteration

Critical Section Problem Formulation
(Cont'd)
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= |nexact formulation
= n’gates in C(k), m’gates in Ne(k), e’ critical
edges
= 2(n+m’+e’) variables
+ 2(n’ +m’). 2 variables for each critical gate or

neighboring gate for the gate arrival time and the
gate size

+ 2e’: 2 variables for each critical edge for the gain
and the stage count in the buffer chain
= It is easy to control the problem size by
changing &




Algorithm Flow
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Experimental Results

= 4 iterations sizing and buffering for the sequential
flow
= One-shot solution of the simult. Sizing and buffering
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Results (Cont’d)
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Conclusions

= |teratively identify the timing-critical section
in the circuit

s Perform simultaneous gate sizing and buffer
chain insertion in the critical section

= Merge the buffer chains with similar gains to
build the final buffer trees

s Experimental results show that the
concurrent flow results in 9% improvement in
the circuit delay compared to the “best”
sequential flow
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