ASPDAC Conference 2003

Effective Capacitance for the RC Interconnect in VDSM Technologies

Soroush Abbaspour and Massoud Pedram

Department of Electrical Engineering-Systems
University of Southern California

Outline

- Background
- Prior Work
- A New Algorithm for Calculating the Effective Capacitance
- Experimental Results
- Conclusion

$$Delay_{AC} = Delay_{AB} + Delay_{BC}$$

The circuit delay in VLSI circuits consists of two components:

- 1. the 50% propagation delay of the driving gates (known as the gate propagation delay)
- 2. the delay of electrical signals through the wires (known as the *interconnect propagation delay*)

Gate Delay

Gate
$$Delay = f(T_{in}, C_{load})$$

The gate load delay is a function of both input slew and the output load

Second RC-p Model (Cont'd)

Gate $Delay = f(T_{in}, C_1, R_{\pi}, C_2)$

Therefore, it is required to create a four-dimensional table to achieve high accuracy

This is however costly in terms of memory space and computational requirements

Effective Capacitance Approach

The "Effective Capacitance" approach attempts to find a single capacitance value that can be replaced instead of the RC- π load such that both circuits behave similar during transition

Effective Capacitance (Cont'd)

$$C_{eff} = C_1 + kC_2$$

0<k<1

Because of the shielding effect of the interconnect resistance, the driver will only "see" a portion of the farend capacitance C_2

$$R_{\pi} \longrightarrow 0$$

$$k = 1$$

$$R_{\pi} \longrightarrow \infty$$

$$k = 0$$

Prior Work - Macys's Approach

Assumption: If two circuits have the same loads and output transition times, then their effective capacitance are the same. In other words, the effective capacitance is only a function of the output transition time and the load

Macys's Approach (Cont'd)

Normalized Effective Capacitance Function

$$\alpha = \frac{C_1}{C_1 + C_2}$$

$$\beta = \frac{T_{out}}{R_{\pi}C_2}$$

$$\gamma = \frac{C_{eff}}{C_1 + C_2}$$

$$0 \le \alpha \le \gamma \le 1$$

Macys's Approach (Cont'd)

- 1. Compute α from C_1 and C_2
- 2. Choose an initial value for $C_{\it eff}$
- 3. Compute t_{output} for the given C_{eff} and T_{in}
- 4. Compute β
- 5. Compute γ from α and β
- 6. Find new C_{eff}
- 7. Go to step 3 until $C_{\it eff}$ converges

Prior Work - Qian's Approach

Calculate the effective capacitance by equating the currents at the gate output by using:

- (a) the driving-point admittance as the load
- (b) using a single effective capacitance as the load

Average currents for both loads models are equated until the gate output voltage reaches the 50% threshold

Outline

- Background
- Prior Work
- A New Algorithm for Calculating the Effective Capacitance
- Experimental Results
- Conclusion

A New Effective Capacitance Algorithm

$$T_{ii} = \begin{cases} T_{ik} & M & R_{\pi} \\ \hline T_{R} & M & R_{\pi} \end{cases}$$

$$V_{M}(t) = \begin{cases} \frac{V_{dd}}{T_{R}} \left(t - B + Ae^{-\alpha t} Cosh(\alpha t + \phi) \right) & 0 \le t \le T_{R} \\ \frac{V_{dd}}{T_{R}} \left(T_{R} + Ae^{-\alpha t} Cosh(\alpha t + \phi) \right) & T_{R} < t \end{cases}$$

Eff_Cap Equation

$$C_{eff} = (C_1 + C_2) \frac{1 - e^{-\alpha t} \frac{Cosh(\omega t + \phi)}{Cosh(\phi)}}{(1 - e^{-\frac{t}{R_d}C_{eff}})}$$

This is an Non-Linear Iterative Equation

A good initial value for $C_{\it eff}$ can speed up the procedure to find the answer

Iterative Procedure to Calculate Ceff

- 1. Start with the initial guess for C_{eff}
- 2. Obtain $t_{0-50\%}$ based on values of C_{eff} and T_{R}
- 3. Obtain R_d based on values of C_{eff} and T_R
- 4. Compute a new value of C_{eff} from the Eff_Cap equation
- 5. Find new $t_{0-50\%}$ based on the new C_{eff} and given TR
- 6. Compare the values of $t_{0-50\%}$ from step 5
- 7. If not within acceptable tolerance, then return to step 3 until $t_{0-50\%}$ converges
- 8. Report $t_{50\%~propagation~delay}$ and $t_{0\text{-}80\%}$ from the table

Extension to Complex Gates

To extend the previous algorithm to complex gates, we only need to compute the value of R_d

The gate output driver resistance changes as a function of the applied input waveforms

Experimental Results

Inverter Size (Wp/Wn) mm	$C_1(pF)/R_p(W)/C_2(pF)$	HSPIC E 50% delay (pS)	Estimated 50% delay (pS)	Error	HSPICE 80% delay (pS)	Estimated 80% delay (pS)	Error	Number of Iteration s
10/5	0.05/410/0.15	66.1	69.0	4.5%	142.3	140.6	1.2	3
40/20	0.1/290/0.25	39.3	41.0	4.3%	95.3	97.4	2.2 %	3
40/20	0.5/810/0.7	74.0	76.4	3.2%	136.2	134.5	1.3 %	2
30/15	0.4/1000/0.8	76.3	79.4	4.1 %	142.5	138.5	2.8	1
100/50	0.9/300/1.4	62.7	65.1	3.8%	121.0	123.1	1.7 %	2
Avg. Error				4.0%			1.8 %	

Experimental Results

3-input NAND (Wp/Wn)	$C_1(pF)/R_p(W)/C_2(pF)$	HSPICE 50% delay	Estimated 50% delay (pS)	Error	HSPICE 80% delay (pS)	Estimated 80% delay (ps)	Error	Numbe r of Iteratio
20/60	0.4/1000/0.8	34.7p	36.4p	4.9%	42.1p	43.2p	2.6%	ngs 2
40/120	0.5/510/1.2	26.4p	27.1p	2.7%	78.1p	79.5p	1.8%	2
Avg. Error				3.6%			2.2%	

The topmost transistor in the stack is switching

3-input NAND (Wp/Wn)	$C_1(pF)/R_p(W)/C_2(pF)$	HSPICE 50% delay	Estimated 50% delay (pS)	Error	HSPICE 80% delay (pS)	Estimated 80% delay	Error	Numbe r of Iterat.
20/60	0.4/1000/0.8	64.7p	67p	3.6%	64.4p	64.8p	0.6%	3
40/120	0.5/510/1.2	54.1p	55.5p	2.6%	83.5p	84.5p	1.2%	2
Avg. Error				3.1%			0.9%	

All three transistors in the stack are switching