
1

ASP-DAC 2003 1

LowLow--power Synthesis of power Synthesis of FSMsFSMs with with
Mixed D & T FlipMixed D & T Flip--Flops Flops

Ali Iranli, Peyman Rezvani and Massoud Pedram
Department of Electrical Engineering – Systems

University of Southern California

January 2003

ASP-DAC 2003 2/38

OutlineOutline

! Background
– FSM & Markov Process
– State Assignment – Area / Power
– Prior Work

! Markov Process Cycle Decomposition
! Cycle-based State Assignment
! Hybrid FSM Realization
! Conclusion

2

ASP-DAC 2003 3/38

OutlineOutline

! Background
– FSM & Markov Process
– State Assignment – Area / Power
– Prior Work

!!! Markov Process Cycle DecompositionMarkov Process Cycle DecompositionMarkov Process Cycle Decomposition

!!! CycleCycleCycle---based State Assignmentbased State Assignmentbased State Assignment

!!! Hybrid FSM RealizationHybrid FSM RealizationHybrid FSM Realization

!!! ConclusionConclusionConclusion

ASP-DAC 2003 4/38

Finite State MachinesFinite State Machines

! Model behavior of sequential circuits by finite
state machines.

! Finite State Machine (FSM):
– (X, Y, S, s0, λ, η)
– X: Set of input symbols
– Y: Set of output symbols
– S: Set of states
– s0: Initial state -

λ: Output function -
η: Next state function -

0s S∈
: X S Yλ × →

: X S Sη × →

s s′
/x y

3

ASP-DAC 2003 5/38

FSM & Markov ProcessFSM & Markov Process

! Model probabilistic behavior by a
Markov Process

– FSM state ! Markov Process state

– FSM transition ! Markov process transition

pi

pij

()Pri ip s=

()Prij i j ip s s s= →

ASP-DAC 2003 6/38

FSM & Markov Process (cont’d)FSM & Markov Process (cont’d)

Finite State Machine Markov Process

s1 s4

s2

s3

s5

00-

10-

10-

-1-

11-

0--

-0-
01-

--0--1

s1 s4

s2

s3

s5

2
8

4
8

2 out of 8
Input combinations

2
8

2
8

2
8

4
8 4

8

4
8

4
8

2
8

4

ASP-DAC 2003 7/38

FSM & Markov Process (cont’d)FSM & Markov Process (cont’d)

FSM
Input Combinations

State
Probability (π)

pπ π× =
Chapman-Kolmogorov

Conditional Transition
Probability (p)

Input Probability
Distribution

[]ipπ = L L ijp p

 
 =  
  

O L

M O

ASP-DAC 2003 8/38

FSM & Markov Process (cont’d)FSM & Markov Process (cont’d)

! Irreducible Markov Process:
– Any state sj can be reached from any state si

! Recurrent Markov Process:
– Any state si is reachable from itself; i.e.,

! The Markov process modeling a FSM is
irreducible & recurrent

*

1

0n
ij ij

n

p p
∞

=

=∑ f

1ij
j

p =∑ i ij j ji
j j

p p p p=∑ ∑ si

5

ASP-DAC 2003 9/38

State AssignmentState Assignment

" Encoding Problem:
Transform a cover of symbolic logic function into a

cover of binary logic function
Three classes:

" Input Encoding
" Output Encoding
" Input / Output Encoding

" State Assignment
Input / Output Encoding
Difficult problem!

Combinational
Logic

F
F

ASP-DAC 2003 10/38

State AssignmentState Assignment

State Assignment Problem:
– Assign unique codes to each state of an

FSM in order to optimize an objective
function
! Area
! Circuit speed
! Power dissipation

6

ASP-DAC 2003 11/38

Prior WorkPrior Work

! Area:
– Armstrong ’62 – graph embedding approach
– De Micheli, et al ’85 – algebraic approach to input encoding
– Devadas, et al ’91 – algebraic approach for output & state

encoding
– Sangiovanni, et al ’90 – graph embedding approach to state

encoding (NOVA)
– Newton, et al ’88, ‘91 (MUSTANG, MUSE) – state encoding

for multilevel realization

! Power
– Roy, et al ’92 – state encoding for state line switching activity
– Olson, et al ’94 – state encoding for state line switching

activity + literal count
– Pedram, et al ’98 – low power state encoding considering

switched capacitance in resulting logic

ASP-DAC 2003 12/38

OutlineOutline

!!! IntroductionIntroductionIntroduction
!!! BackgroundBackgroundBackground

––– FSM & Markov ProcessFSM & Markov ProcessFSM & Markov Process
––– State Assignment State Assignment State Assignment ––– Area / PowerArea / PowerArea / Power
––– Prior WorkPrior WorkPrior Work

! Markov Process Cycle Decomposition
!!! CycleCycleCycle---based State Assignmentbased State Assignmentbased State Assignment
!!! Hybrid FSM RealizationHybrid FSM RealizationHybrid FSM Realization
!!! ConclusionConclusionConclusion

7

ASP-DAC 2003 13/38

What is a cycle?What is a cycle?

! A particle’s motion on a closed curve:

! Directed cycle C over set of states S:
– Periodic function from Z into S

– C(i) vertex -- state i in the cycle
– (C(i), C(i+1)) directed edge – a transition in

the cycle

v1

v2

v3

v4

v5

vτ

()1 2 1 1 2 2, , , , , ,C v v v v v v vτ τ τ+ += = =K K

ASP-DAC 2003 14/38

Cycles Cycles -- notationnotation

! C1 and C2 are equivalent if and only if:

! First order passage function of C:

! Second order passage function of C:

() ()()1 2C i C t i= where t is a translation function over Z

() ()1 if ,

0 otherwiseC

i C i v
J v

 ∃ ∈ =
= 


Z

() () ()1 if , and 1
,

0 otherwiseC

i C i v C i v
J v v

′ ∃ ∈ = + =′ = 


Z

8

ASP-DAC 2003 15/38

Markov Process & CyclesMarkov Process & Cycles

! Consider a set of r cycles: C={C1, C2,…, Cr}
! Each cycles Ci is associated with a positive

number W(Ci).
! v lies on
! v’ lies on
! A measure of transition from v to v’:

! Conclusion: A collection of weighted cycles
defines a Markov Process

v

v’()1, , tC C t r≤K

()1, , mC C m t≤K

() () ()
() () ()

1 2

1 2

m

t

W C W C W C

W C W C W C

+ + +
+ + +

K

K

ASP-DAC 2003 16/38

Markov Process & CyclesMarkov Process & Cycles

Theorem:
– Let S be a finite set of states. Consider a

recurrent Markov process ξ defined over S.
There exists a finite set of weighted cycles
C such that superimposing them defines ξ:

() ()

() ()
,

, /

i C i
C

i j

ij C i j i
C

p W C J v

v v S
p W C J v v p

∈

∈

=
∀ ∈

=

∑

∑
&

&

9

ASP-DAC 2003 17/38

Cycle DecompositionCycle Decomposition

Cycle Decomposition (CyDec) Problem:
– Given a recurrent Markov process ξ

defined over a set of states S, find a set of
weighted cycles C such that their
superposition defines the given Markov
process.

– Solution is not unique.
– Two classes of solutions:

! Randomized approaches
! Deterministic approaches

ASP-DAC 2003 18/38

Randomized ApproachRandomized Approach

C1

C2

10

ASP-DAC 2003 19/38

Randomized Approach (cont’d)Randomized Approach (cont’d)

– All possible cycles are found.
– Cycle weights are unique.
– Number of cycles can grow exponentially.

repeat forever
pick a random state;
make random transitions until a cycle C is
add the cycle C to the set of cycles C;

calculate cycle weights by solving set of equati

() (),i ij C i j
C

p p W C J v v
∈

=∑
&

ASP-DAC 2003 20/38

Deterministic ApproachDeterministic Approach

C1

0.1 0.2

0.3

W(C1)=0.1

0.10

0.2

11

ASP-DAC 2003 21/38

Deterministic Approach (cont’d)Deterministic Approach (cont’d)

– Cycle set is not unique.
– Weights depend on cycle generation order.

repeat
pick a transition;
make transitions until a cycle C is recog
W(C) = min. prob. of transitions on C;
add the cycle C to the set of cycles C;
decrease prob. of each transition on C by

until no more transition is left;

ASP-DAC 2003 22/38

Deterministic Approach (cont’d)Deterministic Approach (cont’d)

Theorem:
– Number of cycles generated by the deterministic

approach is O(|S|2).

– After each cycle extraction, probability of one
transition becomes zero.

– Edge count is O(|S|2).

C1

0.1 0.2

0.3

W(C1)=0.1

0.10

0.2

12

ASP-DAC 2003 23/38

OutlineOutline

!!! IntroductionIntroductionIntroduction
!!! BackgroundBackgroundBackground

––– FSM & Markov ProcessFSM & Markov ProcessFSM & Markov Process
––– State Assignment State Assignment State Assignment ––– Area / PowerArea / PowerArea / Power
––– Prior WorkPrior WorkPrior Work

!!! Markov Process Cycle DecompositionMarkov Process Cycle DecompositionMarkov Process Cycle Decomposition
! Cycle-based State Assignment
!!! Hybrid FSM RealizationHybrid FSM RealizationHybrid FSM Realization
!!! ConclusionConclusionConclusion

ASP-DAC 2003 24/38

CycleCycle--based State Assignmentbased State Assignment

Algorithm Flow:
– Build Markov process representing the FSM
– Find cycle decomposition C

! Use the deterministic approach
– Encode each cycle in C separately

13

ASP-DAC 2003 25/38

PingPing--Pong EncodingPong Encoding

! States on a cycle can be optimally encoded using
Gray code.

! Start with the middle Gray code.
! Encode states on cycle while maintaining a

Hamming distance of 1.
000
001
011
010
110
111
101
100

ASP-DAC 2003 26/38

PingPing--Pong EncodingPong Encoding

! After some cycles are encoded, the rest of
cycles will be partially coded; hence they may
not be optimally encoded.
– Which state to start with?

– Start with the longest sequence of coded states.

14

ASP-DAC 2003 27/38

CycleCycle--based State Assignmentbased State Assignment

! Number of gray codes:

build Markov process for ξ FSM;
C= cycle decomposition of ξ;
sort cycles in C according to their weights;
generate gray codes;
for each cycle in C:

if most of states on cycle are not coded
ping-pong encode the cycle;

log2 S  

ASP-DAC 2003 28/38

OutlineOutline

!!! IntroductionIntroductionIntroduction

!!! BackgroundBackgroundBackground
––– FSM & Markov ProcessFSM & Markov ProcessFSM & Markov Process

––– State Assignment State Assignment State Assignment ––– Area / PowerArea / PowerArea / Power

!!! Markov Process Cycle DecompositionMarkov Process Cycle DecompositionMarkov Process Cycle Decomposition

!!! CycleCycleCycle---based State Assignmentbased State Assignmentbased State Assignment
! Hybrid FSM Realization

!!! ConclusionConclusionConclusion

15

ASP-DAC 2003 29/38

FSM ImplementationFSM Implementation

! Using D flip-flops:
! Using T flop-flops:

– T flip-flops usually result in more complex
combinational logic realization.

– T flip-flops are more efficient for counters. (Wu et
al.)

! Do T flip-flops work better with cycle-based
state assignment?

(),D x sη=

(),T x s sη= ⊕

ASP-DAC 2003 30/38

Hybrid FSM RealizationHybrid FSM Realization

! Ideal:
– Cycles with larger weights are encoded first "

states are encoded with min. Hamming distance
" better candidates for T flip-flop implementation.

– Cycles with smaller weights are encoded last "
states are encoded with larger hamming distance
"better candidates for D flip-flop.

! Impossible:
– All states are implemented using the same flip-

flops.

16

ASP-DAC 2003 31/38

Hybrid FSM RealizationHybrid FSM Realization

– High-order bits have smaller switching
! MSB is an exception. It has the largest switching activity.
! Use D flip-flop for high-order bits; T flip-flop for low-order

bits.

000
001
011
010
110
111
101
100

switching=2switching=4

switching=1

ASP-DAC 2003 32/38

Hybrid FSM RealizationHybrid FSM Realization

! States are encoded by:
– Ping-pong encoding
– Minimum Weighted Hamming Distance (MWHD)

! n: Number of states on those cycles encoded
by ping-pong encoding

! Use T flip-flops for low-order bits (and
MSB).

! Special Case – counters:
– All states are encoded by ping-pong.
– All bits are implemented by T flip-flop.

log n  

17

ASP-DAC 2003 33/38

Experimental Results Experimental Results -- II

! Comparison of:
– Average switching activity of bits on state

lines
– Runtime

! Finite state machines from LGSynth89
! Encoded using 3 techniques:

– Cycle decomposition
– Genetic search
– Optimal (exhaustive search)

ASP-DAC 2003 34/38

Experimental Results Experimental Results -- II

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

bba
ra

plan
et

bee
co

un
t

dk1
6

don
fil

e
ex

1
ex

3
ex

7

cycle-based
genetic
optimal

A
ve

ra
ge

 S
w

itc
hi

ng
 A

ct
iv

ity

18

ASP-DAC 2003 35/38

Experimental Results Experimental Results -- II

560.410ex7
420.49ex5
530.410ex3

1000.619ex2
1550.721ex1
4350.835dvram
1650.524donfile
1300.415dk512
2200.628dk16
20.37dk14
50.37beecount
50.411train11

6000.848planet
3900.832sand
100.410bbara

Genetic
runtime (s)

Cycle-based
Runtime (s)

State #FSM

ASP-DAC 2003 36/38

Experimental Results Experimental Results -- IIII

! Encoded finite state machines by cycle-based
state assignment method.

! Implemented using D vs. D/T flip-flops.
! Used script.rugged in SIS to optimize

resulting circuit.
! Technology mapped to a 0.25 µm library.
! Estimated power using 100,000 uniformly

distributed input vectors.
! Achieved as much as 15% reduction in the

total dynamic power dissipation.

19

ASP-DAC 2003 37/38

Experimental Results Experimental Results -- IIII

0
200
400
600
800

1000
1200
1400
1600

bbaba
planet

dk14
dk512

dvram ex2
ex5

D flip-flop
Hybrid

D
yn

a m
ic

 P
ow

er
 C

on
s u

m
pt

io
n

ASP-DAC 2003 38/38

ConclusionConclusion

! Proposed a state assignment technique
based on cycle decomposition of
Markov processes to minimize switching
activity on state bit lines.

! Proposed a hybrid implementation
technique for finite state machines using
both D and T flip-flops which, in
conjunction with cycle-based state
assignment method, significantly
reduces dynamic power consumption

20

ASP-DAC 2003 39/38

BACK UP SLIDESBACK UP SLIDES

ASP-DAC 2003 40/38

Dynamic Power ConsumptionDynamic Power Consumption

! Dynamic Power Consumption:

– Vdd Supply voltage
– f Clock frequency
– Cload Capacitive load of gate
– Eswitching Average number of changes in output of gate

Combinational
Logic

F
F

External
Output

Next
State

Present
State

External
Input

2

all gates

1

2ave dd load switchingP V f C E= ∑

21

ASP-DAC 2003 41/38

Power & Switching ActivityPower & Switching Activity

Combinational
Logic

F
F

pipij

si

sj

bi

bj

dij

bi bj

Objective: Minimize average switching activity on state bit lines

min i ij ij
i j

p p d∑∑
The above problem, know as Minimum Weighted Hamming
Distance (MWHD), is NP-Complete.

ASP-DAC 2003 42/38

Deterministic Approach (cont’d)Deterministic Approach (cont’d)

Theorem:
– After extracting each cycle, all state pairs si

and sj will still have the property:

! Therefore extraction of cycles in
deterministic approach can be iterated.

C

pi pij -

W(C)
sj

pj pjk -

W(C)
i ij j ji

j j

p p p p=∑ ∑

22

ASP-DAC 2003 43/38

Cycle EncodingCycle Encoding

! States on a cycle can be optimally
encoded using Gray code.

000
001
011
010
110
111
101
100

Hamming Distance
1

ASP-DAC 2003 44/38

PingPing--Pong EncodingPong Encoding

find best starting state on cycle;
for each un-encoded state on cycle:

Low = first available code above middle c
High = first available code below middle c
code (state) = pick_better (Low, High);

000
001
011
010
110
111
101
100

Low

High

Encode states such that each state has minimum distance from its neighbors.

