Low-power Synthesis of FSMs with
Mixed D & T Flip-Flops

Ali Iranli, Peyman Rezvani and Massoud Pedram
Department of Electrical Engineering — Systems
University of Southern California

ASP-DAC 2003 January 2003

Outline

Background

— FSM & Markov Process

— State Assignment — Area / Power
— Prior Work

Markov Process Cycle Decomposition
Cycle-based State Assignment
Hybrid FSM Realization

Conclusion

ASP-DAC 2003

Outline

Background

— FSM & Markov Process

— State Assignment — Area / Power
— Prior Work

ASP-DAC 2003

Finite State Machines

Model behavior of sequential circuits by finite
state machines.
Finite State Machine (FSM):
- (X, Y, S, 55 A, N) X/y
— X: Set of input symbols
— Y: Set of output symbols >
— S: Set of states
— Sy Initial state - 0S
A: Output function - A: X xS oY
n: Next state function - 77: XXS - S

ASP-DAC 2003

FSM & Markov Process

Model probabilistic behavior by a
Markov Process

— FSM state © Markov Process state
p=Pr(s)

— FSM transition © Markov process transition

Py =Pr(s - SJ|S1)

ASP-DAC 2003

FSM & Markov Process (cont’d)

2 out of 8
Input combinations

Finite State Machine Markov Process

ASP-DAC 2003 6/38

FSM & Markov Process (cont’d)

FSM

Input Combinations
Chapman-Kolmogorov

Input Probability !
Distribution

_ _ State
r=l-p] PE B

ASP-DAC 2003

FSM & Markov Process (cont’d)

Irreducible Markov Process:
— Any state s; can be reached from any state s;

p;} :Zpi?>_o
=]

n
Recurrent Markov Process:
— Any state s; is reachable from itself; i.e.,

2. P =1 > pp =D pp

J J J
The Markov process modeling a FSM is
irreducible & recurrent

ASP-DAC 2003

State Assignment

Encoding Problem:

Transform a cover of symbolic logic function into a
cover of binary logic function

Three classes:
. r]
Input Encoding b 4 Combinational e

Output Encoding Logic
Input / Output Encoding
State Assignment I;j

Input / Output Encoding
Difficult problem!

ASP-DAC 2003

State Assignment

State Assignment Problem:

— Assign unique codes to each state of an
FSM in order to optimize an objective
function

o Area
« Circuit speed
o Power dissipation

ASP-DAC 2003

Prior Work

Area:
Armstrong '62 — graph embedding approach
De Micheli, et al '85 — algebraic approach to input encoding

Devadas, et al '91 — algebraic approach for output & state
encoding

Sangiovanni, et al '90 — graph embedding approach to state
encoding (NOVA)

Newton, et al '88, ‘91 (MUSTANG, MUSE) — state encoding
for multilevel realization

Power

— Roy, et al '92 — state encoding for state line switching activity

— Olson, et al '94 — state encoding for state line switching
activity + literal count

— Pedram, et al '98 — low power state encoding considering
switched capacitance in resulting logic

ASP-DAC 2003

Outline

Markov Process Cycle Decomposition

ASP-DAC 2003

What is a cycle?

A particle’s motion on a closed curve:

C=(%,V,,...,V. =V,V.,, =V,,...

T Vr+l T

Directed cycle C over set of states S:
— Periodic function from Z into S

- C(i) vertex -- state i in the cycle
— (C(i), C(i+1)) directed edge — a transition in
the cycle

ASP-DAC 2003

Cycles - notation

C, and C, are equivalent if and only if:

C, (I) =C, (t (i)) where t is a translation function over Z

First order passage function of C:

3. (V)= 1 if 00 z,C(5 v
c 0 otherwise

Second order passage function of C:

L) 1 if 00 Z,C(§ vandCf{i & V
A0 otherwise

ASP-DAC 2003

Markov Process & Cycles

Consider a set of r cycles: C={C,,C,,...C}

Each cycles C, is associated with a positive
number W(C)).

vieson C,...,C, (tsr)

V'lieson C,....,.C, (mst)

A measure of transition from v to v’
W(C,)+W(C,)+...+W(C,)
W(C,)+W(C,) +...+W(C)

Conclusion: A collection of weighted cycles

defines a Markov Process

ASP-DAC 2003

Markov Process & Cycles

Theorem:

— Let S be a finite set of states. Consider a
recurrent Markov process ¢ defined over S.

There exists a finite set of weighted cycles
C such that superimposing them defines &:

B :CZE[:W(C)JC (VI)

B :ch:W(C)JC (vi,vj)/ P

0v;, v S

ASP-DAC 2003

Cycle Decomposition

Cycle Decomposition (CyDec) Problem:

— Given a recurrent Markov process ¢

defined over a set of states S, find a set of
weighted cycles C such that their

superposition defines the given Markov
process.

— Solution is not unique.

— Two classes of solutions:
o Randomized approaches
« Deterministic approaches

ASP-DAC 2003

Randomized Approach

ASP-DAC 2003

Randomized Approach (cont’d)

repeat forever
pick a random state;

make random transitions until a cycle C 1%
add the cycle C to the set of cycles C;

calculate cycle weights by solving set of equati
PR = ZW(C) Je (Vi an)

c

— All possible cycles are found.
— Cycle weights are unique.
— Number of cycles can grow exponentially.

ASP-DAC 2003

Deterministic Approach

£30.2

\Eb W(C)=0.1
ox

. 07
0 0.1

ASP-DAC 2003

10

Deterministic Approach (cont’d)

repeat
pick a transition;
make transitions until a cycle C is

W(C) = min. prob. of transitions on
add the cycle C to the set of cycles

decrease prob. of each transition on|C b

until no more transition is left;

— Cycle set is not unique.
— Weights depend on cycle generation order.

ASP-DAC 2003

Deterministic Approach (cont’d)

Theorem:

— Number of cycles generated by the deterministic
approach is O(|S|?).

— After each cycle extraction, probability of one
transition becomes zero.
— Edge count is O(|S|?).

ASP-DAC 2003

11

Outline

Cycle-based State Assignment

ASP-DAC 2003

Cycle-based State Assignment

Algorithm Flow:

— Build Markov process representing the FSM
— Find cycle decomposition C

« Use the deterministic approach
— Encode each cycle in C separately

ASP-DAC 2003

12

Ping-Pong Encoding

States on a cycle can be optimally encoded using
Gray code.

Start with the middle Gray code.

Encode states on cycle while maintaining a
Hamming distance of 1.

000
001
011
010
110
111
101
100

ASP-DAC 2003

Ping-Pong Encoding

After some cycles are encoded, the rest of
cycles will be partially coded; hence they may
not be optimally encoded.

— Which state to start with?

~ /’

— Start with the longest sequence of coded states.

ASP-DAC 2003

13

Cycle-based State Assignment

build Markov process for & FSM;

C= cycle decomposition of ¢&;
sort cycles in C according to their weights;

generate gray codes;
for each cycle in C:

if most of states on cycle are not cg¢
ping-pong encode the cycle;

Number of gray codes:
2['09@1

ASP-DAC 2003

Outline

Hybrid FSM Realization

ASP-DAC 2003

14

FSM Implementation

Using D flip-flops: D =7(xs)

Using T flop-flops: T =n(xs)0s
— T flip-flops usually result in more complex
combinational logic realization.

— T flip-flops are more efficient for counters. (Wu et
al.)

Do T flip-flops work better with cycle-based

state assignment?

ASP-DAC 2003

Hybrid FSM Realization

Ideal:

— Cycles with larger weights are encoded first =
states are encoded with min. Hamming distance
= better candidates for T flip-flop implementation.

— Cycles with smaller weights are encoded last =
states are encoded with larger hamming distance
=better candidates for D flip-flop.

Impossible:

— All states are implemented using the same flip-
flops.

ASP-DAC 2003

15

Hybrid FSM Realization
switching=1

switching=4 l switching=2
~!,

(00]0]
001
011
010
110
111
101
100

— High-order bits have smaller switching
o MSB is an exception. It has the largest switching activity.

¢ Use D flip-flop for high-order bits; T flip-flop for low-order
bits.

ASP-DAC 2003

Hybrid FSM Realization

States are encoded by:

— Ping-pong encoding

— Minimum Weighted Hamming Distance (MWHD)
n: Number of states on those cycles encoded
by ping-pong encoding

Use [logn]| T flip-flops for low-order bits (and
MSB).

Special Case — counters:
— All states are encoded by ping-pong.
— All bits are implemented by T flip-flop.

ASP-DAC 2003

Experimental Results - |

Comparison of:
— Average switching activity of bits on state

lines
Runtime

Finite state machines from LGSynth89
Encoded using 3 techniques:

Average Switching Activity

Cycle decomposition
Genetic search
Optimal (exhaustive search)

ASP-DAC 2003

Experimental Results - |

= | |
——"1 i-_>
I ——]
----I
---‘-_-=:’
{ [T 1]
I ———

%
Q

*7
Q +0.)

ASP-DAC 2003

O cycle-based
M genetic
O optimal

17

Experimental Results - |

FSM State # Cycle-based Genetic
Runtime (s) | runtime (s)

1 .
28

Experimental Results - I

Encoded finite state machines by cycle-based
state assignment method.

Implemented using D vs. D/T flip-flops.

Used script.rugged in SIS to optimize
resulting circuit.

Technology mapped to a 0.25 um library.

Estimated power using 100,000 uniformly
distributed input vectors.

Achieved as much as 15% reduction in the
total dynamic power dissipation.

ASP-DAC 2003

18

Dynamic Power Consumption

Experimental Results - Il

B D flip-flop
O Hybrid

ASP-DAC 2003

Conclusion

Proposed a state assignment technique
based on cycle decomposition of
Markov processes to minimize switching
activity on state bit lines.

Proposed a hybrid implementation
technique for finite state machines using
both D and T flip-flops which, in
conjunction with cycle-based state
assignment method, significantly
reduces dynamic power consumption

ASP-DAC 2003

19

BACK UP SLIDES

ASP-DAC 2003

Dynamic Power Consumption

External External
. #E .
Present
State

Dynamic Power Consumption:

Vg Supply voltage
f Clock frequency
- Cioad Capacitive load of gate

- Equicning Average numberof ehanges in output of gate

20

Power & Switching Activity

Pil;j

Objective: Minimize average switching activity on state bit lines

The above problem, know as Minimum Weighted Hamming
Distance (MWHD), is NP-Complete.

ASP-DAC 2003

Deterministic Approach (cont’d)

Theorem:
— After extracting each cycle, all state pairs s;
and s; will still have the property:

PPy By Pic.
W(C) W(C)

\
~ -

~_

Therefore extraction of cycles in
deterministic approach can be iterated.

ASP-DAC 2003

Cycle Encoding

States on a cycle can be optimally
encoded using Gray code.

Hamming Distance
1

ASP-DAC 2003

Ping-Pong Encoding

Encode states such that each state has minimum distance from its neighbors.

find best starting state on cycle;

for each un-encoded state on cycle:
Low = first available code above midqle ¢
High = first available code below mid¢ile
code (state) = pick_better (Low, High);

000
001
011
010
110
111
101

100
ASP-DAC 2003

22

