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Abstract— Despite the limited power available in a battery-
operated hand-held device, a display system must still have an
enough resolution and sufficient color depth to deliver the neces-
sary information. We introduce some methodologies for frame
buffer compression that efficiently reduce the power consump-
tion of display systems and thus distinctly extend battery life for
hand-held applications. Our algorithm is based on a run-length
encoding for on-the-fly compression, with a negligible burden
in resources and time. We present an adaptive and incremental
re-compression technique to maintain efficiency under frequent
partial frame buffer updates. We save about 30% to 90% frame
buffer activity on average for various hand-held applications.
We have implemented an LCD controller with frame buffer
compression occupying 1,026 slices and 960 flip-flops in a Xilinx
Sprantan-II FPGA, which has an equivalent gate count of 65,000
gates. It consumes 30mW more power and 10% additional silicon
space than an LCD controller without frame buffer compression,
but reduces the power consumption of the frame buffer memory
by 400mW.

I. I NTRODUCTION

Power consumption has been a constant issue in computer
system design at a range of levels from device to application.
Many power reduction techniques have been developed for
microprocessors and memory devices. High-level power
reduction generally utilizes slack time to reduce the power
consumption. Thanks to previous research, a designer has
been able to satisfy the power requirements of a microproces-
sor and memory system when their utilization is not high, as
is often the case with hand-held computers used in interactive
applications. Now we are faced with a different situation since
the energy requirement of modern color TFT LCDs is high.
High-resolution, high-color LCDs are also involved with their
own large-capacity frame buffer memory and thus large power
consumption. Worst of all, there is no explicit slack time in
display systems, regardless of the computational burden, as
long as the display is turned on. Display systems are among
the most power-hungry components in embedded systems.

System-level techniques for power reduction in display
systems have been recently introduced: variable duty-ratio
refresh, dynamic color-depth control, and brightness and
contrast shift with backlight luminance dimming [1]. Among
these, dynamic color-depth control saves power consumption
in the frame buffer and associated buses as long as we are
prepared to accept noticeable color fidelity degradation.

We introduce a virtually lossless frame buffer compression
scheme, allowing powers to be saved without display quality
degradation. Our scheme reduces the activity of the frame
buffer and associated buses during sweep operations, and

§Correspondence should be addressed to:

Prof. Naehyuck Chang
School of Computer Science and Engineering
Seoul National University
Shilim-dong, Kwanak-ku Seoul, Korea 151-010.
Phone: +82 2 880 1834, Fax: +82 2 886 7589
Email:naehyuck@snu.ac.kr

thus reduces the power consumption of the frame buffer for
most hand-held applications. For energy evaluation, we use
a high-accuracy approach based on precise energy measure-
ment, characterization and trace-driven analysis. Starting
from a basic compression scheme, we introduce an adaptive,
incremental re-compression scheme to maximize energy gain
under frequent partial content changes of the frame buffer. We
show the energy reduction achieved by the proposed schemes
for various hand-held applications, using a prototype equipped
with an FPGA implementation of the LCD controller.

II. POWER CONSUMPTION OF A FRAME BUFFER

Fig. 1 shows where the power goes in a typical hand-
held computer with a color TFT LCD display. The power
consumption of the LCD display system is significant. Our
reference system is a typical palm-size PC or PDA, which is
equipped with a 32-bit RISC CPU: the StrongARM running
at 206MHz [3]. The main memory of this system consists of
four K4S280832B-TC1L chips [4] from Samsung, with a bus
length of 2�� and an equivalent capacitance of 2.7pF. The mem-
ory data bus is buffered by the 74LVT245 transceivers from
Fairchild with an I/O capacitance of 4.0pF; the bus-hold circuit
in the buffer has an additional 0.5pF equivalent capacitance;
the I/O capacitance of the K4S280832B-TC1L data ports is
5.3pF; the memory address bus is driven by the 74LVT244
buffers from Fairchild with an output capacitance of 4.0pF; the
input capacitance of the address ports is 15.0pF, because four
K4S280832B-TC1L chips are connected together. We perform
cycle-accurate energy simulation with state-machine-based
energy models borrowed from Shim et al [5]. The reference
luminance of the backlight lamp is 30cd/m2. We use a Toshiba
LTM04C380K LCD panel as our energy model. This is a
4-inch 640� 480 high-color TFT LCD display with a CCFL
backlight [6]. We use the power consumption figure for the
backlight system presented by Choi et al [1]. The power
consumption of the LCD controller is discussed in Section 4.

When a system is waiting for a human reaction, the CPU
is mainly sleeping and the main memory is primarily in the
power-down state. However, the frame buffer memory and
buses are busy at all times due to continuous sweep opera-
tions while the LCD panel is turned on. We do not include
high-bandwidth RF communication adapters. Their power
consumption depends not only on the application dependent
but also on the user data, and thus difficult to quantify in
general. Roughly speaking, during transmission, their power
consumption will be similar to that of the total display sys-
tem. Movie players are an extreme example of power-hungry
battery-operated systems. Even in movie players, the display
system dominates power consumption. A memory-intensive
application, such as a warehouse manager consumes more
power than an eBook or a map viewer, but the portion is still
minor.

Emergent organic display systems illuminate themselves,
thus avoiding a high-power backlight system [7]. In such a
system, we may expect the power requirements of the frame
buffer memory and associated buses to become more dominant
(see Fig. 1).
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Fig. 1. The system-wide energy consumption of various applications with an
FPGA LCD controller.
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Fig. 2. The compressed frame buffer.

III. T HE COMPRESSED FRAME BUFFER

A. Frame buffer compression

Many years ago, frame buffers were composed of conven-
tional DRAMs. Dual-port video DRAMs used to be popular,
as they fulfilled bandwidth requirements [8]. Today, SDRAMs
or DDR (double data-rate) SDRAMs are typical. A cost-
effective architecture shares the main memory with the frame
buffer. The ancient Apple II computer used this structure
to save memory cost. Modern StrongARM-based micro-
controllers often use the same structure, but populated by
high-bandwidth SDRAM memory devices. This revival of an
old-fashioned architecture is limited to low-performance LCD
display systems. Using a unified main and frame buffer mem-
ory, bandwidth may be unsatisfactory, but it can be enhanced
by a compressed frame buffer. TheCompressDRAM[9] is
an integrated DRAM with compression and decompression
hardware for graphics data. It uses simple run-length encod-
ing (RLE) or differential pulse code modulation (DPCM) to
enhance bandwidth. The similar technique using segmented
encoding of graphic data was also introduced by Huang et
al [2]. Segmented encoding technique uses extra hardware
logic to run a run-length encoder, a run-index encoder, and a
bit-map encoder to compress graphic data. But both of those
designs were solely focused on performance enhancement
without considering of power consumption.

Our compressed frame buffer is aimed not only at reducing
the number of frame buffer accesses, but also power consump-
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Fig. 3. RLE16 compression.

tion. We use simple RLE and its variations. Fig. 2 illustrates
the basic structure of our compressed frame buffer. We use a
separate frame buffer memory of an almost standard structure
(except some low-cost products). It has compressed and de-
compressed pages. The frame buffer is transparent to the com-
mon device drivers and graphics managers and thus maintains
compatibility because the microprocessor can access the de-
compressed pages only. The compressed pages are managed
by the LCD controller, which compresses the contents of the
decompressed pages during the sweep operation. The only ad-
ditional frame buffer accesses for compression are write-back
operations on the compressed pages.

The energy consumption of the frame buffer and associated
buses is proportional to the number of frame buffer accesses
during the sweep operation (as long as a microprocessor does
not access the frame buffer too frequently). The number of
frame buffer accesses is determined by the screen resolution,
the sweep rate and the color depth. As these are generally
constant, the number of frame buffer accesses is naturally con-
stant in a conventional architecture. Frame buffer compression
reduces the number of frame buffer accesses and thus saves
power.

The compression algorithm must be simple and not consume
much resources to avoid counterproductive energy overhead.
The encode and decode processes must be managed by simple
hardware embedded in the LCD controller, so as not to involve
the microprocessor or the memory system. We use a simple,
single-pass compression algorithm based on RLE, whose data
structure is illustrated in Fig. 3. The encoder compares the
new pixel data with the previous one and increments a length
counter if they are equal. We name it RLE16 by extension of
the well-known RLE8 algorithm, which uses an 8-bit chunk.

B. Target applications

Frame buffer compression is more effective when the frame
buffer is less frequently updated by the microprocessor. For
fair comparison, we consider various hand-held applications.
There is virtually no restriction on running desktop-like appli-
cations on a modern PDA or palm-size PC. We can find many
applications athttp://www.microsoft.com/mobile/po-
cketpc or athttp://www.pocketpcmag.com.

We can categorize the screen update models of applications
into two classes: interactive and streaming. Applications with
interactive screen update models change the display at the re-
quest of the user. Since human interaction is very slow when
compared with the performance of digital systems, the sweep
operation frequently refreshes the same data to the LCD panel.
On the other hand, applications with streaming screen update
models change the display much more frequently .

Fig. 4 shows typical screen shots of the target applications,
denoted by S1 to S5 for brevity. Except for S3, the four screen
shots show good compression ratio being achieved with only
the simple RLE16 algorithm. But the large photo being dis-
played in S3 results in negative compression. We will give a
detailed power analysis results in later sections. As a rule of
thumb, power reduction is proportional to compression ratio.

We model the screen updates as independent Poisson pro-
cesses. Each process has a different arrival rate and a different
block size for updates. The location of updates is random, but
in any case that has no impact on the energy consumption. Ta-
ble I summarizes the Poisson processes. To make our evalua-
tion more strict, we have assumed heavily loaded applications.
But human interactions are still slow in comparison with the
screen refresh rate, 60Hz, and thus the optimal configuration is
robust with such variations in the model.

C. Adaptive RLE16

Since the situation shown in S3 (displaying the large photo)
is common in target applications, we need to avoid negative
compression with this sort of data though we do not expect
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Fig. 4. Screen shots of applications and the associated compression ratios
using the simple RLE16 algorithm.

TABLE I
SCREEN UPDATE MODELS.

Update block size (pixel) Arrival rateApplication
Horizontal Vertical (λ: 1/sec)

640 480 1/5
160 120 1/3
8 16 2

Warehouse manager

8 16 5
eBook 640 480 1/10

Image viewer 640 480 1/5
300 300 1/3Map viewer
300 300 1/3

Movie player 320 240 20

TABLE II
COMPRESSION RATIO OF THE SIMPLERLE16AND THE ADAPTIVE

RLE16.

Screen S1 S2 S3 S4 S5
Simple RLE16 3.50 6.04 0.84 2.30 4.15

Adaptive RLE16 4.93 8.95 1.46 3.14 7.11
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Fig. 6. Incremental re-compression for partial frame buffer update.

a good compression ratio. Adaptive RLE16 selectively com-
presses the pixel data only when at least two consecutive
pixels have the same color. This guarantees that the size of
the compressed data does not exceed that of the original.
For adaptive RLE16, we need a one-bit flag that represents
whether the pixel data is compressed or not. Generally, 16-bit
color allocates one more bit for green, but this does not have
much meaning. We use the LSB of the green data as our
flag, but the quality of the color remains almost the same. As
shown in Table II, adaptive RLE16 always outperforms simple
RLE16.

D. Incremental adaptive RLE16

So far, we have discussed the compression ratio of the
screen images and introduced the adaptive RLE16 algorithm
to avoid negative compression. This spatial behavior largely
determines the compression ratio and thus energy reduction.
However, the actual energy gain is determined by the energy
gain due to compression minus the energy overhead incurred
by compression.

The compression overhead is generally very small and this
will be confirmed in Section V. However, the compression
overhead may not be negligible if the screen is frequently
updated. An eBook and an image viewer update the frame
buffer only when a page change occurs; but a movie player
frequently changes part of the screen.

As described so far, our algorithm must compress the whole
screen even though only one pixel has been updated. Fig. 6
illustrates an architecture for incremental re-compression.
Incremental adaptive RLE16 divides the screen into several
zones and maintains dirty flags to specify newly updated
zones. In a real implementation, additional compress flags
are necessary for the LCD controller to determine whether
each block is being compressed or not. Spatial complexity is
determined by the number of blocks which also determines the
number of flag registers. Both the block width and the block
height affect the number of blocks. Moreover, determination
of the width and the height is related to the energy reduction
ratio; we will discuss this issue in Section V.

IV. I MPLEMENTATION

We implemented a conventional LCD controller with an
SDRAM frame buffer memory and an XC2S-150FG456 Xil-
inx FPGA. The LCD controller includes a frame buffer con-
troller, a local bus interface, a sweeper, a video timing gen-
erator, and a bus arbiter. We used Block RAM primitives
to implement internal storage such as FIFO memory. Block
RAM primitives are dedicated blocks of true dual-port RAM;
avoids abuse of the logic resources to implement the internal
memory. In total, 857 slices, 774 slice flip-flops 182 IOBs, 2
GCLKIOBs and 2 DLLs, which have an equivalent gate count
of 62,771 gates, are used.

We added the frame buffer compression feature to the LCD
controller. We implemented dirty flag registers, compress flag
registers, an encoder and a decoder as shown in Fig. 7, using
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Fig. 7. Block diagram of the compressed frame buffer LCD controller.
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Fig. 8. Compressed frame buffer LCD controller prototype in the form of a
PC card with a PCI local bus interface.

Block RAM primitives for the flag registers. Several pipelined
dividers and multipliers were generated by the Xilinx Core
Generator to implement the encoding and the decoding pro-
cesses of incremental adaptive RLE16. We integrated control
registers for enabling, disabling and dynamic configuration
of the frame buffer compression allowing parameters such as
block width and block height to be varied. Implemented in this
way, the controller occupies 1,026 slices, 960 slice flip-flops,
182 IOBs, 2 GCLKIOBs and 2 DLLs, with an equivalent gate
count of 65,323 gates. The area overhead is around 10%.

We implemented a prototype with the FPGA LCD con-
troller, as shown in Fig. 8, and verified the compressed frame
buffer and its power consumption. The LCD controller with
the frame buffer compression feature consumes 30mW more

Fig. 9. The test environment for a compressed frame buffer LCD controller
prototype.

power than a conventional design, which consumes 470mW
on average. The prototype is a PCI local bus card connected to
a Linux PC. We used a PLX PCI9054 PCI bridge to interface
between the PCI local bus and the local bus of the LCD
controller; and four Fairchild 74LVXC3245 transceivers to in-
terface between the FPGA LCD controller and the LCD panel.
We integrated a test platform with a LP064V1 [10] which is a
640�480 resolution 18-bit color TFT LCD from LG. Philips,
as shown in Fig. 9. We ran various kinds of applications on
the test environment, with a custom frame buffer device driver
for the prototype, all running under the Linux kernel 2.4.17.

V. PERFORMANCE ANALYSIS

A. Compression gain

Incremental re-compression requires a small block width.
Block width directly affects the compression ratio as well as
the implementation cost. Fig.10 shows energy saving versus
block width.

As Table I denotes, the eBook and the image viewer require
no partial screen updates, but the whole screen updates every
10 seconds or 5 seconds, respectively. Thus the energy gain
is solely affected by the compression ratio, and that increases
as the block width increases. On the other hand, the block
height has no impact on the energy gain, although it increases
the required number of the dirty flag registers.

Frequent partial screen updates are made by the warehouse
manager. Frequent updates generally occur in small areas, but
the warehouse manager frequently requires large large partial
screen updates, for instance for drawing pop-up menus. Partial
screen updates invalidate the whole contents of the blocks in
the updated area and thus the sweeper must read the decom-
pressed page, even though some of the contents of the block
are not actually dirty. This results in low energy gain, even
though the compression ratio of the image is high (i.e. larger
block width does not enhance the energy gain although it en-
hances the compression ratio). Theoretically this may occur
when the block height is greater than two. However, as illus-
trated in Fig. 10, block heights of less than 32 pixels do not no-
ticeably degrade the energy gain. Only extreme cases, such as
240-pixel or 480-pixel block heights, degrade the energy gain,
as the block width exceeds 128 pixels.

A movie player may update the screen up to 30 times a sec-
ond. We analyze a movie player with 320�240 resolution run-
ning at 20 frames per second. We find that a block width of
128 pixels maximizes the energy gain. Although a block width
greater than 128 pixels increases the compression ratio further,
the energy gain does not increase any more since the propor-
tion of dirty blocks increases significantly.

B. Compression overhead

Since compression is performed by the LCD controller dur-
ing the sweep operation, the overhead is trivial. But we should
take into consideration the energy overhead with respect to
FPGA implementation, which is 30mW for frame buffer com-
pression, as mentioned in the previous section. A measurable
additional overhead in time and energy only occurs when the
LCD controller updates the compressed frame buffer. Each
update consists of one or two consecutive DRAM writes. The
number of total updates depends only on the compression ratio
when there is no frequent partial screen update: the larger the
compression ratio, the smaller the overhead. The graphs in
Fig.11 (b) and (c) show this inverse relationship, using data
depicted in Fig. 10 (b) and (c). Thus larger block width always
results in a smaller compression overhead for the eBook and
the image viewer.

On the other hand, frequent partial screen updates cause
the compression overhead to be influenced by the proportion
of dirty blocks. A larger block height severely increases
the compression overhead as the block width also becomes
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large. For example, a larger block height makes the LCD con-
troller re-compresses several adjacent rows when the cursor
is blinking on a row or new characters are being displayed
on a row. A larger block width also increases the proportion
of dirty blocks, although it does achieve a high compression
ratio. Thus there is an optimal block width to minimize the
compression overhead. The screen update models for the
warehouse manager and the map viewer yield 64 and 80 pixels
respectively as the optimal block width when the block height
is eight. For the movie player, 128 pixels is the optimal block
width to minimize the compression overhead. However, we
must also take the energy saving into account together to select
the optimal block width for the maximum benefit. In addition,
Fig. 11 shows dividing the screen vertically into four is enough
to reduce the compression overhead below the energy saved in
the display.

C. Overall energy reduction

The overall energy gain is calculated by subtracting the
energy overhead from the energy extended in compression.
The compression ratio and the proportion of dirty blocks de-
termine both the energy saving and the energy overhead. Each
graph has its own optimal point that is determined by the block
size associated with the screen update model. At this point,
the compression gain is much larger than the compression
overhead in all cases.

The block height affects the implementation cost because
a smaller block height always reduces the compression over-
head. At 640�480 resolution, an eight-pixel block height
is feasible even with an FPGA. The optimal block size for
the eBook and the image viewer (S2 and S3) is 640�8. The
warehouse manager has the same optimal block size, despite
the need for frequent partial updates. For the map viewer,
320�8 is optimal; this is because the refresh rate of the LCD
panel is 60Hz, which is much faster than the screen update rate
in normal applications. For these applications, the compressed
frame buffer shows excellent performance without sensitiv-
ity to the block size. For the movie player, with extremely
frequent partial updates, 128�8 is the optimal block size.
Human interaction rarely exceeds 10 times a second. If screen
updates are below 10Hz, a larger block width gives better
performance. But when part of the screen is updated at close
to 30Hz or higher, the optimal block width is determined by a
trade-off between the compression ratio and the proportion of
dirty blocks.

Fig. 12 shows the power reduction achieved by the com-
pressed frame buffer. Compression reduces the power con-
sumption of the target components, namely the frame buffer

memory and its associated buses, by about 50% to 66%. In
the extreme case, S3, there is about 23% reduction. When we
implement the scheme with an FPGA as in this design, it saves
about 10% to 15% of the total power consumption, except in
the extreme case. This system-wide energy gain is smaller
than real cases because an FPGA implementation of the LCD
controller consumes much more power than would a custom
VLSI implementation. Typical custom VLSI LCDCs [11]
consume less than 1/3 the power of an FPGA implementation.
With a custom VLSI implementation of the LCD controller,
we could expect to save between 13% and 17% of the total
system power consumption.

VI. CONCLUSIONS

We have introduced a compressed frame buffer LCD con-
troller that dramatically reduces the frame buffer and associ-
ated bus activities for various target applications. We present
an incremental adaptive re-compression algorithm based on
run-length-encoding for on-the-fly, low-cost compression
and decompression. We have intensively explored the de-
sign variables in terms of the block size, for the incremental
re-compression. We derived the optimal configuration for
several different screen update models. We have shown that
the optimal block size is not sensitive to screen update rate.

Frame buffer compression reduces power consumption of
the target components, the frame buffer memory and associ-
ated buses, by about 50% to 66%. It saves about 10% to 15%
of total power consumption in the prototype, where the LCD
controller is implemented with an FPGA.
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