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Abstract—In this paper hierarchical placement and floorplanning al-
gorithms for rectangular blocks are described. It is implemented as
part of the BEAR building block layout system developed at the Uni-
versity of California at Berkeley. The algorithm combines the goal ori-
entation of top-down approaches with the block orientation of bottom-
up techniques. The result is a ‘““meet in the middle’’ strategy. It con-
siders the mutual dependency between placement and routing explic-
itly by incorporating a novel method of hierarchical routing area es-
timation. If the layout includes flexible blocks, the placement result can
be further optimized by resizing these blocks subject to constraints on
their areas and aspect ratios. Placement and floorplanning are refined
more and more (with possible topological change) as routing proceeds.
Global routing is updated incrementally to eliminate the need for it-
erations between placement and routing, thus achieving a more uni-
form design flow.

I. INTRODUCTION

NTEGRATED circuit fabrication technology has ad-

vanced rapidly over the last three decades. Three major
design styles—gate arrays, standard cells, and general
cells—targeted toward different applications have evolved.
Hierarchical decomposition is necessary in any of these
approaches to deal with the complexity of VLSI circuits.
At some level of abstraction the different parts of a cir-
cuit, be they developed manually, with module generators
or composed of standard cells, can be viewed as rectan-
gular or rectilinear objects with given shapes and 1/0 in-
terfaces. These objects then have to be placed on a plane,
oriented in one of the eight possible ways and connected
with each other at fixed terminal locations.

The objective of the placement is to provide an arrange-
ment of blocks that—after having been routed—fits into
an enclosing rectangle of minimum area with given height,
width, or aspect ratio. To get a high performance circuit,
a concurrent goal is needed to minimize the interconnec-
tion length. In floorplanning, shapes of some of the blocks
can be varied to a certain extent in order to reduce the
layout area or the wire length.

Over the last few years many programs have been de-
veloped to solve these problems. (See [22] for an over-
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view.) Placement and floorplanning are often solved as
separate problems. In addition, placement and routing are
done independently. Because of the interdependency of
these steps, many iterations are necessary in order to ob-
tain a satisfactory layout solution.

In the BEAR layout system, we perform the placement,
routing area allocation, and block resizing in one step. As
a result, high quality floorplanning solutions are obtained
without need for iterations. After global routing, this
floorplanning result may be further optimized by a global
spacing and/or global shape optimization.

II. OVERVIEW

BEAR is a second generation macrocell-based layout
system being developed at the University of California,
Berkeley. The system takes advantage of our experience
with BBL (Berkeley building-block layout system [3]) and
feedback from the industry. Our goal is to provide auto-
matic and interactive features to lay out a chip in both top-
down and bottom-up physical design environments.

As a first step, we generate a hierarchical representation
of the problem. Blocks that are strongly connected with
each other are clustered together in clusters of some max-
imum size. To avoid a block shape mismatch in the clus-
ter that makes it difficult to find a good placement for
blocks in that cluster, the shapes of the blocks are also
considered. This step is recursively repeated and produces
the different hierarchical levels of a clustering tree (see
[6], [10].)

In the placement step, this tree is traversed top — down
(see [6]). Given an overall shape goal and locations of the
1/0 terminals (I/O goals), at each level of the hierarchy
all topological possibilities for the clusters on that level
of the hierarchy are examined. A topological possibility
refers to the assignment of clusters to rooms of a partic-
ular floorplan template (see [6]). At the leaves of the clus-
tering tree, block orientations must be specified as well.

The objective function for choosing a particular possi-
bility is a linear combination of geometry cost and con-
nection cost. The geometry cost has two components: the
area cost which accounts for the template area and the
shape cost which accounts for cluster to room shapes that
mismatch. The connection cost penalizes connections be-
tween nonadjacent clusters. The user controls the trade-
off between geometry and connection costs. The chosen
topological possibility, in turn, sets the shape goals and
the I/O goals for the next lower hierarchical level. The
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same decision process is repeated till all leaf level blocks
are placed (see Fig. 1).

This top-down strategy works well for floorplanning
with perfectly flexible (or ‘‘soft’’) blocks whose shapes
can be adjusted to the shapes of the rooms on the lowest
level. However, it can lead to unfavorable results in the
case of rigid (or ‘‘hard’”) blocks with fixed geometries
since the objective function on higher hierarchical levels
has very little information about the actual block shapes
at its disposal. Decisions are not well founded at this
stage. In this respect it resembles other top-down tech-
niques like the min-cut algorithm presented in {16] which,
in some sense, is a special case of our algorithm for k =
2.

To provide the geometry cost function on higher levels
with more information, the clustering also passes shape
information from the leaves toward the root of the tree.
Additionally, during the top-down traversal of the tree, a
lookahead is possible so that the decision on some level
is not restricted by the available block shape information
on the immediately following level of the hierarchy (see
Section III).

For each of the topological possibilities the routing
space necessary to implement the connections between
various clusters is estimated. This area and its location
together with the cluster areas and shapes are used to
compute the value of the geometry cost function. It is also
used to determine the goal shape for the clusters on the
next lower level of the hierarchy. The routing area esti-
mation (and allocation) is hierarchical, i.e., space for
global connections is provided on higher levels of the hi-
erarchy when the rough positions of clusters are known.
The allocation of space for local connections is deferred
until later in the process when the detailed block positions
on the clusters are to be generated (see Section IV).

Placement defines capacities of the routing areas around
the blocks. Global routing defines densities (net assign-
ments) of the routing areas. After placement and global
routing, we can change the density by rerouting or we can
change the capacity by global spacing (compaction or de-
compaction). In order to achieve a high density of the fi-
nal layout, we iterate these two operations to obtain a sat-
isfactory match of capacity and density of the routing area
before detailed routing. During global spacing, global
routing is updated incrementally. A dynamic data repre-
sentation [7], which unifies topological and geometrical
information, is used to achieve an efficient implementa-
tion of such difficult operations.

In contrast to the constraint-graph approach, the ridge
spacing method for global spacing [8] is composed of
small steps which iteratively partition the layout into two
parts and performs contracting or expanding only on the
space between the two partitioned pieces. This approach
is particularly desirable for global spacing because we
would like to preserve the topology of the placement as
much as possible. (The job of global spacing is to match
a reasonably good placement and a reasonably good global
routing.) If there were a significant mismatch between
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Fig. 1. This figure shows the clustering tree and the corresponding block
packing (placement without routing area allocation). Leaves of the clus-
tering tree represent building blocks.
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Fig. 2. BEAR has adopted the ‘‘diagonal’’ layout style. It considers the
mutual dependency between placement and routing explicitly by simul-
taneous routing area estimation during placement and incremental global
spacing and shape optimization during routing.

placement and global routing, we would have to redo at
least one of them.

We can optimize shapes of the flexible blocks after
global routing in order to minimize the layout area. The
shape optimization is an improvement procedure that it-
eratively selects and resizes blocks. Since at this point the
global routing information is known, routing areas can be
accurately estimated. The shape optimizer uses these es-
timates to compute the longest paths through the layout
surface and to determine the ‘‘best’’ block candidate for
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resizing. The global routing information is incrementally
updated from one iteration to the next (see Section V).

These considerations result in a layout methodology that
deviates from the standard methodologies in some impor-
tant aspects. Looking at Fig. 2, the term **diagonal meth-
odology’’ as opposed to the conventional “‘horizontal
methodology’” seems appropriate. This approach also
helps to reduce the sensitivity of the BEAR system to
changes in the input data (see Section VI).

III. PLACEMENT: A ‘‘MEET IN THE MIDDLE”’
STRATEGY

3.1. Representation of Connections

In order to evaluate various topological possibilities ef-
ficiently, the connectivity information has to be repre-
sented in a more versatile form than as n-point nets be-
tween geometrical pin locations. The accuracy required
to obtain satisfactory results varies on different levels of
the hierarchy.

Independent of the hierarchical level, nets with n ter-
minals are represented by n(n — 1)/2 connections be-
tween every pair of terminals. A spanning tree for this
n-clique has n — 1 edges. Every edge of the n-clique has
a probability of 2 /n to be in the spanning tree. Therefore,
each of the edges is assigned a weight of 2/n.

On the non-leaf level, all connections within the clus-
ters are invisible. The connections between two clusters
are measured from center point of one to center point of
the other. (See Section III-3.) In this way all connections
of current interest can be summed up in one matrix at-
tached to the node being placed. The element c;; in row i
and column j of this connectivity matrix contains the sum
of the weights of connections between clusters i and j (Fig.
3). If a cluster i has a link to another cluster outside the
parent node, this link is split up into two links of pertinent
weights in the applicable I/O-directions as shown in Fig.
4.

On the leaf level this representation is not exact enough
since the optimal orientation of a block depends on its
actual pin positions. (Each leaf node represents an actual
building block.) However, it would be very costly to
search through a list of all pin positions each time a new
block orientation is evaluated. Some accuracy has to be
given up to gain efficiency. A convenient scheme is to
distinguish only between different pin directions. All the
connections summarized in one number ¢;; in previous
levels of the hierarchy are now split up into a set of four
numbers representing the connections between block j and
each of the sides of block i. In this way the data structure
does not have to be augmented; the information can be
held by the leaf level connectivity matrices (see Fig. 5).

3.2. Target Shapes and Lookahead

In many cases the original heuristics [6] for computing
the objective function on non-leaf levels do not lead to
the best solution. More information about the ‘‘desira-
ble’’ shapes must be available on higher levels of the hi-
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Fig. 3. A particular topological possibility and its corresponding connec-
tivity matrix are shown above. The element ¢; in row i and column j of
this connectivity matrix contains the sum of the weights of connections
between cluster i and cluster j (or /0 j).
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Fig. 4. If a cluster i has a link to another cluster outside the parent node,
this link is split up into two links of pertinent weights as shown above.

Fig. 5. Connectivity matrices attached to the nodes of the clustering tree
are shown. The connectivity matrix attached to a leaf node is different
from that attached to higher level nodes. All the connections summarized
in one number c; in higher levels of the hierarchy are now split up into
a set of 4 numbers representing the connections between block j and each
of the sides of block i.

erarchy in order to increase the accuracy and the discrim-
inating power of the placement objective function.' Some
algorithms solve the problem by deriving the placement
bottom — up [19], [15]: all possible combinations of block
sizes are propagated up to the root of the tree where the
combination with optimum aspect ratio is chosen. For
slicing trees this approach is efficient but it restricts the
set of obtainable solutions considerably.

Our approach is to compute the optimal shape goal for
the lowest level clusters and to propagate this information

'An objective function is a good discriminator if it provides accurate
early warning signals for all off-track nodes encountered along the path
search toward an optimal solution.
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recursively up the clustering tree. The optimal shape goal
(target shape) of a cluster is derived by enumerating all
topological possibilities to combine the cluster elements.
During the top-down placement process, the geometry
cost for a particular topological possibility is computed
by treating the target shape for the corresponding node of
the tree as its actual shape. This leads to more accurate
and reliable geometry cost computation.

Some modifications to this scheme are necessary to
make it work. Target shapes with aspect ratios far from 1
are useless even if they represent the optimal way to place
a number of very long blocks with the same width. Un-
desirable aspect ratios have to be penalized. The objective
function has to account for this effect. The more dead
space a target shape contains, the lower its impact should
be on the choice of a topological possibility. Real-world
macrocell layout examples by and large consist of less
than 50 blocks. Predictions for future ‘‘superchip’’ block
counts are in the range of 100. In any case, with 5 blocks
per cluster, 125 blocks can be accommodated in a clus-
tering tree with a depth of 3. Let us denote the 4 levels of
the clustering tree built for such a “‘superchip’’ as 1 (root
level), 2, 3, and 4 (building block level). The target
shapes on level 3 are optimal since the building block di-
mensions are known and all combinations of these blocks
are evaluated in order to choose the best topological pos-
sibility. Target shapes only become questionable on level
2 because the optimal combination of optimal level 3
shapes need no longer be optimal. Therefore, if the clus-
tering tree is of depth 3 (4 levels) we can avoid using the
possibly suboptimal level 2 shapes by doing a 1-level
lookahead and using the target shapes of level 3 (see Fig.
6).

Although the search tree is a shallow, its branching fac-
tor turns out to be very high. Under the assumption that
the clustering tree is a tree in which every internal node
has k children, an /-level lookahead has a complexity of

(105
o<’; - :f(k)’“k’)

Although this is still linear in the number of blocks n,
f (k) is very large (Table I). f (k) is larger in the presence
of target shapes and for nodes just above the leaf level.

*For a node in a k-tree, f (k) topological possibilities have to be enum-
erated (lookahead ! = 0). For each of the possibilities, each cluster ele-
ment itself has f (k) possibilities to be placed. Therefore, kf (k) possibil-
ities have to be examined. If the effect of the leaf level, where the lookahead
has to stop, is neglected, then for a lookahead depth of / levels f (k) (kf (k))*
evaluations of the objective function are necessary. A k-tree of depth d
contains n = k leaf nodes and:

k-
L+k+ - +k¥! = !
k-1
non-leaf nodes (clusters). Hence, the complexity is bounded by
k-1 1 on—-1 141
k)(kf(k)) = —— !
T SO () = T

which is the desired result.
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Fig. 6. If the clustering tree is of depth 3 (4 levels) we can avoid using the
possibly suboptimal level 2 shapes by doing a 1-level lookahead and
using the target shapes of level 3.

Level 4

TABLE 1
NUMBER OF TOPOLOGICAL POSSIBILITIES OF f (k) FOR NON-LEAF
CLUSTERS. & Is THE NUMBER OF SUBCLUSTERS

k t 2 3 4 5
JE =Fxi(k) [1 4 36 528 11040

This is because nodes with target shapes and leaf nodes
have exact shapes and their various orientations must be
considered in the optimization process. (k) in Table I is
the number of different placement topologies, i.e., the
number of placement templates with k rooms.

Even after restricting the clusters to sizes k < 5, it is
necessary to find a scheme to speed up the program. Prun-
ing of the search tree to reduce the effective branching
factor is done with the help of the previous objective func-
tion. Since only solutions within some percentage range
of the “‘optimum’’ are kept as candidates for further ex-
plorations, the search space is considerably reduced in
size. (This ‘“‘optimum’’ cost is initially computed by
enumerating all topological possibilities with no look-
ahead.) Possibilities that are very unlikely to lead to de-
sirable placements are excluded. Good possibilities are
not locked out arbitrarily and the number of branches to
follow is never restricted.

By adjusting the parameter that controls the width of
the search, the user can tradeoff the quality of the final
solution against runtime on the computer. This is an ad-
vantage both in the beginning of the design process when
only a fast upper bound on area and wire lengths is needed
and in the end when the best possible result is to be ob-
tained. In principle, the program allows a complete enu-
meration of the whole solution space given by the clus-
tering tree by setting the lookahead to d — 1 levels (where
d is the depth of the clustering tree) and by not specifying
any pruning.

With a 4 — 1 level lookahead target shapes become
redundant since in that case the solution space is com-
pletely explored and there is no need for bottom-up in-
formation made available by the target shapes. Similarly,
if the lower area bounds of all possible shapes of clusters
(sets of target shapes) are propagated up the tree, there
will be no need for lookahead since the solution space will
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again be completely explored. One-level lookahead and
single target shapes become useful only when the solution
space is partially explored. Both one-level look-ahead and
single target shapes try to make information from lower
levels of the hierarchy available so that decisions made on
higher levels are more qualified. The information gained
by the two heuristics is not identical but it is not disjoint
either.

3.3. Intralevel Dependencies

In the way the algorithm was described up to now, after
the placement for one level of the hierarchy was done, all
the clusters on the next level of the hierarchy are pro-
cessed independently in an arbitrary sequence. This can
lead to undesirable results for the wire lengths as indi-
cated in Fig. 7. This is because the center points of the
parent clusters are taken as reference points for all con-
nections between different clusters.

It was not attempted to find an optimal solution for this
case but one that was practical from a computational point
of view and would work well for most of the cases. First
of all it is clear that once one cluster is placed, the center
points of the cluster elements (which now have fixed lo-
cations) should be used to compute the edge weights of
the I/O connections of other clusters (Fig. 4). This is eas-
ily achieved by attaching a ‘‘placed’’ bit to every cluster.
When the 1/O goals for a cluster are computed, all the
connections to other clusters are iterated. If the connected
cluster is already placed, its center point is taken as ref-
erence point. If a cluster is not yet placed, the center point
of its parent is examined. During the lookahead it is pos-
sible that the examination of parent clusters is repeated
recursively until an element is found whose position is
already known.

This procedure introduces an ordering dependency. The
earlier a cluster is placed, the stronger its influence is on
the yet unplaced clusters. Therefore, clusters with larger
areas are placed earlier. All clusters (whose parents are
placed) are kept in a queue data structure. The ordering
then is simply a matter of sorting the queue whenever a
new hierarchical level is started.

3.4. Analysis

It is somewhat artificial to evaluate a placement result
without routing. Nonetheless, some measure of perfor-
mance must be defined in order to assess the effect of the
changes to [6] introduced in this section. Two figures of
merit are proposed to compare the effects with respect to
layout area and wire length minimization.

The figure of merit used for the first goal is area utili-
zation. It is defined as the proportion of the sum of block
areas to the area of the smallest rectangle enclosing all
blocks (and routing areas allocated around them). The fig-
ure of merit for the second goal is the sum of net half
perimeter lengths (although without routing area no net
could actually be implemented). The maximal net half pe-
rimeters are not explicitly optimized in our algorithm and
only shown for comparison purposes (Table II).

(b)

Fig. 7. If the center points of the parent clusters are taken as reference
points for all connections between various clusters, the undesirable
placement shown in (a) may be derived. The placement in (b) is, how-
ever, obtained by taking the center points of already placed clusters as
the reference point for all connections to those clusters.

TABLE II
EFFECT OF TARGET SHAPE MATCHING (33-BLOCK EXAMPLE)

original version with target shapes
cost function area sum of net max net area sum of net max net
parameter | utilization _half peri. half peri. | utilizati half peri.  half peri.
0.1 76.02% 10497 354 77.98% 10412 350
1 77.58% 10188 350 84.12% 10795 335
10 79.63% 10719 346 87.23% 11441 328
TABLE III
EFFECT OF PRUNING THE SEARCH TREE (33-BLOCK EXAMPLE)
prunning area sum of net max net elapsed time
h Id | utilization half perimeters half perimeters (normalized)
% 87.23% 11441 328
50% 88.59% 10937 324 2.07
200% 90.09% 10607 339 4.67
o0 90.09% 10607 339 75.56

Even though the target shapes are better than the orig-
inal heuristic, they may be misleading since in the bot-
tom-up shape enumeration the eventual context (where the
cluster will be placed) is unknown. In these cases, and of
course, in those cases where target shapes include too
much dead space, a lookahead can help to avoid unfavor-
able template choices. Table III gives some experimental.
results for a one-level lookahead employed in the place-
ment of the same 33-block example. Originally, a com-
plete search was done. The result appears in the last line
of Table III. Then only branches within some percentage
of the best cost value on the current level were considered
on the next level of the hierarchy. This pruning threshold
was decreased until only the best solution on the current
level was pursued further on. In this case the result is the
same as if no lookahead were specified.

IV. ROUTING AREA ESTIMATION
4.1. Motivation

If the placement does not include an explicit estimation
of the routing area, its results will suffer from the fact that
it cannot distinguish between dead space that later can be
used for routing and dead space that leads to an increase
in routing area because the blocks are further apart from
each other.

A second reason why routing area estimation during the
placement is necessary rather than including the routing
area after the placement, is shown in Fig. 8. A placement
that was optimized to have a rectangular shape of a given
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Fig. 8. A placement that was optimized to have a rectangular shape of a
given aspect ratio is neither rectangular nor does it conform to the desired
aspect ratio after the routing area was added.

aspect ratio is probably neither rectangular nor does it
conform to the desired aspect ratio after the routing area
was added.

There are some approaches that—with different degrees
of sophistication—tackle the problem. In [26], [32] heu-
ristics are applied to each block before the placement to
derive a hypothetical block shape including some routing
area based on the number of pins of the block. In [4] a
pseudorouting of pairs of blocks is performed to derive
the necessary distance between the two blocks in a row-
based placement. Both solutions fail to account for con-
nections outside of the immediate neighborhood of their
terminals.

For gate arrays, Burstein et al. [1] introduced an algo-
rithm that merges placement and routing in a hierarchical
fashion. Because of the simple array structure, this grid-
based approach is feasible. In [29] a simultaneous place-
ment and global routing of restricted slicing structures was
proposed. A method to generate the global routing at the
same time as the placement, suited to the more general
topologies, was described in [6]. In both cases no attempt
was made to estimate the routing area based on the global
routing information. Because of the representation of
global routing paths as links between the center points of
adjacent blocks, this task would not be straightforward.

More literature exists on the topic of routing area esti-
mation after the placement is finished. Statistical ap-
proaches [12], [9] use a Poisson model for the generation
of wires along block edges and assume an exponential dis-
tribution of wire lengths. They do not take actual pin po-
sitions or detailed connectivity information into account.
Therefore, their usefulness for the problem described is
questionable. Most programs perform global routing after
the placement is finished and then estimate the necessary
routing area [16], [11], [15].

4.2. Top-Down Space Allocation

Besides the hierarchical decomposition of the problem,
the basic idea is to avoid a dynamic shortest path or Stei-
ner tree determination by precomputing the paths for the
finite number of templates and storing the information in
the library of placement topologies (templates).

For every template and for each connection between
blocks, clusters, and I/0-goals, all the channels on the
shortest topological paths are marked with a probability.
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This probability represents the likelihood that the connec-
tion will really pass through that channel (see Fig. 9).
pf-‘; is the probability that a connection between blocks i
and j will pass through the channel formed between blocks
k and /. The amount of memory to store the library of
parameters is acceptable [10].

The required normalized ““channel’’® width s,,/w is es-
timated as

Ski Kl
— = Iy Z Zpljcij
w i

where w is the design-rule dependent track to track spac-
ing, ¢;; is the pertinent element of the connectivity matrix,
and f,; a heuristic factor that accounts for track sharing.
(Segments of different nets may be assigned to the same
track by the channel router.) The computation can be done
very fast for every possible topology and on all the hier-
archical levels before the placement cost function is eval-
uated. In this fashion, routing area is treated equivalently
to block area. It not only influences the choice of tem-
plates on the current level of the hierarchy but also sets
the shape goals for the next level.

The estimation takes advantage of the information gath-
ered about positions and connectivities of clusters (of
blocks) down to that level of the tree hierarchy. Earlier in
the process, space for global connections between differ-
ent clusters is provided. Later, more of the internal con-
nections within the clusters become visible.

The allocation of space along the shortest path makes
the job of a global router easier but does not constrain it
in doing whatever is recognized as optimal after the com-
plete topological information produced by the placement
is available. In addition, this approach is very flexible.
For “‘over-the-block wirable’’ cells [30], the probabilities
can be easily adjusted.

Before refining the basic idea it seems appropriate to
describe how the numbers pf-‘; and t;, are derived. In gen-
eral the numbers to be assigned to pf‘f are pretty obvious
as shown in Fig. 9 since most of the time only two distinct
shortest paths exist. Fine-tuning statistics can be com-
piled that characterize the behavior of the global and de-
tail routers used. It is likely that different routing algo-
rithms will yield slightly different results for the
parameters. It is one of the strengths of this approach that
without changes in the program it can be applied to dif-
ferent technologies and physical design processes.

For the non-leaf levels it is assumed that connections
leave the clusters on the side that is closest to the end
point of the connection. In Fig. 9 this means that a con-
nection between blocks 0 and 2 would leave the right side
of block 0 and enter the left side of block 2. It is the task
of the next lower level to provide the space to get to this
side. On the leaf level this is no longer possible. In this
case the pin position information already needed for the
determination of block orientations comes in handy. When
needed, for a given block orientation additional space has

***Channels’" on higher levels consist of many real channels.
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Fig. 9. This figure defines terminology used by the hierarchical area esti-
mator. A connection between cluster 1 and 1/O goal N amounts to to-
pological paths through certain bottlenecks. In the case, p= = 0.5,
piE =05, and pii = 1.0.

to be provided along the sides of the block to bring the
wires around the block to the location that is closest to
the end point of the connection.

4.3. Bottom-Up Estimation

Due to the nature of our top-down placement algorithm,
area taken away from the cluster area to account for the
space needed by the wiring must have been added before-
hand. Instead of just assigning the sum of the areas of the
children to a parent node in the clustering tree before
starting the top-down traversal of the tree, a routing area
estimation has to be included as well. At this stage it is
not necessary to know the routes that connections take,
but only the approximate area needed for connections has
to be estimated.

The task of predicting the space needed for routing be-
fore invoking a floorplanner or placer has gained some
attention recently [14], [5], [34]. Unfortunately, the re-
ported results applicable to the macrocell layout style are
not very encouraging. Errors of 20 percent (of the whole
layout area, much more if the known block area is ex-
cluded) seem to be the current state-of-the-art [5], [34].
This would be unacceptable to the objective function
evaluated for the different topological possibilities and
would lead to very strange results.

Fortunately, a bit more information to estimate the
routing area is available here. After having done the clus-
tering on one level of the hierarchy, we know all the con-
nections between the cluster elements and from cluster to
cluster. On the lowest level of the hierarchy the number
of pins along the 4 sides of a block are known as well.
When the optimal target shape is chosen, a reasonable way
of arranging the blocks topologically is generated as a by-
product. All this information can be used to produce a
routing area estimate that exactly mirrors the more so-
phisticated top-down routing area estimate with respect to
its hierarchical decomposition.

Since the exact constellation that tries to minimize the
number of connections between nonadjacent blocks/clus-
ters is not known, a worst-case approach is taken by
building a hypothetical connectivity matrix C with iden-
tical connection strengths ¢; and &, for all intracluster and
intercluster connections, respectively. This means that all
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TABLE IV
MISMATCH BETWEEN ESTIMATED AND ACTUAL LAYOUT AREAS

area after placement | area after routing (core) A%
(40.4 x 59.0) | 2470 (413 x 59.8) [ +3.6
(16.3 x 15.1) | +4.6

number of blocks
10 2384
33 235.3 (15.9 x 14.8) | 246.1

9 5060 (74.9 x 67.6) [ 5560 (73.9 x 68.4) -1.2
cyaresetto ¢ forje0, -+, k- 1 and to ¢, forj € N,
w, S, E:

2 -
G N
k(k — 1) @ jeo, - k=1
L _ 1 .
Ce = 77 Cij

4k i jeN.W.S.E

With this connectivity matrix and the target shape topol-
ogy, the top-down wiring space allocation function is
called. The exact distribution of the wiring space gener-
ated by that function is of no interest here. The only use-
ful extraction is the total area of the space needed for rout-
ing. It is not necessary in the top-down placement process
for the same topology chosen for the routing area estimate
to be reasonably close. This may help of course, and really
happens on lower levels of the hierarchy if the wasted area
in the target shape is small. The routing area (contrary to
its exact allocation) is very similar for various good to-
pologies (i.e., topologies without too much dead space).

On the leaf level the block areas are inflated in both
dimensions based on the number of pins of the block in
each direction. In the final result connections between
nonadjacent blocks tend to be weaker than connections
between adjacent blocks. Therefore, the initial routing
area estimate is reduced by some heuristic factor. If with
the default value of that factor the routing area is consis-
tently over- or underestimated, it can be adjusted by the
user.

4.4. Analysis

Table IV helps to determine how well the routing area
estimation predicts the area actually needed by the routing
for some examples tried. The areas in the first column are
given by the output of the placement program. The results
in the second column reflect the final areas after the global
and detailed routing were completed. The routing area
needed by the ring router is not included because it is not
taken into account in the routing area estimation during
the placement.

V. FLOORPLANNING
5.1. Overview

This section considers floorplanning of the building
blocks. We first define the problem: given 1) a set of
blocks with constraints on their areas, shapes, and relative
positions, 2) constraints on area and aspect ratio of the
chip, and 3) a net list specifying pins to be intercon-
nected, the floorplanning problem is to determine shapes,
locations, and pin positions for the blocks so that all con-
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straints are satisfied and so that the chip area and the total
wire length are minimized.

Various floorplanning schemes have been devised.
Wong et al. [33] used simulated annealing to construct
slicing floorplans for flexible blocks. Otten [19] suggested
a bottom-up floorplanning algorithm based on combining
shape functions (width versus height curves) of flexible
blocks in a slicing floorplan structure and propagating the
composite shape function recursively up a clustering tree.
After shape function for the entire chip is determined, a
boundary point on the shape function satisfying aspect ra-
tio, width, or height goal is chosen and this information
is passed top-down until shapes of the leaf blocks are de-
termined. Wimer et al. [31] proposed a branch and bound
algorithm for computing the composite shape function for
nonslicing structures. Maling er al. [17] proposed a
floorplan design algorithm based on enumerating all valid
rectangular duals of a connectivity graph for the chip and
choosing a rectangular dual with the least area which sat-
isfies shape and position constraints. Mogaki et al. [18]
used linear programming techniques to determine shapes
of the flexible blocks subject to constraints on their rela-
tive positions.

In the BEAR layout system, we decompose the floor-
planning problem into several phases, each of which is
more clearly defined and is simpler to solve [21]. Ini-
tially, a clustering tree with blocks having their preferred
aspect ratios is derived. During the top-down traversal of
the tree, the geometry cost function is changed so that the
penalty associated with the mismatch between the flexible
blocks and the rooms (to which these blocks are assigned)
is reduced. In the end, flexible blocks are resized (subject
to their shape constraint functions) so that they fit “‘best’’
in their assigned rooms. When a flexible block is resized,
its pins on the sides being shrunk are pushed closer by a
scaling factor. Similarly, its pins on the sides being
stretched are pulled apart. This initial floorplanning is fol-
lowed by the global routing process which defines densi-
ties of the routing areas. After global routing, a global
spacing procedure assures that all bottleneck tiles have
capacities equal to or exceeding their corresponding den-
sities.

A global shape optimization phase follows next: given
the initial floorplan and constraints on block shapes, the
shape optimizer determines locations and shapes of the
blocks so that the chip area is minimized. At present, the
shape optimizer does not optimize locations of the pins on
blocks or orientations of blocks.

One- and two-dimensional shape optimization algo-
rithms have been implemented. The one-dimensional al-
gorithm iteratively computes new dimensions for flexible
blocks in order to reduce the chip dimension in the user-
specified resize direction (horizontal or vertical). This al-
gorithm does not change chip dimension in the direction
orthogonal to the resize direction. The two-dimensional
algorithm iteratively reduces the layout area by picking
up a block with the largest resize possibility and resizing
it.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 8, NO. 12, DECEMBER 1989

5.2. Basic Definitions

The individual blocks are either rigid or flexible. Rigid
blocks cannot change shape during the floorplanning
process and represent blocks that have already been layed
out and have fixed shapes and fixed I/O interfaces. Flex-
ible blocks can change shape and represent blocks which
are only partially designed or blocks which are procedur-
ally synthesized by parametrizable module generators or
silicon compilers. The manner in which a flexible block
is reshaped is inferred from the integrated circuit design
style which is used to lay out the block. For example, the
gate array design style only allows discrete change in
either dimension of the block whereas the standard cell
design style allows discrete change in one dimension and
continuous change in the other. The general cell design
style permits continuous change in both dimensions of the
block. (See [23] for a description of various design styles.)

For a block layed out in gate array or standard cell styles
we assume a finite set of (x, y) pairs where x and y are
block dimensions, and for a block layed out in general
cell style we assume a hyperbolic shape function.* The
floorplanner can accurately estimate shape function curves
for various standard cell blocks by examining the block
netlists as described in [20]. We assume that each flexible
block has a preferred aspect ratio (e.g., aspect ratio which
leads to minimum block area).

The entire area of a layout is covered with rectangles
referred to as tiles. There are two kinds of tiles: solid tiles
which represent blocks and space tiles which represent
empty space for routing between the blocks. Given a
placement of building blocks, we define two tile planes:
the horizontal tile plane where all space tiles are maximal
horizontal strips and the vertical tile plane where all space
tiles are maximal vertical strips (see Fig. 10). A space tile
is called bottleneck if both sides are covered by the sides
of its adjacent space tiles. We store global routing infor-
mation on the bottieneck tiles. Block adjacency graphs
[7] need not be constructed explicitly since the adjacency
of the blocks can be obtained efficiently via bottleneck
tiles.

The block adjacency graphs can be used to calculate the
extents of the chip. The longest or critical paths through
the horizontal and vertical block adjacency graphs deter-
mine width and height of the layout. Vertices of the hor-
izontal block adjacency graph represent blocks, and arcs
represent horizontal bottleneck tiles. Weights on vertices
are horizontal dimensions of the corresponding blocks,
and weights on arcs are densities of associated bottleneck
tiles. The vertical block adjacency -graph is defined simi-
larly. We use bottleneck densities rather than bottleneck
capacities since longest paths computed using bottleneck
densities give more accurate estimations of the post-lay-
out chip dimensions. In addition, because the global rout-
ing information is incrementally updated and bottleneck

“In this paper we assume that block area remains constant as block as-
pect ratio is changed. This assumption must be revised in order to come up
with a more realistic model for general cells.
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Fig. 10. This figure shows the horizontal and the vertical tile planes where
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bottleneck tiles are shaded. The horizontal and the vertical block adja-
cency graphs are drawn. Vertices of the graphs represent blocks and arcs

represent bottleneck tiles.

densities recomputed from one iteration to the next, long-
est paths through the layout surface remain accurate and
representative of the final chip dimensions.

5.3. Shape Optimization Algorithm

We denote the estimated width and height of the chip
at the jth iteration W and H, respectively. If block i with
width w', height /', and area a' does not belong to the
longest path in the current optimization direction, it will
have some freedom to move or deform in that direction
without enlarging the chip area. Considering the
X-direction, the legal X-slack of this block X{egisiack is de-
termined as follows: assume that the length of the longest
path from the left boundary of the chip to the left bound-
ary of the block is I' and the length of the longest path
from the right boundary of the block to the right boundary
of the chip is r’. Then, the X-span of the block (horizontal
range where the block can be placed without overlapping
other blocks or causing overflows in the neighboring bot-
tleneck tiles) is given by

i _ g
xmin_l

i _ i
Xmax = W — 1.

The lower left corner of the block may be positioned be-
tween X, and Xy, — w' or its width may be increased
by an amount x’j, = x%, — xii — w'. The two opera-
tions can be combined without enlarging the chip dimen-
sion in the X-direction. Now, suppose that the block height
has a lower bound A}, and its width has an upper bound
of wi Then

upper*

i : i i P a i
XlegalSlack — MU | Xgjacks Wupper — W, o7 - w .
lower

Similarly, the legal Y-slack yicgasiack Of block B' is defined
as a function of the upper bound /Ay, on its height and
the lower bound wi,., on its width (see Fig. 11).

Longest Horizontal Path

Longest Vertical Path

Fig. 11. The flexible block marked with a % lies on the longest vertical
path (y,;‘gals.ack = 0) but has a nonzero legal slack in the horizontal di-
rection. By resizing this block by yx regalstack the chip height decreases but
the chip width will remain unchanged.

We outline the procedure for two-dimensional shape
optimization. We initially compute the longest paths
through the layout in both X- and Y-directions. Next, we
find a block B; which lies on the longest path in one di-
rection (e.g., Y-direction) and has the largest legal slack
in the other direction (e.g., X-direction). This block may
be laterally shifted (in X-direction ) and/or resized by Aw'
= YXlegaisiack Where 0 < y =< 1 is a user specified param-
eter bounding the maximum change in block dimensions
per iteration. We have observed that y = 0.7 — 0.8 leads
to uniform and fast convergence. The"new block dimen-
sions are W' = w' + Aw' and k' = a' /%" if block B; is a
general cell. If block B, is generated by gate array or stan-
dard cell layout style, W' and A’ will be rounded to the
closest (x, y) pair in the block shape function. The new
position of block is adjusted in order to distribute ‘‘free’’
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(b)

Fig. 12. This figure shows the layout result for an 8-block example with-
out (a) and with (b) shape optimization.

area among the surrounding bottleneck tiles according to
their wiring demands. The global spacer may be called to
assure that no surrounding bottleneck tiles will overflow
as the result of block resizing. The global routing around
the block is locally updated. After block B; is resized, the
chip height is usually decreased’ but the chip width re-
mains relatively unchanged. In practice, the optimization
process is monotonically nonincreasing with respect to
chip area.

In general, the stopping criterion is that longest paths
only contain fixed size blocks (or maximally warped flex-
ible blocks) or contain flexible blocks which lie on the
longest paths in both X- and Y-directions. To speed up the
algorithm, the process is terminated if in the last k itera-
tions the area reduction has been less than some small
percentage of the total chip area or if the largest legal
slack in the X- and Y-directions is less than a user speci-
fied bound.

For small circuits (less than 12-15 blocks), this algo-
rithm is very efficient and gives excellent results. For
larger circuits, because of the unpredictability of the
changes made to the underlying topology, the algorithm
may require many iterations. Therefore, we devise a two-
pass one-dimensional shape optimization algorithm (an
X-direction pass followed by a Y-direction pass) which
converges to a good solution faster. This is because by
fixing the resize direction we avoid making drastic
changes to the original topology. However, as is ex-
pected, the two-dimensional shape optimization often
gives better results than the two one-dimensional shape
optimizations.

5.4. Analysis

The two-dimensional shape optimization problem is
more general than the two-dimensional compaction prob-
lem since both positions and shapes of blocks are varied

It may not be reduced due to the existence of multiple longest paths
through the layout surface.

to minimize the layout area. True two-dimensional com-
paction has been attempted with exponential complexity
algorithms. It is proven that this problem is NP-complete
[24], [25] and so is the shape optimization problem.

The complexity of each iteration of the shape optimi-
zation algorithm is O(|V|) where | V| is the number of
the blocks. This is because the longest path computation
using topological sorting of the nodes in a directed acyclic
graph is O(|E|) and the block adjacency graphs are di-
rected acyclic graphs with | E| = O(|V|) (see [8)).

The shape optimizer was run on several layouts gener-
ated by the placement algorithm. On average, the layout
areas were reduced by 10 percent and the total wire lengths
(after detailed routing) were cut by 5 percent. Fig. 12
shows the layouts for a 8-block example with and without
shape optimization. All blocks were assumed to be flexi-
ble and their aspect ratios were allowed to change in the
range from 0.5 to 2. The area and wire length reductions
are 11.2 and 5.1 percent, respectively. The stopping cri-
terion were an area reduction less than 1 percent in the
last 5 iterations or largest legal slack less than 8 um for
all flexible blocks in the chip.

V. SENSITIVITY

Since CAD programs do not produce a global optimum
solution for most problems, incremental changes in the
problem description should not yield solutions that are
radically different from the original ones. Small changes
in the input occur quite frequently. To overcome func-
tional problems, connections are changed, added, or re-
moved. To optimize timing of the circuit or to lower heat
dissipation in critical areas, sizes of transistors are
changed. If the CAD program is too sensitive to these
changes and produces a totally different layout, this might
defeat the purpose for input modifications, possibly caus-
ing further changes in the input and requiring many iter-
ations until the solution is stable again (Fig. 13). On the
other hand the algorithm should be able to react to signif-
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Fig. 13. A good CAD program should be sensitive to layout input (/) and
control (C). However, it should not be too sensitive to input changes
otherwise the solutions produced by the program may be unstable.

icant changes in the input I, otherwise it could not find
nearly optimal solutions. Furthermore, it should be sen-
sitive to the control input C, otherwise a designer could
not influence the program to consider his particular re-
quirements.

Maintaining the global layout without sacrificing the
ability to optimize it, is possible by taking the original
clustering tree again for the changed input data. The clus-
tering tree still allows the placement to adapt to changes
in the design in various ways, whereas a binary slicing
tree would already be quite restrictive. The sensitivity can
be controlled in still another way: when looking for the
minimum of the objective function, a better solution is
only accepted if its cost is significantly lower than that of
the best solution up to date. What is significant, is deter-
mined by the user, according to how important this issue
is for him. This introduces a bias towards the solutions
produced earlier, so the placement templates are enum-
erated in a sequence corresponding to their general ‘‘de-
sirability.”’

Changes in the placement due to the addition of routing
area are minimized by the simultaneous placement and
routing area estimation described in Section IV. To be
able to evaluate the effectiveness of various measures to
decrease the sensitivity S, the formula for S has to be
changed to S = AO/AI and input and output changes
have to be clearly defined. AI€ can be defined as the pro-
portion of nets that are changed, added, or deleted to the
total number of nets. (If the changes are small, the de-
nominator can be treated as being constant.) Similarly,
AI® can be defined as the proportion of area changes to
the sum of all block areas. To avoid this, positive and
negative area changes cancel each other out; their abso-
lute values are added to AI® with a positive sign.

Since the program under consideration is a placement
program, AQ is measured in terms of deviations from the
original block positions: for the origin always lying in the
lower left-hand corner of the chip, AO can be defined as

AO = 2,: ((x = £+ (i - ﬁ-)z)

where (x;, y;) is the original position of block i and
(%;, 9;) is the block position after the changes. The argu-
ment to use the squares of all distances is to make a few
large movements count more than many small ones.

It is practical to split up the sensitivity into two parts:
S€(= d0/dI°), the sensitivity for changes in the con-
nectivity input and S%(= 40/dI By, the sensitivity for
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TABLE V
EFFECT OF SENSITIVITY REDUCTION MECHANISMS (33-BLOCK EXAMPLE)

no constraint | original tree
0.00 | 0.01 0.05

clustering tree
significance threshold for changes 0.00

AO (1 net deleted, 1 changed) 596 0 0 0
AO (2 blocks resized) 2988 2988 | 2154 504
TABLE VI

RESULTS ON PRIMBBL2 WitH 33 BLocks AND 203 NETS

system chip area | wire length | vias

BEAR 28.47 633494 897

MOSAICO 29.01 650009 1173

VITAL 3117 865712 1029

Seattle Silicon 28.63 762000 1235

Delft P&R 26.57 615104 925
TABLE VII

RESULTS ON PRIMBBL1 WiTH 10 BLOCKS AND 123 NETS

system chip area | wire length | vias
BEAR 2.83 131244 798
MOSAICO 3.16 151824 813
VITAL 3.12 134599 763
Seattle Silicon 2.94 125000 948
Delft P&R 2.60 151656 967

changes in the block area input.'6 Symbolically this can be
written as

do = S€ x dI€ + §B x dI®

where dI€ and dI® represent the respective input changes.

Table V shows the effects of sensitivity reduction
mechanisms described earlier in this section. Results in
the first row were obtained by changing two connections
(AI€) and results in the second row by changing two
block shapes (Al By,

VII. RESULTS

The BEAR system has been tested with several exam-
ples including the two benchmark examples used at the
1988 International Workshop on Placement and Routing.
In Tables VI and VII we compare our results with those
reported at the workshop.” The time needed to obtain the
placements by the BEAR placer was 131 s for PrimBBL1
and 762 s for PrimBBL2 (elapsed time on a VAX 8880,
workload 10.5—12.5). The layouts produced by BEAR
are shown in Figs. 14 and 15.

We were also able to complete the routing with BEAR
on placements for PrimBBL1 obtained by BBL [4], MO-
SAICO [2], and ATLAS [27]. By factoring out the influ-
ence of different routing systems, the placement evalua-
tion becomes more meaningful. All the numbers in Table
VIII are relative to the best placement produced by BEAR.

5QOther sensitivities—like the sensitivity for block shape changes—could
be readily incorporated as well, but are not considered in this paper.

TVITAL treats P&G nets as signal nets. Seattle Silicon routes 1/0 con-
nections only to the chip boundary and not to the pins. Delft does the place-
ment manually.
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Fig. 14. This figure shows BEAR (a) placement and (b) routing for
PrimBBL1 benchmark.
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Fig. 15. This figure shows BEAR (a) placement and (b) routing for
PrimBBL2 benchmark.

VIII. FuTurRe WORK

A possibility to improve the block shape information
that is propagated up is to replace the single target shape
with a set of target shapes (a shape function). In that case
no more lookahead steps would be necessary. The top-
level goal shape could be chosen from a finite set. Shape
functions can be combined efficiently for slicing struc-
tures [19]. For nonslicing structures it seems that there
is no way to find the composite shape function other than
enumerating all the possibilities.®

The input to a general placement program for building
blocks may include L-shaped blocks. These blocks are
generated by block abutments or custom layout. The in-
clusion of L-shaped blocks in the BEAR placement is easy
due to the template enumeration approach adopted. New

8In [28] it was proven that finding the optimal orientations of blocks for
a given floorplan is NP-complete for nonslicing structures. Because the
problem of finding the shape function—lower area bound of all possible
rectangles—of a cluster involves finding the optimal orientations of the
cluster elements, that problem is clearly NP-complete as well.

templates representing L-shaped rooms as well as rect-
angular rooms have to be added.

Automatic pin assignment for flexible blocks is needed.
During the initial floorplanning phase where circuit to-
pology is yet unknown only a rough pin assignment (e.g.,
side of the block pins should be placed on) will be per-
formed. Later, during the shape optimization phase where
circuit topology and connection paths for all nets are
known, more detailed pin assignment based on available
global routing information will be performed. We opti-
mize pin assignment per net, per block, or globally.

Automatic I/O pad assignment in BEAR (i.e., assign-
ing off-chip 1/0’s to the pads prior to block placement)
will be addressed as well. This procedure may be timing-
driven, satisfying path delay constraints or connectivity-
driven minimizing total wire lengths.

Efforts are under way to incorporate timing constraints
in the BEAR floorplanning. The floorplanning process
usually has a dominant effect on the circuit performance.
The timing requirements are stated as required arrival
times at I/O pins of blocks or as required delay from a
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Fig. 15. (Continued)
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