
1

BEAM: Bus Encoding Based on 
Instruction-Set-Aware Memories

Yazdan Aghaghiri and Massoud Pedram
University of Southern California

Farzan Fallah
Fujitsu Laboratories of America

Outline

Introduction
Previous Techniques
Instruction-Set-Aware Memories
Instruction Address Bus
Data Address Bus
Conclusion



2

Memory Bus

Wide and highly capacitive
High switching activity
Significant power consumption

Processor
Memory

Large external 
capacitance: Cext

Internal 
capacitance: Cint

Cext>>Cint

Bus Power Minimization

Physical Layer
Materials
Signaling and voltage levels

Data Link Layer
Encoding!Reduce  bus activity!Reduce power
" Redundant lines may be employed during bus encoding

EncoderSourceword
(Address)

Codeword (Bus)
Decoder Sourceword

(Address)



3

Transition Cost

Transition cost of an instruction or data address is 
defined as:

the number of bit transitions that occur on the bus from the 
current address to the next address

Transition cost can be calculated by bit-wise 
Exclusive-OR operation:  

Transition Cost = Current_Address ⊕ Next_Address
For Example: Current_Address: 1000, Next_Address: 1101, Transition Cost=3

Instruction and data addresses can be sent on 
separate buses or multiplexed on the same bus

Embedded Processors

I/O power is significant
Bus encoding can be quite effective

Low system clock rate (less than 200 MHz)
Delay of the extra encoding/decoding hardware is more 
tolerable

Many of the embedded processors don’t have internal 
caches or they bypass it for some memory accesses

An example of the latter case is streaming applications in 
which each access fetches external memory



4

Guidelines

A large portion of the switching activity on an 
address bus may be eliminated by making use of the 
sequential access behavior of instruction

T0, T0-Concise or Offset-Xor-SM are quite effective in 
achieving this goal

We have to be careful about the hardware overhead
So as not to offset the power reduction due to reduced 
activity on the bus by the power increase due to the 
encoder/decoder logic

We must determine the dominant source of 
remaining activity on the bus

Why SimpleScalar

Based on MIPS-IV Instruction Set Architecture
Simulator, Compiler and SPEC2000 pre-compiled 
binaries are available
Instruction, Data and Multiplexed address traces for 
system w/o cache
No out-of-order execution



5

SPEC 2000 Benchmarks

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

vpr parser equake vortex gcc art

Transition Cost for Different Categories of Instructions

nonflow trans
seqb trans
negb trans
posb trans
jalr trans
jr trans
jal trans
j trans

0%

20%

40%

60%

80%

100%

vpr parser equake vortex gcc art

Percentage of Control Flow Instructions

neg not taken

pos not taken

negative branches

positive branches

jump and link
register
jump and link

jump registers

jumps

Offset-XOR-SM

REG +1

XOR XOR

REG

Address Bus
LSB-Inv

LSB-Inv(x) : if x is negative, we 
invert all bits except the MSB. 
Small offsets always cause small 
number of activities.

8000 0004FFFF FFFB, (–5)
FFFF FFFF8000 0000

8000 0000FFFF FFFF, (–1)
0000 01010000 0101, (+5)

LSB-Inv(Offset)Offset

This block extracts the XOR 
distance of addresses; at the same 
time it eliminates the transition 
cost for sequential addresses

This block is a transition 
signaling block and sends 
the values by XORing them 
with the previous value of 
the bus

LSB-Inv 
reduces 
number of 
ONE’s in 
small 
negative 
numbers



6

Transition Costs after Offset-XOR-SM

0%

20%

40%

60%

80%

100%

vpr parser equake vortex gcc art

Transitions Costs after Applying 
Offset-XOR-SM

seqbtrans
negbtrans
posbtrans
jalrtrans
jrtrans
jaltrans
jtrans

Costs associated with sequential instructions and 
not taken branches are completely eliminated

ISA-Aware Memories

Memory has the instruction and its address
Add simple hardware to predict/calculate the target of control 
flow and memory access instructions inside the memory itself
Processor supervises this process:

When the memory exactly calculates the address, the processor 
will not intervene
When the memory only predicts the address, the processor will 
have to validate or possibly correct this prediction based on its 
own calculation
When memory is unable to calculate/predict the address, the 
processor will send the target address on the bus

ISA AWARE UNIT Calculation/
prediction

Current Instruction Current Address

BUS
Next 
Address

ISA-Aware
Memory:



7

Control Flow Instructions

BRANCH
Offsets are known. Memory still needs to predict the 
outcome of the branch, i.e. taken or not taken 

JUMP and JUMP AND LINK
Offsets are known. Target address is deterministically  
calculated

JUMP REGISTER and JUMP AND LINK REGISTER
Target is determined by the value of a register
Offsets cannot be determined at compile time 

Branch Prediction

Memory Predicts the target of the branch locally
Processor both calculates and predicts the target

Sends no signal to memory if prediction matches the calculation 
and hence it is OK
Sends an error signal if the prediction is incorrect

For each miss prediction, one transition occurs on the bus
Memory seeks validation of its target prediction by monitoring 
the bus

MemoryProcessor

No Signal: If exact calculation or correct 
prediction on the memory side

Error Signal: If incorrect prediction, e.g. send a 
limited-weight-code like 1000…0 by transition 
signaling 



8

Memory Decoder

The previous instruction, the previous address, and 
some additional information received from the 
processor are used to determine the next address

Previous Instruction Previous Address

ISA AWARE UNIT
+1

Ins. Offset
Adder

Bus Offset

Transition
Signaling

Bus

Current 
Address

Results of Predicting BRANCH, J and 
JAL

After these optimization, JR instructions become the major 
source of activity on the bus 

80.0 %- Encode sequential instructions using 
Offset-XOR-SM

92.1%
Above scheme plus 
- Calculate target addresses of J and JAL 

86.2%

Above scheme plus 
- Predict (in memory) the targets of 
branches assuming that they are taken
- There is one transition on the bus for each 
miss prediction, i.e., each not taken branch

% Reduction in 
switching activity

Level of the 
optimization



9

What to Do for JR and JALR

JR is used for
Function returns
Case statements

JALR
Used for pointer-based function calls
Very rare

JR penalty can be decreased if we store the return 
address of the corresponding function. For example

0x:40040 JAL Function_1
0x:40048 Instruction_2

JAL jumps to the beginning of function_1 and 
links the next address. The return address is 
stored in memory

Later on when Function_1 returns to execute instruction_2:
Function_1: …

…
JR Link_register Use the stored address to predict the value 

of the Link_register in memory

Predicting Return Addresses (JR)

Use a stack in the processor and in the memory to 
store the return addresses for each JAL 
For each JR:

In the processor, if it is a return instruction, freeze the bus.
Otherwise, send the target address
In the memory, if there is no activity on the bus, pop the 
return address from the stack. Otherwise, use the received 
address as the target

…

…

46d10a

404008

…A stack 
implemented both 
in the memory and 
the processor:

In memory:
…
JR Link_Register
…
…
…
JR Link_Register

No activity on Bus; pop the 
address and use it as target

Address received on Bus; 
Use the received address 
and don’t touch the stack



10

Stack Size

Number of Transitions Caused by JR for Differnt Sizes of 
Circular Stack (out of 15M instructions)

0

100000

200000

300000

400000

500000

600000

5 10 15 20 25 30 35 1000

vpr

parser

equake

vortex

gcc

art

A circular stack performs better than a linear stack
When the depth of nested function calls is very large, linear stack will 
become totally useless because of overflow

10 to 15 entries would be enough if a circular stack is used

Results

The remaining activity is due to the miss prediction of branch 
instructions

Each incorrect prediction costs one transition on the bus
Better prediction schemes can be used to eliminate more of the 
unwanted transitions
" About 1% improvement using an 8-bit global branch predictor
" Using more advanced techniques up to 99.5% reduction in activity can 

be achieved. This is however not practical because of huge hardware 
costs

97.3%

- Encode sequential instructions using 
Offset-XOR-SM
- Predict/Calculate BRANCH, J and JAL as 
previously stated plus
- Predict JR using a 15-entry circular stack

% Reduction in 
switching activity

Level of the 
optimization



11

Predicting Data Addresses

Calculate the memory address that an instruction is going to 
access based on the Rs field of the instruction.
MEM-INS Rt, (Rs)OFF
For example for load instruction: MEM(Rs+OFF) ! Rt

OFFRs FieldRt FieldMEM-INS

The OFF  field is extracted from the instruction
Memory should have its own Rs register
For correct prediction, the two copies of the Rs register 
should be synchronized, however:

The value of the Rs doesn’t change very often
The processor sends the target address when memory cannot 
calculate it and, at that time, the memory updates its Rs

Memory Decoder

RS field
Shadow

Register file RS

ISA AWARE UNIT

Memory Access Instruction

Sub
OFF

OFF

Adder
Address

Bus AddressTransition
Signaling

Bus

Address is either taken from the bus or is calculated locally
Received address from the bus, if any, will be used to update the 
shadow register file



12

Shadow Register File

The decoder and the encoder have a special shadow register 
file 
Shadow registers are updated with each memory access 
instruction (for the Rs that has been employed in that 
instruction)
If Rs does not change between two consecutive memory 
accesses, no activity will occur on the bus
An example for R8 is shown below

No bus accessModifies R8100100!80
No Activity OKMem Access using R8100100

Activity FAILMem Access using R8100!8080
No Activity OKMem Access using R88080

Bus Status PredictionInstructionR8 in 
memory

R8 in 
processor

Reducing Shadow Registers

Most of the time, only a small number of registers are used by 
the compiler as pointers to access memory 
We can therefore reduce the number of registers in memory to 
4 instead of 32
Register values are cached in this 4 entry register file by direct 
mapping
Activity reduction drops from 82.4% to 75.4%, but hardware 
cost on the memory side is significantly lowered

Mem_Ins R12, R10(+12)
…
…
Mem_Ins R14, R10(-16)
…
Mem_Ins R14, R6(-16)
…
…
ADD R6, R13,R7

Prediction Fail, Cache R10 in entry #3

Prediction OK

Prediction Fail, R10 is evicted and R6 is stored instead

R6 is invalidated



13

Memory Design

Memory should be aware of the Instruction Set 
format
Memory should be designed for a family of similar 
architectures
Most embedded processors use a RISC architecture 
with rather similar ISA
Programmable registers may be used to store some 
info about the Instruction Set format during 
initialization phase, so the additional hardware in the 
ISA-aware memory can be programmed (customized) 
at initialization time

Hardware Analysis and Power Evaluation

Hardware analysis:
Was performed by assuming separate instruction and data address 
buses
Was done for memory only (1.5v, 0.18u technology)
" For the instruction address bus: J, JAL and BRANCH instructions are 

predicted
" For the data address bus, a four-entry shadow register file was used

128514421Power Saved with BEAM (uW)
64%85%Percentage Saving over Bus

7199780Codec power + Bus Power with 
BEAM

1144364Power of BEAM memory Codec 
(uW)

6055416Bus Power with BEAM (uW)

200505205Original Bus Power (uW)

528311Num of Gates
588343Area ( * 1000 λλλλ2 )

720686Num of Literals
Data CodecInstruction Codec



14

Conclusions

We proposed an effective and low overhead 
technique for instruction address and data address 
bus encoding
Some blocks in the processor can be eliminated 
when using this encoding, but memory must be 
made ISA-aware
This technique resulted in 97% reduction for 
instruction addresses and 82% reduction for data 
addresses
Next step is to extend the basic approach to 
processors with internal caches


