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Abstract

We examine the problem of mapping a Boolean network using gates from a finite size cell library.

The objective is to minimize the total gate area subject to constraints on signal arrival time at the

primary outputs. Our approach consists of two steps: In the first step, we compute delay functions

(which capture gate area – arrival time tradeoffs) at all nodes in the network, and in the second step

we generate the mapping solution based on the computed delay functions and the required times

at the primary outputs. For a NAND-decomposed tree, subject to load calculation errors, this two

step approach finds the minimum area mapping satisfying a delay constraint if such solution exists.

The algorithm has polynomial run time on a node-balanced tree and is easily extended to mapping

a directed acyclic graph (DAG). We also show how to account for the wire delays during the delay

function computation step. Our results compare favorably with those of MIS2.2 mapper.



1 Introduction

The goal of logic synthesis is to produce a circuit which satisfies a set of logic equations, occupies

minimal area and meets the timing constraints. Most logic synthesis systems currently available

split this task into two phases – a technology independent phase and a technology dependent phase.

In the first phase, transformations are applied on a Boolean network to find a representation with the

least number of literals in the factored form. Additional timing optimization transformations are

applied on this minimal area network to improve circuit performance. The role of the technology-

dependent phase is to finish the synthesis of the circuit by performing the final gate selection from

a target library. The technology-dependent phase is, to a large extent, constrained by the structure

of the optimized Boolean network.

1.1 Prior Work

The technology mapping problem can be stated as follows: Given a Boolean network representing

a combinational logic circuit optimized by technology independent synthesis procedures and a

target library, we bind nodes in the network to gates in the library such that area of the final

implementation is minimized and timing constraints are satisfied.

A successful and efficient solution to the minimum area mapping problem was suggested by

K. Keutzer and implemented in programs such as DAGON [10] and MIS [7]. The idea is to

reduce technology mapping to DAG covering and to approximate DAG covering by a sequence

of tree coverings which can be performed optimally using dynamic programming as follows. A

set of base functions is chosen, such as a 2-input nand gate and an inverter. The optimized logic

equations (obtained from technology independent optimization) are converted into a graph where

each node is one of the base functions. This graph is called the subject graph. Each library gate is

also represented by a graph consisting of only base functions. Each such graph is called a pattern

graph. (Each library gate may have many different pattern graphs.) The technology mapping

problem is then defined as the problem of finding a minimum cost covering of the subject graph by

choosing from the collection of pattern graphs for all gates in the library. For area optimization,

the cost of a cover is defined as the sum of gate areas. For minimum delay optimization [18], the

cost of a cover is defined as the critical path delay of the resulting circuit.

This approach is extended in [24] to solve the technology mapping problem minimizing area

under delay constraints as follows. The authors first compute a range of “interesting” values for

the required times at each node (by finding the minimum area and the minimum delay mapping

solutions) and then divide this range into equal intervals. The best mapping solution for each of
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the required times are generated and stored at the node during a postorder traversal (from primary

inputs to primary outputs) of the tree. The final mapping solution is generated during a preorder

traversal (from primary outputs toward primary inputs) of the tree. In order to obtain high-quality

mapping solutions, this method requires a small time step resulting in large number of delay-area

points. In contrast, our method [4] works with the arrival times (as opposed to the required times),

keeps all (and only) non-inferior delay-area points, and does not need an a priori range of interest

for arrival times.

Technology decomposition (the procedure for converting an optimized Boolean network into

a NAND-decomposed network) is the precursor to the technology mapping step. It is an open

problem to determine which of the possible NAND-decomposed networks yields an optimum

solution when an optimum covering algorithm is applied [3]. Different decomposition schemes for

minimizing area [18], minimizing delay [14, 26], or reducing routing complexity [16] have been

introduced by various authors. In this paper, we assume that the DAG has already been decomposed

into two-input NAND and inverter gates.

Other technology mapping programs based on rules [6, 2], heuristic gate merging and sizing

[11], algebraic identity [14], and Boolean matching [12] have also been proposed in the literature.

1.2 Overview and Organization of the Paper

In this paper, we present an efficient algorithm for generating a technology mapping solution with

minimum gate area subject to given delay constraints. Our approach consists of two steps: In the

first step, we compute delay functions (which capture arrival time – gate area tradeoffs) at all nodes

of a NAND-decomposed network, and in the second step we generate the mapping solution based

on the computed delay functions and the required times at the primary outputs.

The paper is organized as follows. In Section 2, we introduce some terminology and describe

the timing model. Section 3 presents details of our algorithm. Sections 4 and 5 are devoted to

the extension from trees to general DAGs and the complexity analysis. Section 6 describes an

extension to account for the wire delays during the delay function computation step. We present

our results and concluding remarks in Sections 7 and 8.

2 Terminology and Timing Model

Consider a match � at node � of a NAND-decomposed tree. The inputs to node � consist of nodes

��� that fanout to node � (that is, �
�
���1

�
���2 if � has two inputs or �

�
���1 if � has a single input).
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The nodes which are covered by match � are denoted by ����� ��� ���
�
	 ��� . The nodes which are not

in ����� ��� ���
�
	 ��� but fanin to ����� ��� ���

�
	 ��� are denoted by � �������� � �
	 ��� . The mapped-parent
�
� ���

is the set of nodes ��� for which there exists a matching gate � such that � ����� �������� � ����	 ��� . Note

that given node � and gate � matching at � , � �������� � ��	 ��� are uniquely determined. However, �

may have many distinct mapped parents (Figure 1).

Figure 1 goes here.

With each node in the network we store a delay curve (also referred as a delay function). A

point on the curve represents the arrival time at the output of the node and the total gate area which

is required to map its transitive fanin cone up to (and including) the node. In addition to the area and

delay value, the matching gate and input bindings for the match are also stored with each point on

the curve. Points on the curve represent various mapping solutions with different tradeoffs between

area and speed. We are interested in a mapping with minimum area satisfying delay requirements.

Consequently, we can drop point � 1 on the curve if there exists another point � 2 on the curve with

lower area but equal or lower delay. This is possible because the solution associated with � 2 is

superior to the solution associated with � 1 in terms of area, delay or both. By dropping points,

the delay curve can always be made monotonically non-increasing without loss of optimality. We

would refer to � 1 as an inferior point. Point ��� ��� � �!	#"$��� is a non-inferior point if and only if

there does not exist a point � �%� �&	'"�� such that either �)(*���!	'",+-"$� or �)+*�.�/	'",(0"1� .
Lemma 2.1 The delay function for a node contains the set of all non-inferior points and is

monotonically non-increasing.

In addition, if the difference in delay among two points is small (according to some user-

specified parameter 2 ), we drop the point with higher area without any noticeable impact on the

quality of the result. Similarly, points which are close in terms of their areas are merged together.

For the delay computation, we have adopted the pin-dependent MIS library delay model as

described next. Suppose that gate � has matched at node � , then the output arrival time at � is

given by:

"3�4�/�.53"36 � �
	 �7	 ��8 � � �9"�: 8�;=<
�
8'>�?'@=A.BC8/D E#F �HG

�
D E �JI

�
D ELK ��8 � "3�/�/�.5�"36 � ����	 � �H	 ��8�; ���

where
G
�
D E

is the intrinsic gate delay from input � � to output of � ,
I
�
D E

is the drive resistance of � cor-

responding to a signal transition at input � � ,
�M8

is the load capacitance seen at � , "��/�/�.53"�6 � ���N	 � �O	 ��8�; �
3



is the arrival time at input ��� corresponding to load
� 8�;

seen at that input, and � � is the best match

found at input ��� .

The above equation can be easily modified to calculate the rise or fall delays based on the phase

of the gate (INVERTING, NON-INVERTING or UNKNOWN), the corresponding rise and fall

delay parameters for the inputs, and the output load. To simplify the exposition however, we will

use the above generic delay equation.

This delay equation is based on a static timing analysis model which ignores the false path

problem. Doing true timing analysis ([13, 5]) during technology mapping will significantly increase

the computational and space complexities of our proposed algorithm as follows: 1) Timing analysis

will have to be performed in a (either explicit or implicit) path-based manner rather than the block-

oriented manner in which it is currently performed; 2) The new delay equation will not satisfy the

principle of dynamic programming and hence the number of area-delay tradeoff points that will

have to be stored in the delay functions of nodes will become exponential (as the points will have

to be annotated with the sub-path that generates them and the sensitization conditions along that

sub-path). In this paper, we will not consider this issue further.

3 Tree Mapping

In this section, we focus on tree mapping. Later, we shall describe extensions to DAG mapping.

In particular, we describe two tree-traversal operations which are applied to a NAND-decomposed

tree in order to obtain a technology mapping solution which minimizes the total gate area while

satisfying the timing constraints.

First, a postorder traversal is used to determine a set of possible arrival times at the root of the

tree. Once the user specifies a single required time, a second, preorder traversal is performed to

determine a specific technology mapping solution. This scheme is similar to that proposed in [23]

in order to solve the optimal orientation problem for a slicing tree of macro-cells.

We begin by stating that the possible accumulated gate areas at each node can be described as

a function of the arrival times at the node. The accumulated gate area is the total area used by

the gates which have matched nodes in the transitive fanin cone of the node. The arrival time is

the earliest time at which the signal at the output of the node settles within 50% of its final value

(due to a signal transition at some primary input). The delay function is therefore represented by

a set of ordered pairs of real positive numbers
� �&	'"�� , where a piecewise linear function " ����� �'�

can be constructed which describes the graph of all possible accumulated gate areas. This function

describes all possible arrival time-area tradeoffs at a given node. The delay function at an input node
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of the NAND-decomposed tree consists of ordered pairs
� �&	'"�� where � and " have been specified

by the user (in case of primary inputs of the network) or have been previously computed (in case

that inputs to this tree are outputs of other trees).

3.1 Postorder Traversal

On the first traversal, we begin at the leaf nodes of the NAND-decomposed tree. Since each leaf

node possesses a set of possible arrival time-area points which are reflected in its delay function, the

delay function at any mapped-parent
�
� � must also reflect these possible arrival time-area tradeoffs.

A postorder traversal of the NAND-decomposed tree is performed, where for each node � and for

each gate � matching at � , a new delay function is produced by appropriately merging the delay

functions at the � ���� ��� � ��	 ��� . Merging must occur in the common region among all delay functions

in order to ensure that the resulting merged function reflects feasible matches at the � �������� � �
	 ��� .
The delay functions for successive gates � matching at � are then merged by applying a lower-

bound merge operation on the corresponding delay functions. At a given node � , the resulting

delay function will describe the arrival time-area tradeoffs in propagating a signal from the tree

inputs to the output of � .

Figure 2 goes here.

To illustrate the delay function computation procedure, consider the example in Figure 2. It

shows the computation of the delay function for match � at node � . The inputs to the match are

nodes � and � . The delay functions for � and � are known at this time. To compute a point on

the delay function for node � , we select a point from delay function of inputs, say point " on delay

curve of node � . The delay of point " is 3 units. So, we look for a point on the delay function of

node � with delay less than 3 which has the minimum area. In this example,
�

is the desired point.

We therefore combine points " and
�

to generate point " � on delay-curve(D), with

"��/�/�.53"�6 � " � � � "3�4�/�.53"36 � " � � � ��6�"�� � ���
"��1��" � " � � � "3�1��" � " � � "3�1��" �H� � � "3�$��" �

��" �'�4� �
Similarly, we generate all other points on the curve. Note, that there is no point on delay-curve(D)

corresponding to the point � on delay-curve(B), as there is no point on delay-curve(A) which has
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delay less than or equal to delay( � ).

Figure 3 goes here.

To illustrate the lower bound merging procedure, consider the example in Figure 3. Here, we

have already generated the delay-curves for the matching gates � 1 and � 2 at node
�

. In order to

obtain the composite delay curve at � , we must merge the two delay curves into one. This operation

is simple since we only need to keep the non-inferior points on either curve. The minimum of

the two delay-curves is computed, and information is attached to each point on the resulting delay

curve indicating which gate alternative yields that point.

The delay function computation and merging are performed recursively until the root of the

tree is reached. The resulting function is saved in the tree at its corresponding node. Thus, each

node of the tree will have an associated delay function. The set of
� �&	'" � pairs corresponding to the

composite delay function at the root node will define a set of arrival time-area tradeoffs for the user

to choose from.

3.2 Preorder Traversal

The user is allowed to select the arrival time-area tradeoff which is most suitable for his application.

Given the required time � at the root of the tree, a suitable
� �&	'" � point on the delay function for

the root node is chosen. The gate � matching at the root that corresponds to this point and

� �3������ � �������&	 ��� are, thus, identified. The required times � � at � ���� ��� � �������&	 ��� are computed from � ,
� , and the observation that � �������� � �������&	 ��� must now drive gate � . The preorder traversal resumes

at � ���� ��� � �������&	 ��� where � � is the constraining factor and a matching gate � � with minimum " �
satisfying � � is sought.

3.3 Timing Recalculation

The gate delay is a function of the load it is driving. During the postorder tree traversal, the output

of current node ��� , is not mapped hence the load capacitance is unknown (unless, all the gates

in the library have identical pin capacitances). This load cannot be taken to be zero as that will

introduce excessive error during the postorder traversal; at the same time, the average number of

pins per gate in a mapped circuit is between 2 and 3, therefore, we heuristically choose the load
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value to be that offered by the smallest two-input NAND gate in the library. When we come to a

node � � mapped-parent
�
����� with matching gate � , we know the exact load seen by � � . This load

is equal to the input capacitance of � and is, in general, different from the default load. Therefore,

in order to calculate the arrival time at node � , the output arrival times for all nodes in � ���� ��� � ��	 ���
must be adjusted to account for the change in the load capacitance [15]. Similarly, during the

preorder tree traversal, when a gate � is selected to match at � , the load seen by � �3������ � �
	 ��� must

be recalculated.

In order to account for this load change (
�
� ), the delay curves at the inputs have to be appropriately

shifted. In particular, since the drive resistance of gate matching at � � and giving rise to a point 3�
on delay-curve of ��� is stored with that point, the delay shift is computed as

�
�
K  � � ��" � � � � �4�H5 � .

(See pseudo-code for compute delay curve and assign best gate algorithms. Details of timing

recalculation are given for compute delay curve.)
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function compute delay curve(n)
begin

for each candidate match � at the node � do
for each input � of match � do
� �
�
� � � � ���/� � �/��� � � � �

� �/�.5�� � K
� � 6 �/" �

�
� = calculate change in load

end
for each input � of match � do

for each point 3� on the delay curve of input � do
�� � � ��6�"�� �  � � � ��6�"�� � �

�
K  � � ��" �'� � � �/�.5 � � � �

feasible-flag = true
for each input � of match � do

if �
� � , continue

find  � � where  � � � "3�1��" is minimum and � � � � ��6 " � ( �� � � ��6�"���� � �
if no such  � � found

feasible-flag = false
break

end
end
if feasible-flag = true
�� � ��" �'� � �
�� ��� � � � � � � � � ���� ��� � ��	 ���
�� � "3�1��" � � � "3�1��" �
	 �  � � � "3�1��"
insert �3 in the delay-curve

�
� �

end
end

end
end
sort delay curve of � based on the delay
delete the inferior points on the curve
reduce the non-inferior points by merging

end
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function assign best gate(n, t)
begin

calculate the current load based on the partial mapping
shift delay-curve

�
� � to reflect the change in load

find a point  � on delay-curve
�
� � which satisfies the

required time � and has minimum area
� � � ����� ��" �'� �  � � ��" �'�
� � � ����� � � � � � � � �  � � � � � � � � �
for each input ��� � �3������ � 3� � ��" �'�1	 � � do
� �
�
� � � � ���/� � �/��� � � � �

� �/�.5�� � K
� � 6 �/" �

assign best gate
�
���.	�� � � � �

end
end

3.4 Accounting for the Unknown Load Values

The shift in delay for a point is a function of change in the load and the matching gate’s driving

resistance at the point. Different points on a curve may shift by different amounts depending on

the matching gate. Differential shift may make the curve non-monotonic. In the worst case, a

previously inferior point on the curve might have become non-inferior, had it not been dropped

earlier. This may cause an optimal mapping being rejected. A possible solution is not to drop

inferior points from the delay curves till we reach the output node. This will require a large number

of points being stored for each curve without much gain.

Theorem 3.1 Let
I
����� and

I
� �

8
be the maximum and minimum driving resistances,

�
����� and

�
� �

8
the maximum and minimum loads among gates in the library, and 2 the error tolerance. If� I

����� � I
� �

8 � K � �
����� � � � � 8 � (-2 , then no optimal solution is dropped.

Proof Maximum delay shift among the points on the curve is given by
� I

����� � I
� �

8 � K
� �

����� � � � � 8 � . If this quantity is ( 2 , then the error will be within the specified tolerance.

Corollary 3.2 If all the gates have the same pin capacitances, then the tree traversals will produce

the optimum solution.
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Corollary 3.3 If all the gates have the same drive resistances, then the tree traversals will produce

the optimum solution.

The other possible solution is to use a load bin method similar to that of MIS2.2. For each

load bin, we store a delay curve. If the load bins are separated by less than 2 � � I
����� � I

� �
8 � , then

the timing error will be less than 2 . In practice, most of the libraries have a small number of gate

series (e.g., performance- versus area-optimized, low-power versus high-power series). Within

each series, the gates tend to have almost the same pin capacitances. Therefore, use of one load

bin per gate series should be sufficient.

Note that during delay estimation we ignore the wire load (or alternatively, approximate it based

on the expected average interconnect length and the capacitance per unit length of interconnect).

In fact, wire load can vary by a large amount (compared to the variance in pin capacitance)

depending on the placement and routing. Therefore, it does not pay much to improve the accuracy

of computing gate loads while ignoring (or only roughly capturing) the wire loads.

4 DAG Mapping

Most of the real circuits are not trees, but general DAGs. The problem of mapping a DAG even

for the constant load model is NP-hard [3]. Therefore, we resort to heuristics. One heuristic is to

decompose the DAG into a number of trees such that the inputs for each tree come from other tree

outputs or the primary inputs. During the delay curve computation step, entire trees are processed

in postorder and delay curves are computed for each primary output of the DAG. During the gate

assignment step, entire trees are mapped in preorder. This heuristic which does not allow mapping

across tree boundaries is similar to that used by DAGON.

Alternatively, we could avoid decomposing the DAG into trees as follows. During the delay

curve computation step, nodes are visited in postorder. For each node, we compute the delay curve

as in case of trees. However, if the input for a candidate match at the node is coming from a

multiple fanout node we divide the area contribution of that input by the fanout count of the input

node. By reducing the area contribution we tend to favor a solution in which multiple fanout nodes

are preserved after mapping, which reduces logic duplication and improve the final mapped area.

This heuristic which permits tree boundary crossing was also implemented in the MIS mappers

[7, 24]. This approach leads to smaller circuits, and is the one which we adopted for our mapper.

During the gate selection step, if we come to a node which has already been mapped, we check

if the mapped solution at the node satisfies the timing requirement. If so, we keep the mapping;
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otherwise, we replace it with another solution from the delay curve which satisfies the current

timing requirement and has minimum area. The new solution may have higher area compared to

the previous solution. Note that satisfying the current timing can only decrease the delay for the

previous cones, although it may increase the total gate area.

The solution for circuits with multiple outputs also depends on the order in which the output

cones are processed. During the delay curve generation step, when we are computing the signal

arrival time for a match � at node � , we need to recalculate the load seen at � �3������ � �
	 ��� . For

��� � � �3������ � �
	 ��� , some of the fanouts of node ��� (other than � ) may have already been mapped

(because they are part of a logic cone which has been processed), and hence, the contribution of

these fanouts to the load can be calculated exactly. This incremental load recalculation will result

in more accurate arrival time calculation at the output of � . Similar incremental load recalculation

is applied during the gate assignment step.

function technology map( � , � )
� is a NAND-decomposed Boolean network
� is a vector of required times at primary outputs
begin

for each node � ��� (in postorder) do
compute delay curve

�
� �

end
for each primary output  � ��� do

assign best gate
�  � 	�� >�� �

end
end

5 Complexity Analysis

Consider a gate � (with � inputs) matching at node � where input � has � � points on its delay curve.

The delay curve corresponding to match � at node � has � � 	 �
��� 0 � � points in the worst case.

The time required to generate each point, assuming that delay curve for each input is sorted, is	L� ��6 � � � � ����� ��� (time for binary search) where � ����� is the maximum � � . Thus, the total time for

generating delay curve per candidate match is
	L� �
� 6 � � � � ����� ��� .

For a finite size library, the maximum number of gates that can match at a node � is bounded

which means that the number of points on the delay-curve
�
� � will remain linear in the total number
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of points on the delay-curve of � �3������ � �
	 ��� for various matching gates. Therefore, the number

of points increases linearly from one level to another. Despite this, the number of points could

still grow exponentially in terms of the number of levels in the tree. However, if the tree is node-

balanced (its height is logarithmic in the number of its leaf nodes), then the number of points will

remain polynomial. In practice, the increase in number of points is even lower due to the fact that

a large number of points generated are inferior points which are dropped and not propagated to

higher levels.

It is observed that the range of areas generated for various solutions varies only by a factor of

two, which means that if we use only 50 points at each node, the solutions produced will be at

most 2% poorer in the area compared to the case where unbounded number of points are allowed.

With a fixed upper bound � on the number of points, the time to generate delay curve becomes	L� � 2 � 6 � � � � ��� which is a constant since the number of inputs of any gate in the library is bounded.

6 Placement-Driven Mapping

6.1 Motivation

Interconnections are becoming a major concern in today’s high-performance, high-density ASIC

designs because the distributed RC time delay of these lines increases rapidly as chip sizes grow

and minimum feature sizes shrink [1]. With recent studies [20, 9] indicating that interconnections

occupy more than half the total chip area and account for a significant part of the chip delay, it is

appropriate that wiring is integrated into the cost function for logic synthesis.

To elaborate on the importance of the wire load, consider a two-input NAND gate driving an

inverter gate through 0.2 �&� of aluminum interconnect (2 � � wide, 0.5 � � thick, with a 1.0

� � thick field oxide beneath it). 0.2 �&� is the expected length of a local interconnect line on a

2 �&� K
2 �&� chip [1]. We calculate the rise time (to 50% of its final value) at the input of the inverter

gate using two methods. One method ignores the capacitance of the interconnect line and uses

� ��6�"�� �-G�E �*I E K � E �
0 � 4 � �

where
G#E

is the intrinsic gate delay,
I E

is the on-resistance of the driver gate, and
�ME

is the input

capacitance of the fanout gate. The second method [19] uses

� ��6�"�� � G�E �JI E K � � E � ��?'8
�
@�K 6.� � �3��� � � 1 � 0 �7�
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where
��?'8

�
@

is the interconnect capacitance per unit length and 6.� � �3��� is the interconnect length.1

Gate and interconnect parameters are taken from data sheets for an industrial 1.0 micron ASIC

library:
G'E �

0 � 3 � � ,
I E��

1 � Ω,
� E��

0 � 1�� ,
��?'8

�
@ �

3�� �
�&� . The delay calculations clearly

show that the interconnect capacitance dominates the gate input capacitance.

In summary, with the existing technology, the capacitive term is dominated by the capacitance

between the interconnection and substrate. For local aluminum lines, the resistive term is dominated

by the on-resistance of the MOS transistor. As the chip dimension increases and the minimum

feature size decreases, the interconnection capacitance bottoms at about 1 - 2 �� �
�&� while the

input gate capacitance decreases. Therefore, the RC delay of interconnect lines will become even

more dominant in the future.

In [15] an attempt is made to increase the interaction between logic synthesis and technology

mapping. The idea is to generate a “companion” placement solution for the circuit before it is

mapped. This placement is then used to evaluate the cost of a matching gate during the mapping

process. The placement is dynamically updated in order to maintain the correspondence between

the logic and layout representations. In the end, a mapped network and a corresponding placement

solution are generated. The placement solution is then globally relaxed in order to produce a

feasible placement according to the target layout style (e.g., standard-cell or sea-of-gates). Using

these techniques, circuits with smaller area and higher performance have been synthesized [15].

6.2 Accounting for the Wire Delays

For submicron technologies, the effect of interconnect on circuit delay is of more importance than

its effect on the circuit area. Therefore, we only consider the former effect here. The latter effect

can be easily captured in a similar fashion. It is straight-forward to incorporate the wire cost into

the area-delay mapper as described next.

The delay function at each node now consists of a set of non-inferior points ˇ� �%� ˇ�&	'" � where ˇ�
is a number representing the gate and wire delay, and " is the area. The load at the output of a node

consists of two components: the gate capacitance of fanout nodes and the wire load. The latter

is calculated as the product of the wire length and the capacitance per unit length of interconnect.

Node positions are needed to compute the wire length. These position are however known after

the initial placement of the unmapped network. Consequently, the wire length can be calculated

using a number of different models. These models include the star connection model, the enclosing

1Interconnect resistance may be ignored without introducing much error. In addition, the transmission line properties

of interconnect lines are ignored for on-chip connections.
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rectangle approximation model, and the single trunk Steiner tree model. We use the last model as

it is more accurate, yet can be computed efficiently. A single trunk Steiner tree consists of a single

horizontal (vertical) trunk to which all nodes are joined by short vertical (horizontal) line segments.

In order to compute the wire length, first the direction of the trunk is determined by considering

the : and � direction spans of all the locations for nodes and picking the direction with larger total

span. Then the location of the trunk is found by finding the median of the locations for nodes in

the appropriate direction.

It is desirable to incrementally update the position of matched gates while the delay functions

are being calculated. This operation results in positions which more accurately reflect the position

of the gates after the mapping procedure. For this purpose, once a gate � is mapped at a node � , the

position of � is updated by placing � at the center of the positions for its (mapped) fanin gates and

fanout nodes. Each point on the area-delay curve of a node is thereby annotated with the position

of the gate matching at the node.

The network is then mapped one logic cone at a time during the preorder traversal as described

in section 3.2.

7 Experimental Results

These procedures have been implemented in a C program called ADmap. We have run the

recommended set of the MCNC benchmarks [27] (except for
�

6288 benchmark where the detailed

routing step aborts) using the ADmap and compared the results to the MIS2.2 technology mapper

[24]. The same technology independently optimized blif files were used as input in both cases. The

circuits were first optimized using the script.rugged [21]. They were then decomposed into NAND

gates and mapped using the MIS2.2 [24] and the ADmap. Finally, the circuits were placed using

GORDIANL [22] plus DOMINO [8] and routed using YACR [17]. All results are reported after layout

is completed. We used the lib2 library of the MIS2.2 package, assumed a value of 3 � �
� � for the

interconnect capacitance per unit length, and allowed a maximum of 16 points on each delay curve

(see section 5).

Table 1 presents the total gate area and the longest path delay after technology mapping and

the total chip area (including gate and wire areas) and the circuit delay (including gate and wire

delays) in the area mode of MIS2.2 mapper ( map -s ). Table 2 shows results of the ADmap in

the area mode: All entries in this table are normalized with respect to the corresponding entries

in Table 1. For example, the post-mapping results of the ADmap for the 9symml circuit are

14



� 1533
K
� 9848

�
� 1510 �9� 2 and 24 � 07

K
� 9238

�
22 � 23 �7� , respectively while its post-layout

results are � 5697
K

1 � 027
�

0 � 5851 �9� 2 and 31 � 82
K
� 9484

�
30 � 18 � � , respectively. On average,

the ADmap produces post-mapping results with 5% less area and 4% less delay. The ADmap

produces post-layout results with the same area, but with 3% less delay.

Table 3 shows the post-mapping and post-layout results for the MIS2.2 mapper in the timing

mode ( map -n 1 -s ) while Table 4 contains the normalized results for the ADmap.2 Entries in this

table are normalized with respect to the corresponding entries in Table 3. On average, the ADmap

produces circuits with 17% less area and 18% less delay (after mapping) or alternatively with 10%

less area and 17% less delay (after layout). Table 5 shows the ADmap results for a different input

parameter
�

(increasing
�

tends to increase area and reduce delay). In this case, the ADmap

produces circuits with 4% less area and 28% less delay (after mapping) or alternatively with 8%

more area, but 26% less delay (after layout).

The normalized placement-driven ADmap (PLmap) results are shown in Table 6 for the same

input parameter as that used for generating the data in Table 5. Entries in this table are again

normalized with respect to the corresponding entries in Table 3. The PLmap produces circuits with

12% less area and 24% less delay (after mapping) or alternatively with 4% less area and 22% less

delay (after layout).

Table 7 contains the CPU time spent on a Sparc Station II with 64 MByte of memory for each

mapper. The ADmap is on average 6.5 times slower than the MIS2.2 mapper while the PLmap

is only 27% slower than the ADmap. The increase in run-time for the C432 benchmark with 136

gates is 7.5, for the C5315 benchmark with 1138 gates is 5.5, and for the des benchmark with 2880

gates is 8.5. This shows an almost constant increase in the run time of the ADmap over that of the

MIS2.2 mapper. This result is reasonable in light of the complexity analysis given in section 5.

The actual post-layout % delay improvement of the ADmap over the MIS2.2 mapper is reduced

if we do fanout optimization (Fanopt) after technology mapping. This is because circuits mapped

by the MIS2.2 mapper have worse timing to begin with, thus the effect of fanout optimization on

these circuits is more pronounced. Although the difference between ADmap and MIS2.2 mapper

diminishes after this postprocessing step, the ADmap continues to outperform the MIS2.2 mapper

by a good margin. This is demonstrated in Tables 8 and 9 which were generated as follows. After

technology mapping by either ADmap or MIS2.2 mapper, we performed fanout optimization using

the “-AFG” option of the MIS2.2 mapper which does fanout optimization followed by area recovery

2These results were generated without fanout optimization as we wanted to compare the technology mapping

procedures without influence from other optimization procedures.
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and a second fanout optimization pass (see [24] for details). The resulting circuits are then placed

and routed.

Table 8 presents the total gate area and the longest path delay after technology mapping and

fanout optimization, and the total chip area (including gate and wire areas) and the circuit delay

(including gate and wire delays) in the timing mode of MIS2.2 mapper ( map -n 1 -AFG -s ).

Table 9 shows results of the ADmap (
� �

1 � 0) in the timing mode; As before, all entries in this

table are normalized with respect to the corresponding entries in Table 8. On average, the ADmap

with Fanopt produces circuits with 5% less area and 9% less delay (after fanout optimization) or

alternatively with 8% less area and 11% less delay (after layout) compared with the MIS2.2 mapper

with Fanopt. Similar results are obtained when comparing PLmap and MIS2.2 mapper.
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MIS2.2 (Area Mode)

Example Post-Mapping Post-Layout

cell area delay chip area delay

� � 2 � � �9� 2 � �
9symml .1535 24.07 .5697 31.82

C1355 .3869 24.27 1.210 30.67

C1908 .4370 36.97 1.718 50.77

C2670 .6078 32.55 3.794 46.89

C3540 1.065 55.77 5.132 80.36

C432 .1958 45.74 .7119 60.46

C5315 1.408 38.96 8.735 56.45

C7552 1.866 82.67 11.97 122.3

C880 .3475 41.28 1.224 54.11

apex6 .6217 24.72 2.794 36.44

b9 .1127 8.71 .3805 11.50

dalu 1.054 68.81 4.713 102.8

des 2.756 177.3 16.60 295.9

k2 1.071 32.86 5.748 54.50

rot .5860 26.86 3.149 38.98

t481 .6570 27.74 3.044 43.72

Table 1: MIS2.2 results in area mode
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ADmap (Area Mode)

Example Post-Mapping Post-Layout

cell area delay chip area delay

� � 2 � � �9� 2 � �
9symml .9848 .9238 1.027 .9484

C1355 .9304 .9705 .8526 1.021

C1908 1.003 .9635 .9420 .9328

C2670 .9877 .9940 .9700 1.048

C3540 1.005 1.073 .9750 1.100

C432 1.018 1.075 .9955 1.092

C5315 1.004 1.060 1.001 1.054

C7552 1.006 .7881 .9854 .7556

C880 1.045 1.225 1.028 1.171

apex6 1.004 .7687 1.035 .7749

b9 1.049 .8250 1.053 .8773

dalu 1.040 1.029 1.052 1.023

des 1.023 1.107 .9946 1.073

k2 1.034 .8606 1.095 .8998

rot 1.022 .9667 1.021 .9645

t481 1.029 .7559 .9705 .7124

Average .9514 .9615 .9998 .9654

Table 2: Normalized ADmap results in area mode
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MIS2.2 (Timing Mode)

Example Post-Mapping Post-Layout

cell area delay chip area delay

� � 2 � � �9� 2 � �
9symml .2120 21.41 .7030 28.49

C1355 .5540 22.81 1.965 34.13

C1908 .5470 35.58 2.034 50.05

C2670 .8430 29.56 5.150 45.35

C3540 1.382 59.20 5.842 84.94

C432 .2612 43.38 .8713 56.03

C5315 1.744 38.64 10.62 52.14

C7552 2.719 66.02 15.17 96.54

C880 .4199 45.60 1.555 59.45

apex6 .8463 24.50 3.477 37.87

b9 .1364 9.140 .4193 11.58

dalu 1.568 62.55 5.986 92.96

des 4.251 226.5 22.38 317.4

k2 1.280 26.72 6.224 47.55

rot .7205 27.33 4.165 42.20

t481 .8491 21.07 3.554 35.35

Table 3: MIS2.2 results in timing mode
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ADmap (Timing Mode))

Example Post-Mapping Post-Layout

cell area delay chip area delay

� � 2 � � �9� 2 � �
9symml .7177 1.038 .8104 1.033

C1355 .7286 1.003 .6196 .8801

C1908 .9940 .8845 1.007 .8765

C2670 .7220 .8912 .7249 .8432

C3540 1.073 .8782 1.265 .9020

C432 .9662 .6774 1.060 .7146

C5315 .8659 .8571 .8912 .9672

C7552 .7221 .8250 .8231 .8055

C880 .8961 .8628 .8508 .8548

apex6 .7406 .7102 .7911 .7090

b9 .8673 .7861 .9703 .8298

dalu .8689 .8031 1.093 .8299

des .6672 .2093 .7548 .4677

k2 .8623 .8381 .9981 .8315

rot .8628 .8688 .9553 .8656

t481 .7967 .9952 .8240 .8783

Average .8343 .8204 .9017 .8304

Table 4: Normalized ADmap results in timing mode (
���

0 � 5)
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ADmap (Timing Mode))

Example Post-Mapping Post-Layout

cell area delay chip area delay

� � 2 � � �9� 2 � �
9symml .9846 .7116 1.040 .7335

C1355 .9179 .8806 .8243 .7831

C1908 1.055 .8889 1.142 .9192

C2670 .8079 .6525 .8455 .6374

C3540 1.075 .8778 1.269 .9019

C432 1.420 .6518 1.842 .7404

C5315 .9010 .8239 .9305 .9367

C7552 .7899 .8211 .8854 .8083

C880 1.080 .6586 1.059 .6536

apex6 .7587 .6983 .8529 .6477

b9 1.020 .5955 1.221 .6545

dalu .8808 .7848 1.079 .8169

des .7918 .2653 .9196 .3341

k2 1.009 .6732 1.357 .8021

rot .9079 .7353 1.010 .7011

t481 .9065 .8406 .9714 .8093

Average .9561 .7224 1.077 .7424

Table 5: Normalized ADmap results in timing mode (
���

1 � 0)
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PLmap (Timing Mode))

Example Post-Mapping Post-Layout

cell area delay chip area delay

� � 2 � � �9� 2 � �
9symml .8687 .7403 .9483 .8122

C1355 .8283 .9007 .7415 .7972

C1908 1.033 .8875 1.130 .9014

C2670 .7303 .7805 .7335 .7847

C3540 1.039 .8411 1.233 .9254

C432 1.053 .7025 1.243 .7399

C5315 .9582 .8954 .9645 1.036

C7552 .7356 .8071 .8284 .8008

C880 .9337 .7501 .9301 .7547

apex6 .7538 .7102 .8448 .6683

b9 1.040 .5499 1.213 .5518

dalu .8107 .9354 .9332 .9339

des .6906 .3003 .7928 .3669

k2 .9010 .7272 1.048 .7432

rot .9175 .7651 1.027 .7310

t481 .8087 .9164 .8380 .8724

Average .8813 .7630 .9646 .7762

Table 6: Normalized PLmap results in timing mode (
���

1 � 0)
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Example MIS2.2 map ADmap PLmap

� � �
9symml 9.4 35.3 44.4

C1355 21.9 127.1 159.7

C1908 21.5 180.1 213.4

C2670 32.2 176.6 222.0

C3540 51.1 524.2 616.5

C432 11.1 83.0 100.3

C5315 66.4 365.5 480.2

C7552 85.7 663.3 796.7

C880 18.0 81.4 105.5

apex6 31.6 75.2 116.2

b9 5.8 6.1 9.8

dalu 52.6 587.0 708.3

des 130.5 1107.1 1245.8

k2 46.3 357.5 433.9

rot 28.1 84.0 122.5

t481 34.0 340.4 359.9

Table 7: CPU times on a Sparc Station II with 64 MByte of memory
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MIS2.2 (Timing Mode)

Example Post-Mapping Post-Fanopt Post-Layout

cell area delay cell area delay chip area delay

�9� 2 � � �9� 2 � � �9� 2 � �
9symml .2120 21.41 .2213 15.56 .7762 20.82

C1355 .5540 22.81 .6296 19.68 2.183 29.93

C1908 .5470 35.58 .5521 27.85 2.134 41.67

C2670 .8430 29.56 .7971 20.12 5.167 35.15

C3540 1.382 59.20 1.353 39.98 6.000 64.22

C432 .2612 43.38 .2677 26.37 .9171 34.92

C5315 1.744 38.64 1.698 26.90 10.32 41.35

C7552 2.719 66.02 2.334 35.21 14.98 60.34

C880 .4199 45.60 .4315 31.91 1.635 42.65

apex6 .8463 24.50 .8124 16.79 3.517 28.66

b9 .1364 9.140 .1350 7.480 .4295 9.830

dalu 1.568 62.55 1.462 41.12 6.062 61.56

des 4.251 226.5 3.660 22.84 21.18 47.40

k2 1.280 26.72 1.276 18.02 6.815 36.21

rot .7205 27.33 .7057 17.67 3.649 27.72

t481 .8491 21.07 .8607 15.53 3.818 27.24

Table 8: MIS2.2 results in timing mode
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ADmap (Timing Mode)

Example Post-Mapping Post-Fanopt Post-Layout

cell area delay cell area delay chip area delay

�9� 2 � � �9� 2 � � �9� 2 � �
9symml .9846 .7116 .8280 .9214 .8458 .9046

C1355 .9179 .8806 .8372 .9157 .7940 .9291

C1908 1.055 .8889 .9563 1.017 .8652 1.003

C2670 .8079 .6525 0.940 .8020 .8178 .7638

C3540 1.075 .8778 1.050 .8939 1.034 .8873

C432 1.420 .6518 1.137 .9351 1.080 .9050

C5315 .9010 .8239 .8679 .9676 .8099 .9124

C7552 .7899 .8211 .9791 1.008 .7868 .8810

C880 1.080 .6586 1.023 .7972 1.090 .8186

apex6 .7587 .6983 .8817 .8600 .8583 .8384

b9 1.020 .5955 1.054 .8677 1.077 .8921

dalu .8808 .7848 .8883 1.029 .9493 1.015

des .7918 .2653 .9425 1.031 .9781 1.012

k2 1.009 .6732 1.035 .8485 1.037 .9022

rot .9079 .7353 .9240 .8519 .8282 .7892

t481 .9065 .8406 .9417 .8613 .9050 .8377

Average .9561 .7224 .9515 .9129 .9222 .8932

Table 9: Normalized ADmap results in timing mode (
���

1 � 0)
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Figure 4 goes here.

Figure 5 goes here.

The graphs in Figures 4 and 5 show a range of mapped solutions produced for two benchmark

circuits. These plots serve to illustrate the generality of our method in obtaining a range of

solutions with different tradeoffs under user control. Our algorithm subsumes technology mapping

techniques for minimum area and/or delay.

8 Conclusions

We have presented a powerful technique for technology mapping which generates solutions with

different area/delay tradeoffs. Our technique unifies techniques for technology mapping with

different objectives (minimum area, maximum performance, and minimum area under delay con-

straints) and is based on principles of dynamic programming and computation of delay curves. For

a node-balanced NAND-decomposed tree, our algorithm finds the optimum area solution under

delay constraints (subject to error due to unknown loads during delay computation step) in polyno-

mial time and space. For the general problem of mapping DAGs, the algorithm retains its efficiency

and produces results which are superior to those produced by other mappers.

The ADmap program has been extended to generating circuits with minimum average power

consumption under delay constraints by constructing optimal (under a non-glitch delay model)

power-delay curves during the postorder phase [25]. Extension to combine pin permutation with

technology mapping is straight-forward, but increases the complexity of the procedure.
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Figure 3: Lower bound merging of delay curves
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Figure 4: The delay curve for the C7552 benchmark circuit
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Figure 5: The delay curve for the dalu benchmark circuit
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