
1

Task Scheduling with Dynamic Voltage and
Frequency Scaling for Energy Minimization in

the Mobile Cloud Computing Environment
Xue Lin, Student Member, IEEE, Yanzhi Wang, Student Member, IEEE, Qing Xie, Student

Member, IEEE, and Massoud Pedram, Fellow, IEEE

Abstract—Mobile cloud computing (MCC) offers significant opportunities in performance enhancement and energy saving
for mobile, battery-powered devices. Applications running on mobile devices may be represented by task graphs. This work
investigates the problem of scheduling tasks (which belong to the same or possibly different applications) in the MCC
environment. More precisely, the scheduling problem involves the following steps: (i) determining the tasks to be offloaded onto
the cloud, (ii) mapping the remaining tasks onto (potentially heterogeneous) local cores in the mobile device, (iii) determining the
frequencies for executing local tasks, and (iv) scheduling tasks on the cores (for in-house tasks) and the wireless communication
channels (for offloaded tasks) such that the task-precedence requirements and the application completion time constraint are
satisfied while the total energy dissipation in the mobile device is minimized. A novel algorithm is presented, which starts from a
minimal-delay scheduling solution and subsequently performs energy reduction by migrating tasks among the local cores and the
cloud and by applying the dynamic voltage and frequency scaling technique. A linear-time rescheduling algorithm is proposed
for the task migration. Simulation results demonstrate significant energy reduction with the application completion time constraint
satisfied.

Index Terms—mobile cloud computing (MCC), task scheduling, DVFS, energy minimization, hard deadline constraint

F

1 INTRODUCTION

MOBILE devices e.g., smart-phones and tablet-
PCs, have been widely employed as a ma-

jor computing platform due to their portability and
compactness. However, the increase of the volumet-
ric/gravimetric energy density of rechargeable batter-
ies falls behind the increase of the power demand
of mobile devices with functionality improvements,
thus, resulting in a shorter battery life for mobile
devices and also a power crisis in the development
of mobile device technology [2]. It is also noteworthy
that mobile devices have relatively weak computing
resources compared to their ”wall-powered” counter-
parts due to the constraints on weight, size and power.

Cloud computing has been recognized as a prospec-
tive computing paradigm because of its potential ben-
efits such as on-demand service, ubiquitous network
access, location independent resource pooling, and
transference of risk [3], [4], [5]. In the cloud computing
paradigm, there are a service provider who owns
and manages the centralized computing and storage
resources in the cloud, and users who have access to
those resources over the Internet.

• X. Lin, Y. Wang, Q. Xie, and M. Pedram are with the Department of
Electrical Engineering, University of Southern California, Los Angeles,
CA, 90089.
E-mail: {xuelin, yanzhiwa, xqing, pedram}@usc.edu

A preliminary version of this paper was presented at the 2014 IEEE
International Conference on Cloud Computing (CLOUD), Anchorage,
AK, USA [1].

With the development of wireless communication
technology such as 3G, Wi-Fi, and 4G, the mobile
cloud computing (MCC) paradigm has emerged to
shift the processing, memory, and storage require-
ments from the resource-limited mobile devices to
the resource-unlimited cloud computing system [6],
[7], [8]. MCC can improve the performance of mobile
devices by (i) selectively offloading tasks of an appli-
cation (e.g., object/gesture recognition, image/video
editing, natural language processing, and scientific
computation [9], [10]) onto the cloud and (ii) carefully
scheduling local task executions in the mobile device
with the anticipation of remote task executions in the
cloud while taking into account the task-precedence
requirements. Task offloading can help to improve the
performance of mobile devices because servers in the
cloud have much larger computation capability and
higher speed than the mobile processor. Moreover,
MCC helps to save energy in mobile devices and
prolong operation time of the battery by offloading
computation-intensive tasks onto the cloud. Experi-
ments conducted in [11], [12] demonstrate that (i) a
large application can be partitioned into various tasks
with task-precedence requirements, and (ii) the fine
granularity of task-level offloading has the potential
to achieve lower energy consumption and higher
performance.

In order to realize the prospective benefits of MCC
in energy saving and performance improvement for
mobile devices, we should consider the following

2

questions. (i) Which tasks of an application should
be offloaded onto the cloud? (ii) How to map the
remaining local tasks onto the potentially heteroge-
neous cores in a mobile device? (iii) Which execution
frequency level should be assigned for each local
task? (iv) How to schedule tasks in the heterogenous
cores for in-house processing and in the wireless
communication channels for remote processing, such
that the task-precedence requirements and applica-
tion completion time constraint are satisfied with the
minimum energy consumption in the mobile device?
(Please note that although the mobile device cannot
schedule task executions in the cloud, it can anticipate
and estimate the execution time of offloaded tasks
based on its prior knowledge.)

To answer the above-mentioned questions, this
work differs from previous work by focusing on the
MCC task scheduling problem, in which there are four
key issues to be addressed.

• The application completion time constraint is
a hard constraint, and therefore it should
be addressed in the first place. Offloading
computation-intensive tasks onto the cloud may
result in less application completion time. How-
ever, the offloading decision should be made
judiciously considering the delay due to upload-
ing/downloading data to/from the cloud.

• The total energy consumption in a mobile device
for executing an application, including the energy
consumed both by the processing units (i.e., the
potentially heterogeneous cores in the mobile
device) and by the RF components for offloading
tasks, is the objective function to be minimized.
From the perspective of energy consumption,
offloading tasks onto the cloud saves the com-
putation energy but induces the communication
energy.

• The dynamic voltage and frequency scaling (D-
VFS) technique can be employed for further re-
ducing energy consumption of a mobile device.
However, if the DVFS technique is applied (to
lower the execution frequency of a high perfor-
mance core) such that a high performance core
has the same performance as a low performance
core, the high performance core still consumes
more energy than the low performance core [22].
Therefore, DVFS should be applied after deter-
mining the task assignment (to local cores and to
the cloud).

• The task-precedence requirements should be en-
forced during task scheduling. Unlike the con-
ventional local task scheduling problem in [13],
in the MCC task scheduling problem there exist
additional task-precedence requirements through
wireless communication channels between the
cloud and the local cores.

In this present work, we propose a novel algorithm

for the MCC task scheduling problem to minimize the
total energy consumption of an application in a mo-
bile device under a hard constraint on the application
completion time. In particular, we generate a minimal-
delay task scheduling in the first step, and then per-
form energy reduction in the second step by migrating
tasks towards the cloud or other local cores that can
bring great energy reduction without violation of the
application completion time constraint. In the third
step, we apply the DVFS technique to further reduce
energy consumption. To avoid high time complexity,
we propose a linear-time rescheduling algorithm for
the task migrations. In summary, the proposed novel
algorithm can generate a task schedule at the begin-
ning of application execution to minimize the total
energy consumption under a hard application com-
pletion time constraint. The simulation results show
that the proposed algorithm can achieve a maximum
energy reduction of 74.9% compared with the baseline
algorithms.

To our best knowledge, this is the first task schedul-
ing work that minimizes energy consumption under a
hard completion time constraint for the task graph in
the MCC environment, taking into account the joint
task scheduling on the local cores and the wireless
communication channels of the mobile devices as well
as on the cloud.

2 RELATED WORK

Task scheduling and task offloading problems have
been extensively studied and various heuristic algo-
rithms have been proposed [13]∼[20]. These work
can be classified into two categories: (i) minimizing
the total application completion time (i.e., achieving
higher performance) [13], [14], [15], [16] and (ii) mini-
mizing the overall energy consumption (i.e., achieving
longer battery life of battery-powered mobile devices)
[17], [18], [19], [20]. The HEFT algorithm in [13] was
proposed for scheduling tasks of an application with
task-precedence requirements on heterogeneous pro-
cessors with the objective of achieving high perfor-
mance. This algorithm computes priorities of all tasks,
selects a task with the highest priority value at each
step, and assigns the selected task to the processor
that minimizes the task’s finish time. Alternatively,
the Push-Pull algorithm starts from a fast determin-
istic task scheduling algorithm and then iteratively
improves the current solution by using a deterministic
guided search method [14]. Ra et al. [15] adopted an
incremental greedy strategy and developed a runtime
system, which is able to adaptively make offloading
and parallel execution decisions for mobile interactive
perceptual applications in order to minimize the com-
pletion time of applications. A genetic algorithm was
proposed in [16] to optimize the partitioning of tasks
of a data stream application between a mobile device
and the cloud for the maximum throughput.

3

1

4 532 6

87 9

10

Task

1

2

3

4

5

6

7

8

9

10

Exe.

Time

Core1

9

8

6

7

5

7

8

6

5

7

Exe.

Time

Core2

7

6

5

5

4

6

5

4

3

4

Exe.

Time

Core3

5

5

4

3

2

4

3

2

2

2

3

1 , 1

1

s

i

c

i

r

i

T

i N T

T

Fig. 1. A simplified example of a task graph.

Rong et al. [17] addressed the problem of minimiz-
ing energy consumption of a computer system execut-
ing periodic tasks, assuming that the periods of tasks
are large enough such that the positive slack time
between tasks can be used for energy consumption
reduction. Li et al. [18] formulated the task mapping
problem as a maximum-flow/minimum-cut problem
to optimize the partitioning of a task graph between a
mobile device and the cloud for the minimum energy
consumption. Lee et al. [19] extended the work of
[13] on heterogeneous processors accounting for both
the energy consumption and application completion
time. However, the algorithm in [19] cannot guarantee
that the scheduling result meets a hard constraint of
application completion time. Kumar et al. [20] pro-
posed a straightforward offloading decision strategy
to minimize the energy consumption according to the
computation-to-communication ratio and the networking
environment.

3 SYSTEM MODEL FOR MCC TASK
SCHEDULING

3.1 Applications

An application is represented by a directed acyclic
task graph G = (V,E). Each node vi ∈ V represents
a task and a directed edge e(vi, vj) ∈ E represents
the precedence constraint such that task (node) vi
should complete its execution before task (node) vj
starts execution. There are a total number of N tasks
(nodes) in the task graph (application). Normally, N is
smaller than 100, e.g., in computer vision applications,
N is in the range of 10∼30 [15]. Given a task graph,
the task without any parent is called the entry task,
and the task without any child is called the exit task.
In the task graph of an application, there may exist
multiple entry tasks and multiple exit tasks. As shown
in Fig. 1, task v1 is the entry task and task v10 is
the exit task. For each task vi, we define datai and

data′i as the number of bits of the task specification
plus input data required for task uploading and the
number of bits needed to download result and any
other output data from the cloud after executing task
vi in the cloud, respectively.

3.2 MCC Environment
We consider a mobile device in the MCC environment
that has access to the computing resources on the
cloud. There are a number of K heterogeneous cores
in the processor of the mobile device. Examples are
the state-of-the-art Tegra [21] and big.LITTLE archi-
tecture [22] which has been adopted by Broadcom,
Samsung, etc. The cores are equipped with a DVFS
capability such that each core can operate at M differ-
ent frequency levels (and the corresponding M supply
voltage levels.) The maximum operating frequency
of the k-th core is fmaxk , and there are M frequency
scaling factors i.e., ak,1 < ak,2 < ... < ak,M = 1.
Therefore, the actual operating frequency of the k-th
core can be fk = ak,m · fmaxk . The (average) power
consumption Pk of the k-th core is a super-linear
function of fk, represented by Pk = αk · (fk)γk , where
2 ≤ γk ≤ 3. The αk and γk values may be different for
different heterogeneous cores.

A task can be executed either locally on a core of the
mobile device or remotely on the cloud. If task vi is
offloaded onto the cloud, there are three phases in se-
quence associated with the execution of task vi: (i) the
RF sending phase, (ii) the cloud computing phase, and
(iii) the RF receiving phase. In the RF sending phase,
the specification and input data of task vi are sent to
the cloud by the mobile device through the wireless
sending channel. In the cloud computing phase, task vi
is executed in the cloud. In the RF receiving phase,
the mobile device receives the output data of task vi
from the cloud through the wireless receiving channel.
The cloud transmits the output data of task vi back
to the mobile device as long as it finishes processing
task vi. We use Rs to denote the data sending rate of
the wireless sending channel, and Rr to denote the
data receiving rate of the wireless receiving channel.
Accordingly, let P s denote the power consumption
level of the RF component in the mobile device for
sending data to the cloud. The power consumption of
the RF component in the mobile device for receiving
data is negligible compared to that for sending data.

The local core in the mobile device or the wireless
sending channel can only process or send one task
at a time, and preemption is not allowed in this
framework. On the other hand, the cloud can execute
a large number of tasks in parallel as long as there is
no task-precedence requirements among the tasks.

3.3 Task-Precedence Requirements in the MCC
Environment
We use T l,mini,k to denote the minimum execution
time of task vi on the k-th core when the maximum

4

operating frequency fmaxk is used, where superscript
l means “local execution”. T l,mini,k depends on the task
specification of task vi and the maximum operating
frequency fmaxk of the k-th local core. Usually, T l,mini,k

is a decreasing function of fmaxk . Then, the actual
execution time T li,k of task vi on the k-th core depends
on the actual operating frequency fk = ak,m · fmaxk by

T li,k = T l,mini,k /ak,m. (1)

We use T ci to denote the computation time of task
vi on the cloud, where superscript c means “execution
on the cloud”. The time for sending task vi onto the
cloud, denoted by T si , is calculated as:

T si = datai/R
s. (2)

The time for receiving task vi from the cloud, denoted
by T ri , is calculated as:

T ri = data′i/R
r. (3)

For a task vj that is already scheduled (on a local
core or the cloud), we use FT lj , FTwsj , FT cj , and FTwrj
to denote the finish times of task vj on a local core,
the wireless sending channel (i.e., the task has been
completely offloaded to cloud), the cloud, and the
wireless receiving channel (i.e., the mobile device has
completely received the output data of the task from
the cloud), respectively. If the task vj is scheduled
locally, we set FTwsj = FT cj = FTwrj = 0; if the task
vj is offloaded onto the cloud, we set FT lj = 0. Please
note that the mobile device can only schedule tasks in
the local cores and the wireless channels, whereas the
cloud computing controller schedules tasks that have
already been uploaded to the cloud and transmits the
output data back to the mobile device. However, the
mobile device can anticipate the execution of tasks in
the cloud and estimate the corresponding FT cj and
FTwrj values from the parameters T cj , T rj , etc.

3.3.1 Local Scheduling
Before we schedule a task vi, all its immediate prede-
cessors must have already been scheduled. Suppose
that task vi is to be scheduled on a local core. Then
the ready time of task vi, denoted by RT li , is calculated
as:

RT li = max
vj∈pred(vi)

max{FT lj , FTwrj }, (4)

where pred(vi) is the set of immediate predecessors of
task vi. The ready time RT li is the earliest time when
all immediate predecessors of task vi have completed
execution and their results are available to task vi:
• If task vj (an immediate predecessor of task vi)

has been scheduled locally, max{FT lj , FTwrj } =
FT lj . In this case we have RT li ≥ FT lj , which
means that task vi can start execution on a local
core only after the local execution of task vj has
finished.

• If task vj (an immediate predecessor of
task vi) has been offloaded onto the cloud,
max{FT lj , FTwrj } = FTwrj . In this case we have
RT li ≥ FTwrj , which means that task vi can start
execution on a local core only after the mobile
device has completely received the output data
(results) of task vj through the wireless receiving
channel.

We can only schedule task vi to start execution at or
after its ready time RT li , if the task is to be sched-
uled on a local core. In this way the task-precedence
requirements can be preserved. However, the mobile
device might not be able to start executing task vi at
time RT li exactly, because the cores may be executing
other tasks at time RT li .

3.3.2 Cloud Scheduling

On the other hand, suppose that task vi is to be
offloaded onto the cloud. The ready time of task vi
on the wireless sending channel, denoted by RTwsi , is
calculated as:

RTwsi = max
vj∈pred(vi)

max{FT lj , FTwsj }. (5)

RTwsi denotes the earliest start time when task vi can
be scheduled on the wireless sending channel in order
to preserve the task-precedence requirements:
• If task vj (an immediate predecessor of task vi)

has been scheduled locally, max{FT lj , FTwsj } =
FT lj . In this case we have RTwsi ≥ FT lj , which
means that the mobile device can start to send
task vi through the wireless channel only after
the local execution of task vj has finished.

• If task vj (an immediate predecessor of
task vi) has been offloaded onto the cloud,
max{FT lj , FTwsj } = FTwsj . In this case we have
RTwsi ≥ FTwsj , which means that the mobile
device can start to send task vi through the
wireless channel only after the mobile device has
completed offloading task vj to the cloud.

The ready time of task vi on the cloud, denoted by
RT ci , is calculated as:

RT ci = max{FTwsi , max
vj∈pred(vi)

FT cj }. (6)

RT ci denotes the earliest time when task vi can start
execution on the cloud. If task vj (an immediate
predecessor of task vi) is scheduled locally, FT cj = 0.
Therefore, maxvj∈pred(vi) FT

c
j in (6) is the time when

all the immediate predecessors of task vi that are
offloaded to the cloud have finished execution on the
cloud. On the other hand, FTwsi is the time when task
vi has been completely offloaded to the cloud through
the wireless sending channel, and therefore we have
RT ci ≥ FTwsi . The cloud computing controller can
schedule task vi to start execution at time RT ci ex-
actly (because of the high parallelism in the cloud),

5

such that the task-precedence requirements can be
preserved.

Finally, let RTwri denote the ready time for the cloud
to transmit back the results of task vi, and we have:

RTwri = FT ci . (7)

In other words, the cloud can transmit the output
data (results) of task vi back to the mobile device
immediately after it has finished processing this task.

3.4 Energy Consumption and Application Com-
pletion Time
If task vi is executed locally on the k-th core of the
mobile device, the energy consumption of the task is
given by:

Eli,k = Pk · T li,k (8)

= αk · (fk)γk · T l,mini,k /ak,m

= αk · (ak,m · fmaxk)γk · T l,mini,k /ak,m

= (ak,m)(γk−1) · αk · (fmaxk)γk · T l,mini,k

= (ak,m)(γk−1) · El,maxi,k ,

where El,maxi,k is the energy consumption for executing
task vi on the k-th local core under the maximum
operating frequency. Please note that both Pk and
T li,k depend on the operating frequency of the k-th
core. If task vi is offloaded to the cloud, the energy
consumption of the mobile device for offloading the
task is given by:

Eci = P s · T si . (9)

The execution of task vi on the cloud does not
consume energy of the mobile device. The energy
consumption of receiving the results of task vi is neg-
ligible. The total energy consumption of the mobile
device for running the application, denoted by Etotal,
is given by:

Etotal =

N∑
i=1

Ei. (10)

where Ei equals to Eli,k if task vi is executed locally
on the k-th core of the mobile device, and equals to
Eci if the task is offloaded to the cloud.

The application completion time T total is calculated
by:

T total = max
vi∈exit tasks

max{FT li , FTwri }. (11)

The inner max block gives the finish time of an exit
task vi. It equals to FT li if task vi is executed on a
local core, and equals to FTwri if task vi is offloaded
to the cloud.

The MCC task scheduling problem is to (i) deter-
mine the tasks of an application to be offloaded, (ii)
map the remaining tasks onto heterogeneous cores
in the mobile device, (iii) determine the execution
frequency for each local task, and (iv) schedule the

Step One: Initial Scheduling for

Minimized Total Execution Time

Phase One: Primary assignment

Phase Two: Task prioritization

Phase Three: Execution unit selection

Step Two: Task Migration for Energy

Consumption Reduction

Outer Loop: determines the task for migration and

selects a new execution location for it.

Kernel Algorithm:

reschedules task executions

Step Three: DVFS

MCC Task Scheduling Algorithm

Fig. 2. Flow chart of the MCC task scheduling algorith-
m.

tasks on heterogeneous cores and wireless communi-
cation channels. The objective is to minimize Etotal

under the following constraints: (i) task-precedence
requirements and (ii) the application completion time
constraint T total ≤ Tmax, where Tmax is the maximum
application completion time.

4 MCC TASK SCHEDULING ALGORITHM

The MCC task scheduling algorithm has three step-
s: initial scheduling for minimizing the application
completion time T total, task migration for minimizing
the energy consumption Etotal, and DVFS for further
reducing the energy consumption. In all the three
steps, the task-precedence and application completion
time constraints should be enforced. The flow chart of
the whole MCC task scheduling algorithm is shown
in Fig. 2.

In order to strictly satisfy the application comple-
tion time constraint, we minimize T total in the first
step and then reduce energy consumption by task
migration and DVFS. Otherwise, if we minimize en-
ergy consumption at first, the application completion
time constraint can hardly be guaranteed because of
the task-precedence requirements and the parallelism
constraints on the local cores and the wireless com-
munication channels.

4.1 Step One: Initial Scheduling Algorithm

In the initial scheduling algorithm, we generate the
minimal-delay schedule without considering the en-
ergy consumption of the mobile device. The HEFT

6

algorithm [13] generates the minimal-delay schedul-
ing for tasks running on a number of heterogeneous
cores. We modify the HEFT algorithm to take into
account the joint scheduling of tasks on the local cores,
the wireless communication channels, and the cloud.
The initial scheduling algorithm has three phases:
primary assignment, task prioritization, and execution
unit selection, as shown in Fig. 2. In the following, we
discuss the three phases in detail.

4.1.1 Primary Assignment
In this phase, we determine the subset of tasks that are
initially assigned for the cloud execution. Offloading
such tasks to the cloud will result in savings of the
application completion time. Please note that this
primary assignment is not the final decision, since
we can assign more tasks for remote execution in the
“execution unit selection” phase of initial scheduling.
For each task vi, we calculate the minimum local
execution time T l,mini as:

T l,mini = min
1≤k≤K

T l,mini,k . (12)

We also calculate the estimated remote execution time
T rei as:

T rei = T si + T ci + T ri . (13)

If T rei < T l,mini , task vi is assigned for remote execu-
tion on the cloud. We call such task a “primary cloud
task”.

4.1.2 Task Prioritization
In this phase, we calculate the priority of each task
similar to the HEFT algorithm. First, we calculate the
computation cost wi for each task. If task vi is a cloud
task, its computation cost is given by

wi = T rei . (14)

If task vi is not a cloud task, wi is calculated as the
average computation time of task vi in the local cores,
i.e.,

wi = avg
1≤k≤K

T l,mini,k . (15)

Please note that we assume the maximum operating
frequency for each local core in the initial scheduling
step and the task migration step. The priority level of
each task vi is recursively defined by

priority(vi) = wi + max
vj∈succ(vi)

priority(vj), (16)

where succ(vi) is the set of immediate successors of
task vi. The priority levels are recursively computed
by traversing the task graph starting from the exit
tasks. For the exit tasks, the priority level is equal to

priority(vi) = wi, vi ∈ exit tasks. (17)

Basically, priority(vi) is the length of the critical path
from task vi to the exit tasks.

0

Core 1

0

Core 2

0

4

Core 3

0

wireless

sending

0

Cloud

0

wireless

receiving

6 8

1 3 5 7 9 10

2

2

2

5 12

5 11 12 16

5 9 11 14 16 18

5 8

8 9

9 10

Fig. 3. Task scheduling result generated by the initial
scheduling algorithm.

4.1.3 Execution Unit Selection

In this phase, tasks are selected and scheduled in
the descending order of their priorities. If task vj
is the immediate predecessor of task vi, we have
priority(vj) > priority(vi) from (16). Therefore, when
task vi is selected for scheduling in this phase, all its
immediate predecessors have already been scheduled.
• If the selected task vi is a primary cloud task,

we calculate its ready time RTwsi on the wireless
channel, and allocate the earliest available time s-
lot on the wireless sending channel for offloading
the task. Please note that the mobile device might
not be able to start offloading task vi at time RTwsi
if it is offloading other tasks at that time. We
calculate FTwsi accordingly, and then the cloud
will begin executing task vi at the ready time RT ci
(from (6)) (because of the high parallelism in the
cloud.) Finally we calculate FT ci = RT ci +T ci and
FTwri = FT ci +T

r
i . In this way, we have scheduled

task vi and estimated the associated finish time.
• If the selected task vi is not a primary cloud task,

it may be scheduled on a local core or the cloud.
We need to estimate the finish time of this task if
it is scheduled on each core using the maximum
operating frequency and the finish time of this
task if it is offloaded to the cloud, using the
similar procedure as described above. Then we
schedule task vi on the core or offload it to the
cloud such that the finish time is minimized.
When we schedule the task, we need to make
sure that the task-precedence requirements are
satisfied according to Section 3.3.

As an example, we perform initial task scheduling
on the task graph shown in Fig. 1, assuming that there
are three heterogeneous cores in the mobile device.

7

The T l,mini,k values are shown in the table in Fig. 1,
and in reality these values are determined by the
characteristics of the tasks and the heterogenous cores.
We use T si = 3, T ci = 1, and T ri = 1 for all the
tasks for simplicity, and in reality these values are set
according to (2), (3), and the computation speed of
the cloud servers. Fig. 3 presents the task scheduling
result, where the horizontal axes denote the time. For
example, task v4 is executed on core 1 from time 5 to
12. Task v2 is offloaded onto the cloud. The mobile
device sends the specification and input data of task
v2 using the wireless sending channel from time 5 to 8.
And then, task v2 is computed on the cloud from time
8 to 9. The cloud transmits the output data (results)
of task v2 back to the mobile device from time 9 to
10. The application completion time of this example
is 18, which is the finish time of the exit task v10.

4.2 Step Two: Task Migration Algorithm
The task migration algorithm aims at minimizing
the energy consumption Etotal under the application
completion time constraint T total ≤ Tmax. The energy
consumption is reduced through migrating tasks from
a local core to another local core or to the cloud.
The task migration algorithm is an iterative algorithm
comprised of a kernel algorithm and an outer loop as
shown in Fig. 2. In each iteration, the outer loop
determines the target task for migration and the new
execution location (i.e., a different local core or the
cloud) in order to minimize the energy consumption
Etotal. It should also maintain the application time
constraint T total ≤ Tmax without violation. Given the
target task for migration and the new execution loca-
tion, the kernel algorithm generates a new scheduling
result that has the minimum application completion
time T total with linear time complexity.

4.2.1 Outer Loop
The outer loop of the task migration algorithm deter-
mines the target tasks to migrate from one local core to
another local core or to the cloud, in order to reduce
energy consumption of the mobile device. It should
also maintain the application completion time con-
straint T total ≤ Tmax without violation. Please note
that the task migration algorithm does not account for
the migration of a task from offloading to the cloud
back to local processing, because the energy consump-
tion of the mobile device will generally increase in this
case.

In each iteration of the outer loop, let N ′ denote the
number of tasks that are currently scheduled on the
local cores. Each of them can be moved to execute on
one of the other K − 1 cores or the cloud. Therefore,
there are a total of N ′ ×K migration choices.
• For each choice, we run the kernel algorithm

to find a new schedule, and calculate the corre-
sponding energy consumption Etotal and appli-
cation completion time T total.

• We select the choice that results in the largest en-
ergy reduction compared with the current sched-
ule and no increase in the application completion
time T total than the current schedule.

• If we cannot find such a choice, we select the one
that results in the largest ratio of energy reduction
to the increase of the application completion time.
We should make sure that the new application
completion time does not exceed the limit value
Tmax.

We repeat the previous steps until the energy con-
sumption of the mobile device cannot be further mini-
mized without violation of the application completion
time constraint.

4.2.2 Kernel Algorithm (i.e., Rescheduling Algorithm)

In a task schedule, let ki denote the execution location
of task vi. ki 6= 0 means that task vi is executed on
the ki-th core, whereas ki = 0 means that task vi is
offloaded onto the cloud. In the kernel algorithm, we
have had an original schedule of the task graph. We
are given by the outer loop a task vtar for migra-
tion and its new execution location ktar. The kernel
algorithm should generate a new schedule of the task
graph G, where task vtar is executed on the new
location ktar and the remaining tasks are executed on
the same locations as in the original schedule. The
kernel algorithm aims at minimizing the application
completion time T total. On the other hand, the energy
consumption Etotal is fixed and can be directly cal-
culated using (8)∼(10) once the execution locations of
tasks are known. Because the kernel algorithm will be
called many times from the outer loop, we propose an
efficient linear-time rescheduling algorithm of the task
graph as the kernel algorithm, which is more efficient
than the modified HEFT algorithm when the number
of cores is relatively large.

For the original schedule, we use a sequence set
Sk = {v(k,1), v(k,2), . . . } to denote the sequence of tasks
that are executed on the k-th local core and we use
the sequence set S0 = {v(0,1), v(0,2), . . . } to denote
the sequence of tasks that are offloaded to the cloud
through the wireless sending channel. For example, if
we use the scheduling result in Fig. 3 as the original
schedule, we have S1 = {v4}, S2 = {v6, v8}, S3 =
{v1, v3, v5, v7, v9, v10}, and S0 = {v2}. Suppose that
task vtar is executed on the kori-th core in the original
schedule. We know from the outer loop that vtar will
be moved onto the ktar-th core in the new schedule.
We should derive the new sequence sets Snewk for
0 ≤ k ≤ K, which correspond to the sequence of tasks
executed (or transmitted) on each core (or the wireless
sending channel) in the new schedule. In the linear-
time rescheduling algorithm, we will not change the
ordering of tasks in the other cores except for the ktar-
th core (because we are going to execute task vtar in

8

this core), i.e.,

Snewk = Sk \ vtar for k = kori, (18)

and
Snewk = Sk for k 6= ktar ∧ k 6= kori. (19)

In the following, we derive Snewktar
by inserting vtar

at a “proper” location of the original schedule se-
quence Sktar

. We need to satisfy the following task-
precedence requirements on the ktar-th core (ktar = 0
means the wireless sending channel):
• For any two tasks vi and vj that are executed

(or transmitted) on the same core or wireless
communication channel, task vi must be executed
(or transmitted) before task vj if task vi is a
transitive predecessor of task vj in the task graph
G.

Hence, we should insert vtar into Sktar
such that vtar is

executed (or transmitted) after all its transitive prede-
cessors and before all its transitive successors. In order
to achieve this goal, we calculate the ready time RTtar
of task vtar. RTtar equals to RT ltar (calculated from (4))
when ktar > 0 and equals to RTwstar (calculated from
(5)) when ktar = 0. In addition, we know the start time
STi of each task vi in the original schedule. Therefore,
we derive Snewktar

as:

Snewktar
= {v(ktar,1), . . . , v(ktar,m),vtar, v(ktar,m+1), . . . },

(20)
where the start time of tasks v(ktar,1), . . . , v(ktar,m)

are earlier than RTtar and the start time of tasks
v(ktar,m+1), . . . are later than RTtar. In this way, it can
be proved that the task-precedence requirements on
the ktar-th core are preserved.

Now with the new sequence sets Snewk for 0 ≤ k ≤
K, we are going to find a new schedule of the task
graph in linear time complexity O(N). We maintain
two vectors ready1 and ready2. ready1i is the number
of immediate predecessors of task vi that have not
been scheduled. ready2i = 0 if all the tasks before
task vi in the same sequence Snewk have already been
scheduled. In addition, we maintain a LIFO stack for
storing the tasks that are ready for scheduling. The
stack is initialized by pushing the task vi’s with both
ready1i = 0 and ready2i = 0 into the empty stack.
We repeat the following steps until the stack becomes
empty again.
• Pop a task vi from the stack.
• Suppose that task vi ∈ Snewk . If k = 0, we schedule

the task on the wireless sending channel, and
calculate the time when the mobile device com-
pletely receives the output data (results) of task
vi from the cloud. Otherwise, schedule the task
on the k-th core.

• Update vectors ready1 (reducing ready1j by one
for all vj ∈ succ(vi)) and ready2, and push all
the new tasks vj with both ready1j = 0 and
ready2j = 0 into the stack.

Then we have scheduled all the tasks.

0

Core 1

0

Core 2

0

4

Core 3

0

wireless

sending

0

Cloud

0

wireless

receiving

9

2

2

5 12

12 14

6 9

3 4

1 5 36 8 7 10

3 12 15 18 21 24

1 5 6 3 8 7 10

6 7 9 10 12 13 15 16 18 19 21 22 24 25

2

4 5

1 5 6 3 8 7 10

7 8 10 11 13 14 16 17 19 20 22 23 25 26

Fig. 4. Task scheduling result generated by the task
migration algorithm.

4.2.3 Example of Task Scheduling Result

Fig. 4 presents the task scheduling result generated
by the task migration algorithm for the task graph in
Fig. 1. The application completion time constraint is
set as T total ≤ 27. The power consumption of cores
1∼3 are set as P1 = 1, P2 = 2, and P3 = 4 under the
maximum operating frequency for each core. And the
power consumption of the RF components is set as
P s = 0.5. Please note that Fig. 3 presents the result of
the first step of the MCC task scheduling algorithm
(i.e., the initial scheduling algorithm), whereas Fig. 4
presents the result of the second step of the MCC
task scheduling algorithm (i.e., the task migration
algorithm). Comparing Fig. 3 with Fig. 4, more tasks
are offloaded onto the cloud in Fig. 4 for reducing
the energy consumption. The application completion
time in Fig. 4 is 26 (quite near to Tmax = 27), which
is larger than that in Fig. 3. There are still two tasks
executed on local cores. The MCC task scheduling
algorithm does not offload all the tasks to the cloud
due to the application completion time constraint.
As can be observed, the wireless sending channel is
almost fully occupied. If more tasks are offloaded,
the application completion time constraint will be
violated. In reality, some tasks can only be executed
locally in the mobile device, the MCC task scheduling
algorithm can be modified to accommodate these
cases easily. In summary, we have Etotal = 100.5
and T total = 18 in Fig. 3, and we have Etotal = 27
and T total = 26 in Fig. 4. The energy consumption
of the application is largely reduced from the result
in Fig. 3 to that in Fig. 4. It demonstrates that the
task migration algorithm (i.e., the second step of
the MCC task scheduling algorithm) can significantly
reduce the energy consumption while satisfying the
application completion time constraint.

9

4.3 Step Three: DVFS Algorithm

The initial scheduling algorithm generates a schedule
with the minimum application completion time, and
the task migration algorithm reduces the energy con-
sumption for executing an application by migrating
tasks among the local cores and the cloud. In these
two steps of the MCC task scheduling algorithm, we
assume the maximum operating frequency for each
local core. On the other hand, the DVFS technique
enables further energy reduction in the mobile device
under the application completion time constraint.

If the DVFS technique is applied to lower the exe-
cution frequency of a high performance core such that
the high performance core has the same performance
as a low performance core, the high performance core
still consumes more energy than the low performance
core [22]. Therefore, we apply the DVFS algorithm
after the task migration algorithm so that the execu-
tion unit for each task is determined before the DVFS
algorithm.

In the task migration algorithm, the application
completion time is sacrificed for reduced energy con-
sumption. In the schedule generated by the task mi-
gration algorithm, the actual application completion
time is already very close to the deadline Tmax. There
seems no much room left to lower the execution
frequency for further reducing energy consumption,
as can be observed from the example in Section 4.2.3.
However, due to the parallelism requirements on the
local cores and the wireless sending channel, i.e., tasks
can only be executed or transmitted one by one, the
actual start time STi of task vi may be later than its
ready time RTi. Then, the predecessors of task vi may
be executed with lower frequency to make use of the
slack between STi and RTi.

A straightforward implementation of the DVFS al-
gorithm is as follows: based on the schedule gener-
ated from step two, for each local task we try ev-
ery execution frequency level in the ascending order
and reschedule the tasks until we find an execution
frequency that can satisfy the application completion
time constraint. If the execution frequency of a task
is changed, the whole schedule might be changed
due to the task-precedence requirements. We need to
reschedule all the tasks after one single change of the
execution frequency of a task. Therefore, we propose
another implementation of the DVFS algorithm to
reduce the time complexity.

Based on the schedule result generated by step two,
the proposed DVFS algorithm does not change the
schedule of tasks offloaded onto the cloud and the
start time of local tasks, in order to avoid frequent
rescheduling of all the tasks. The time slack between
two consecutive tasks executed on a local core is
utilized. The general idea is as following: for each
local task, if there is a time slack between the finish
time of this task vi and the start time of the next

0

Core 1

0

Core 2

0

4

Core 3

0

wireless

sending

0

Cloud

0

wireless

receiving

9

2

2

5 12

12 16

6 9

3 4

1 5 36 8 7 10

3 12 15 18 21 24

1 5 6 3 8 7 10

6 7 9 10 12 13 15 16 18 19 21 22 24 25

2

4 5

1 5 6 3 8 7 10

7 8 10 11 13 14 16 17 19 20 22 23 25 26

Fig. 5. Task scheduling result generated by the DVFS
algorithm.

task vj on the same local core, we try every execution
frequency level in the ascending order (there are a
total number M of frequency levels) until we find
an execution frequency that (i) does not postpone the
start time of task vj and (ii) does not postpone the
start time of the successors of task vi. Please refer to
Algorithm 1 for details.

Algorithm 1 DVFS algorithm
Input: The scheduling result generated by the task

migration algorithm.
Output: A task schedule with new execution frequen-

cy assignment for local tasks.
1: for each local task vi do
2: flag = 0; m = 1;
3: while flag == 0 and m < M do
4: calculate the new finish time FTnewi if vi is

executed using the m-th frequency;
5: if ∃ next task vj on the same core then
6: lim1 = STj ;
7: else {% task vi is the last task on this core}
8: lim1 = Tmax;
9: end if

10: if vi /∈ exit tasks then
11: lim2 = minvj∈succ(vi) STj ;
12: else
13: lim2 = Tmax;
14: end if
15: if FTnewi ≤ lim1 and FTnewi ≤ lim2 then
16: flag = 1;
17: assign the m-th frequency to task vi;
18: update the finish time of vi;
19: end if
20: end while
21: end for

We continue using the task graph in Fig. 1 as an
example and the task scheduling result generated by
the DVFS algorithm is shown in Fig. 5. We assume

10

there are M = 3 operating frequency levels for each
core. We set the frequency scaling factors as ak,1 = 0.2,
ak,2 = 0.5, and ak,3 = 1 for k = 1, 2, 3. And we set
γk = 2 for k = 1, 2, 3. Comparing Fig. 4 with Fig. 5,
the execution frequency of task v9 is changed from
fmaxk in Fig. 4 to 0.5 · fmaxk (k = 3) in Fig. 5, whereas
the schedule for the other tasks has not been changed
by the DVFS algorithm. We have Etotal = 27 and
T total = 26 in Fig. 4, and Etotal = 23 and T total = 26
in Fig. 5, demonstrating that the DVFS algorithm (i.e.,
the third step of the MCC task scheduling algorithm)
can further reduce the energy consumption while
satisfying the application completion time constraint.

4.4 Complexity Analysis of the MCC Task
Scheduling Algorithm
Let us analyze the computation complexity of each
step in the MCC task scheduling algorithm. (i) Similar
to the HEFT algorithm, the computation complexity
of the initial scheduling algorithm is O(E×K), where
E is the number of edges in the task graph G, and K
is the number of cores. We consider sparse task graphs
(i.e., E = O(N) where N is the number of tasks), and
therefore the complexity of initial scheduling becomes
O(N×K). (ii) The computation complexity of the task
migration algorithm is O(N3×K). (iii) The computa-
tion complexity of the DVFS algorithm is O(N ×M),
where M is the number of operating frequency levels
in each local core. Therefore, the overall computation
complexity of the MCC task scheduling algorithm is
O(N3×K), which is comparable to the reference work
on task scheduling.

5 EXPERIMENTAL RESULTS

We demonstrate the effectiveness of the proposed
MCC task scheduling algorithm on a set of generated
task graphs with different specifications. We compare
the scheduling results of the proposed algorithm to
those of the baseline algorithms. All the algorithms
are implemented in MATLAB programs executed in
a 3.40 GHz Intel Core i7 processor.

We implement four baseline algorithms. Baseline 1
algorithm comprises of only the first two steps of the
proposed MCC task scheduling algorithm (without
DVFS). Baseline 1 is used to demonstrate the effec-
tiveness of DVFS in energy reduction.

Baseline 2 and 3 algorithms are designed based on
exhaustive search. Baseline 2 is as follows:

1) For each task in the task graph, randomly select
an execution unit (i.e., on a local core or to the
cloud) for it.

2) Generate a schedule for the task graph using
an algorithm similar to the initial scheduling
algorithm except that the execution unit and
frequency for each task have been pre-fixed.
(The maximum execution frequency is used for
each task.)

Fig. 6. Energy consumption vs. number of tasks (K=3).

3) Repeat previous steps for 10,000 times to find the
schedule with the minimum Etotal and T total <
Tmax.

Baseline 3 has all the steps in baseline 2 and em-
ploys the DVFS algorithm (i.e., Section 4.3) after that.
Baselines 2 and 3 are designed for demonstrating the
effectiveness and efficiency of the proposed algorithm.

Baseline 4 algorithm is similar to the proposed
algorithm except that it runs in the local mobile device
environment only (i.e., the mobile device does not
have access to the cloud and only the local resources
can be used for task executions.) Baseline 4 is used
to prove the benefits of the MCC framework in ener-
gy saving and performance enhancement for mobile
devices.

A task graph generator is implemented to generate
task graphs with various characteristics. The parame-
ters of a task graph are given below.
• Number of tasks in the graph i.e., N .
• Density of edges in the graph i.e., α.
• Number of cores in the mobile device i.e., K.
• Average task computation time on local cores un-

der the maximum operating frequency i.e., T avgl .
• Average task sending time i.e., T avgs .
• Average task receiving time i.e., T avgr .
• Average task computation time on the cloud i.e.,
T avgc .

Now we assume there are K = 3 heterogeneous
cores in the mobile device. Core 1 is a low-power
core and core 3 is a high-performance core. The power
consumption Pk values of the three cores under the
maximum operating frequency are set as P1 = 1,
P2 = 2, and P3 = 4. The power consumption of the RF
components is set as P s = 0.5. We assume there are
M = 4 operating frequency levels for each core. The
frequency scaling factors are ak,1 = 0.2, ak,2 = 0.5,
ak,3 = 0.8, ak,4 = 1.0 for k = 1, 2, 3. We set γk = 2 for
k = 1, 2, 3.

Ten task graphs with different task numbers N and

11

different characteristics are generated for comparing
the proposed algorithm with baseline algorithms. We
plot in Fig. 6 the energy consumption of the mobile
device for executing an application as a function of
the number of tasks in the application. We can ob-
serve that (i) comparing with baseline 1, the proposed
algorithm achieves energy reduction due to the effect
of the DVFS algorithm (the energy reduction due to
DVFS is in the range of 7.5%∼19.6%), (ii) comparing
with exhaustive search-based baseline 2 and 3, the
proposed algorithm also achieves energy reduction
(the maximum energy reduction are 28.1% and 20.7%,
respectively, compared with baseline 2 and 3), and
(iii) comparing with baseline 4, the proposed algo-
rithm achieves huge energy reduction (in the range
of 45.7%∼74.9%) due to the MCC framework.

Table 1 shows the application completion time
T total of the scheduling results from all the algo-
rithms. Except baseline 4, all the other algorithms can
generate scheduling results satifying the application
completion time constraint. Table 1 also compares the
program execution time of the proposed algorithm
and baseline 1, 2, 3. The execution time of the pro-
posed algorithm is a little bit longer than baseline 1,
demonstrating the small computation overhead of the
DVFS algorithm. In addition, the proposed algorithm
significantly reduces the execution time compared
with the exhaustive search-based baseline 2 and 3.

Also, we use a realistic task graph from [23] i.e.,
the face recognition task graph and set the application
completion time constraint as T total ≤ 70. Baseline 1
achieves Etotal = 95 and T total = 69, and the pro-
posed algorithm achieves the same T total but a lower
Etotal = 75.9 due to the DVFS algorithm. Baseline
2 achieves Etotal = 131 and T total = 65, baseline 3
achieves Etotal = 112.2 and T total = 69, and baseline 4
achieves Etotal = 445 and T total = 95. From the above
results we can observe that the proposed algorithm
can achieves the lowest Etotal with the application
completion time constraint satisfied.

Furthermore, we assume there are K = 6 hetero-
geneous cores in the mobile device. Core 1 is a low-
power core and core 6 is a high-performance core. The
power consumption Pk values of these cores under
the maximum operating frequency are set as P1 = 1,
P2 = 2, P3 = 4, P4 = 8, P5 = 16, P6 = 32. The
other parameters are same as before. Fig. 7 shows
the energy consumption of the mobile device using
different algorithms. We can observe similar results as
in the previous case: the proposed algorithm always
achieves the lowest energy consumption compared
with baseline algorithms. Please note that the benefit
of the MCC framework in energy saving is not as
prominent as before (comparing the proposed algo-
rithm with baseline 4), because the mobile device has
stronger computing resources in this case.

Table 2 shows the application completion time of
the scheduling results from all the algorithms and also

Fig. 7. Energy consumption vs. number of tasks (K=6).

the program execution time of the proposed algorithm
and baseline 1, 2, 3. Again due to the stronger com-
puting resources in the mobile device, even baseline 4
can fulfill the application completion time constraint.
In addition, the proposed algorithm demonstrates
superior efficiency compared with exhaustive search-
based algorithms.

6 CONCLUSION

This work studies the MCC task scheduling problem.
To our best knowledge, this is the first task scheduling
work that minimizes energy consumption under hard
completion time constraints for the applications in the
MCC environment, taking into account the joint task
scheduling on the local cores in the mobile device,
the wireless communication channels, and the cloud.
A novel algorithm is proposed that starts from a
minimal-delay scheduling solution and subsequently
performs energy reduction by migrating tasks among
the local cores and the cloud and by applying the
DVFS technique. A linear-time rescheduling algorith-
m is proposed for the task migration such that the
overall computation complexity is effectively reduced.
Simulation results demonstrate significant energy re-
duction with the application completion time con-
straint satisfied.

ACKNOWLEDGMENTS

This work is supported in part by a grant from the
Software and Hardware Foundations of the National
Science Foundation.

REFERENCES

[1] X. Lin, Y. Wang, Q. Xie, and M. Pedram ”Energy and
performance-aware task scheduling in a mobile cloud
computing environment,” Proc. IEEE International Conf.
Cloud Computing (Cloud ’14), pp. 192-199, Jun. 2014, doi:
10.1109/CLOUD.2014.35.

12

TABLE 1
Comparison Between the Proposed Algorithm and the Baseline Algorithms (K = 3)

N Tmax T total Exe. Time (s)
Prop. Base1 Base2 Base3 Base4 Prop. Base1 Base2 Base3

10 100 98 98 98 98 97.25 0.02560 0.02510 2.19173 2.19213
20 120 120 120 118 118 119 0.04224 0.04169 4.19182 4.19214
30 150 150 150 148 148 148 0.10432 0.10386 6.38857 6.38887
40 180 180 180 176 178.25 180 0.13905 0.13858 8.75305 8.75339
50 200 199 199 200 200 200 0.31020 0.30971 11.12985 11.13021
60 230 230 230 225 229 229 0.45234 0.45188 14.02819 14.02851
70 250 250 250 249 249 249 0.43461 0.43424 16.31539 16.31572
80 280 280 278 278 278 279.25 0.86852 0.85867 19.53377 19.53411
90 300 300 300 295 295 306 0.86966 0.85923 22.73272 22.73305
100 320 319.25 318 317 318.25 337 1.07801 1.06775 26.03246 26.03278

TABLE 2
Comparison Between the Proposed Algorithm and the Baseline Algorithms (K = 6)

N Tmax T total Exe. Time (s)
Prop. Base1 Base2 Base3 Base4 Prop. Base1 Base2 Base3

10 60 60 60 54 55.5 59 0.06748 0.06693 2.08629 2.08644
20 70 70 70 66 67.25 70 0.32003 0.30977 3.99896 3.99930
30 90 89 89 84 88.75 90 0.64587 0.63581 6.28821 6.28853
40 100 100 100 99 99 100 0.91461 0.90420 8.46932 8.46944
50 120 119 119 120 120 119 1.74727 1.73733 10.75493 10.75507
60 130 129.25 128 130 130 130 1.93840 1.92801 14.07699 14.07732
70 160 160 160 155 160 160 2.91528 2.90505 16.36597 16.36627
80 170 170 170 164 168 170 3.52556 3.51517 18.76348 18.76385
90 180 180 180 177 179 180 5.06953 5.05901 22.41015 22.41033

100 200 200 200 200 200 200 6.87788 6.86762 24.87639 24.87698

[2] S. Chen, Y. Wang, and M. Pedram ”A semi-Markovian decision
process based control method for offloading tasks from mo-
bile devices to the cloud” Proc. IEEE Global Communications
Conference (GLOBECOM ’13), pp. 2885-2890, Dec. 2013, doi:
10.1109/GLOCOM.2013.6831512.

[3] B. Hayes, ”Cloud computing,” Communications of the ACM,
vol. 51, no. 7, pp. 9-11, Jul. 2008, doi: 10.1145/1364782.1364786.

[4] R. Buyya, C. S. Yeo, and S. Venugopal, ”Market-oriented cloud
computing: vision, hype, and reality for delivering IT services
as computing utilities,” Proc. IEEE International Conf. High
Performance Computing and Communications (HPCC ’08), pp.
5-13, Sep. 2008, doi: 10.1109/HPCC.2008.172.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, ”A view of cloud computing,” Communication-
s of the ACM, vol. 53, no. 4, pp. 50-58, Apr. 2010, doi:
10.1145/1721654.1721672.

[6] H. Dinh, C. Lee, D. Niyato, and P. Wang, ”A survey of mobile
cloud computing: architecture, applications, and approaches,”
Wireless Communications and Mobile Computing, vol. 13, no.
8, pp. 1587-1611, Dec. 2013, doi: 10.1002/wcm.1203.

[7] A. Khan and K. Ahirwar, ”Mobile cloud computing as a future
of mobile multimedia database,” International Jour. Computer
Science and Communication, vol. 2, no. 1, pp. 219-221, 2011.

[8] A. P. Miettinen and J. K. Nurminen, ”Energy efficiency of
mobile clients in cloud computing,” Proc. the 2nd USENIX
Conf. Hot Topics in Cloud Computing (HotCloud ’10), pp. 4-4,
Jun. 2010.

[9] Z. Li, C. Wang, and R. Xu, ”Computation offloading to

save energy on handheld devices: a partition scheme,” Proc.
International Conf. Compliers, Architecture, and Synthesis
for Embedded Systems (CASES ’01), pp. 238-246, 2001, doi:
10.1145/502217.502257.

[10] K. Kumar, J. Liu, Y. H. Lu, and B. Bhargave, ”A survey of
computation offloading for mobile systems,” Mobile Networks
and Applications, vol. 18, no. 1, pp. 129-140, Feb. 2013, doi:
10.1007/s11036-012-0368-0.

[11] U. Kremer, J. Hicks, and J. Rehg, ”A compilation framework
for power and energy management on mobile computers,”
Languages and Compilers for Parallel Computing, Springer-Verlag
Berlin Heigelberg, vol. 2624, pp. 115-131, 2003.

[12] A. Cheung, S. Madden, O. Arden, and A. C. Myers, ”Au-
tomatic partition of database applications,” Journal Proc. the
VLDB Endowment, vol. 5, no. 11, pp. 1471-1482, Jul. 2012,
doi:10.14778/2350229.2350262.

[13] H. Topcuoglu, S. Hariri, and M. Y. Wu, ”Performance-effective
and low-complexity task scheduling for heterogeneous comput-
ing,” IEEE Trans. Parallel and Distributed Systems, vol. 13, no.
3, pp. 260-274, Aug. 2002, doi: 10.1109/71.993206.

[14] S. C. Kim, S. Lee, and J. Hahm, ”Push-pull: determinisitic
search-based DAG scheduling for heterogeneous cluster sys-
tems,” IEEE Trans. Parallel and Distributed Systems, vol. 18,
no. 11, pp. 1489-1502, Nov. 2007, doi: 10.1109/TPDS.2007.1106.

[15] M. R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and
R. Govindan, ”Odessa: enabling interactive perception applica-
tions on mobile devices,” Proc. the 9th International Conference
on Mobile Systems, Applications, and Services (MobiSys ’11),
pp. 43-56, Jun. 2011, doi: 10.1145/1999995.2000000.

13

[16] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, ”A frame-
work for partitioning and execution of data stream applications
in mobile cloud computing,” ACM SIGMETRICS Performance
Evaluation Review, vol. 40, no. 4, pp. 23-32, Mar. 2013, doi:
10.1145/2479942.2479946.

[17] P. Rong and M. Pedram, ”Power-aware scheduling and dy-
namic voltage setting for tasks running on a hard real-time
system,” Proc. Asia and South Pacific Conf. Design Automa-
tion (ASP-DAC ’06), pp. 473-478, Jan. 2006, doi: 10.1109/ASP-
DAC.2006.1594730.

[18] Z. Li, C. Wang, and R. Xu, ”Task allocation for distributed
multimedia processing on wirelessly networked handheld de-
vices,” Proc. International Parallel and Distributed Processing
Symposium (IPDPS ’02), pp. 1-6, Apr. 2002, doi: 10.1109/IPDP-
S.2002.1015589.

[19] Y. C. Lee and A. Y. Zomaya, ”Minimizing energy consumption
for precedence-constrained applications using dynamic voltage
scaling,” Proc. the 9th IEEE/ACM International Symp. Cluster
Computing and the Grid (CCGRID ’09), pp. 92-99, May 2009,
doi:10.1109/CCGRID.2009.16.

[20] K. Kumar and Y. H. Lu, ”Cloud computing for mobile users:
can offloading computation save energy?” Computer, vol. 43,
no. 4, pp. 51-56, Apr. 2010, doi: 10.1109/MC.2010.98.

[21] Nvidia Corporation. http://www.nvidia.com/object/tegra-4-
processor.html

[22] P. Greenhalgh, ”Big.LITTLE processing with ARM Cortex-A15
& Cortex-A7,” ARM White Paper, 2011.

[23] Y. Zhang, H. Liu, L. Jiao, and X. Fu, ”To offload or not to
offload: an efficient code partition algorithm for mobile cloud
computing” Proc. International Conference on Cloud Network-
ing (CLOUDNET ’12), pp. 80-86, Nov. 2012, doi: 10.1109/Cloud-
Net.2012.6483660.

Xue Lin (S’12) received her B.S. degree from
Tsinghua University, Beijing, China, in 2009.
She is now a Ph.D. student in the Depart-
ment of Electrical Engineering at University
of Southern California. Her advisor is Prof.
Massoud Pedram. She has been working
on power management of photovoltaic (PV)
systems, near-threshold computing of Fin-
FET circuits, task scheduling in real-time and
mobile systems, and power management of
energy storage devices and hybrid electric

vehicles. She has published more than 40 papers in these areas.
She received the best paper award at 2014 IEEE International
Symposium on VLSI (ISVLSI).

Yanzhi Wang (S’12) received his B.S. de-
gree with distinction in electronic engineering
from Tsinghua University, Beijing, China, in
2009, and Ph.D. degree in electrical engi-
neering at University of Southern California,
in 2014, under the supervision of Prof. Mas-
soud Pedram. He is currently a postdoctoral
research associate and (part-time) lecturer
at University of Southern California. His cur-
rent research interests include system-level
power management, next-generation energy

sources, hybrid electrical energy storage systems, near-threshold
computing, digital circuits power minimization and timing analysis,
cloud computing, mobile devices and smartphones, electric vehicles
and hybrid electric vehicles, and the smart grid. He has published
around 130 papers in these areas. He received the best paper
awards at 2014 IEEE International Symposium on VLSI (ISVLSI)
and 2014 IEEE/ACM International Symposium on Lower Power
Electronics Design (ISLPED).

Qing Xie (S’12) has received his PhD de-
gree in Electrical Engineering Department
at University of Southern California, under
the supervision of Prof. Massoud Pedram.
His research interests are in the area of
thermal modeling and management, system-
level power management, low-power design
and management of energy storage systems
and mobile devices, and near-threshold VLSI
circuits design. He has received the Best Pa-
per Award from the 30th IEEE International

Conference on Computer Design.

Massoud Pedram (F’01), who is the
Stephen and Etta Varra Professor in the Ming
Hsieh department of Electrical Engineering
at University of Southern California, received
a Ph.D. in Electrical Engineering and Com-
puter Sciences from the University of Cali-
fornia, Berkeley in 1991. He holds 10 U.S.
patents and has published four books, 13
book chapters, and more than 140 archival
and 380 conference papers. His research
ranges from low power electronics, energy-

efficient processing, and cloud computing to photovoltaic cell power
generation, energy storage, and power conversion, and from RT-
level optimization of VLSI circuits to synthesis and physical design
of quantum circuits. For this research, he and his students have
received seven conference and two IEEE Transactions Best Paper
Awards. Dr. Pedram is a recipient of the 1996 Presidential Early
Career Award for Scientists and Engineers, a Fellow of the IEEE, an
ACM Distinguished Scientist, and currently serves as the Editor-in-
Chiefs of the ACM Transactions on Design Automation of Electronic
Systems and the IEEE Journal on Emerging and Selected Topics in
Circuits and Systems. He has also served on the technical program
committee of a number of premiere conferences in his field and was
the founding Technical Program Co-chair of the 1996 International
Symposium on Low Power Electronics and Design and the Technical
Program Chair of the 2002 International Symposium on Physical
Design.

