
TAPP: Temperature-Aware Application Mapping

for NoC-Based Many-Core Processors
Di Zhu†, Lizhong Chen‡, Timothy M. Pinkston†, and Massoud Pedram†

†Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, United States

‡School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, United States

Email: †{dizhu, tpink, pedram}@usc.edu, ‡chenliz@eecs.oregonstate.edu

Abstract—Application mapping with its ability to spread out

high-power components can potentially be a good approach to

mitigate the looming issue of hotspots in many-core processors.

However, very few works have explored effective ways of making

tradeoff between temperature and network latency. Moreover,

on-chip routers, which are of high power density and may lead to

hotspots, are not considered in these works. In this paper, we

propose TAPP (Temperature-Aware Partitioning and Placement),

an efficient application mapping algorithm to reduce on-chip

hotspots while sacrificing little network performance. This algo-

rithm “spreads” high-power cores and routers across the chip by

performing hierarchical bi-partitioning of the cores and concur-

rently conducting placement of the cores onto tiles, and achieves

high efficiency and superior scalability. Simulation results show

that the proposed algorithm reduces the temperature by up

to 6.80°C with minimal latency increase compared to the latency-

oriented mapping solution.

I. INTRODUCTION

With continued technology scaling, the number of processing
cores on-chip has been growing to tens or even a hundred [5][8][19].
Consequently, networks-on-chip (NoCs) have been adopted as the de
facto architecture in large application-specific multiprocessor systems-
on-chips (MPSoCs) and general-purpose chip-multiprocessors (CMPs)
to support communication of many concurrently running threads. In
these NoC-based many-core systems, an important design and run-
time step is application mapping, which maps the threads of applica-
tion(s) to distributed tiles. Since application mapping affects nearly all
aspects of on-chip communication, it is critical to the efficacy of NoC
as well as the overall many-core system.

Application mapping has drawn great attention over the past dec-
ade and has been optimized for various objectives such as network
latency, power, energy, cost, fairness (to list a few, [7][9][13][20]).
However, very few works have considered application mapping with
the awareness of chip temperature (to our knowledge, only [1][10][15]
do this), despite the large impact of mapping on the chip temperature
and the impact of temperature on performance, reliability, lifetime,
and leakage power dissipation of the chip [16]. Moreover, none of
these works take into account the thermal effects of on-chip routers.
That is, only the core power consumption is accounted for as a heat
source in those mapping schemes, leading to inaccurate and possibly
erroneous hotspot estimation. In fact, as shown in Section III, NoC
routers, which have relatively small chip area but large power con-
sumption, can potentially become hotspots themselves. In addition,
existing temperature-aware mapping schemes all use search-based
algorithms, which are very slow to generate satisfying mapping results
under execution time constraints, especially if runtime mapping ad-
justments are needed.

In this paper, we address the imperative issue of temperature-
aware application mapping with the consideration of NoC router pow-
er. A fast yet effective mapping algorithm, called TAPP (Tempera-
ture-Aware Partitioning and Placement), is proposed. The key chal-
lenge is to balance the potential conflict between the chip temperature
and the network latency. The basic idea of TAPP is to “spread” core
and router power by hierarchical bi-partitioning while concurrently

performing partial block placement in each partitioning iteration. Both
core and NoC router power consumption, as well as network latency
factor, are reflected in the cost function of min-cut in partitioning and
the cost function in placement.

The main contributions of this paper are the following. We (i) ana-
lyze the importance of taking into account the NoC router power in
application mapping, (ii) formulate the problem of temperature-aware
application mapping that considers the thermal effects of both cores
and the NoC routers, and (iii) propose an efficient heuristic-based
algorithm with time complexity (is the network size), suita-
ble for both design-time static mapping and run-time dynamic map-
ping.

II. BACKGROUND AND MOTIVATION

A. Temperature Model

A common approach to accurately capture the steady-state thermal
distribution while requiring limited input parameters is the thermal
resistance model [12]. To facilitate the modeling of tile-based many-
core chips, we consider each tile as one power source, whose power is
the summation of the power consumption of the core and the co-
located router on that tile.

The temperature increase of a node with coordinate (i.e., a
tile in the context of this work) is the summation of the temperature
increase introduced by the power source on this node and on every
other power sources:

 (1)

The temperature increase by the power source at tile is a
function of the power consumption of the source and the distance
between the node at and tile , i.e.,

 (2)

where is the temperature increase caused by unit power
of a heat source, and it only depends on the Euclidean distance be-
tween the node in question and the source. According to curve-fitting
HotSpot [17] simulation results, it is subject to exponential decay with
 .

B. Packet Latency Model

The packet latency model is derived based on [4][20] to calculate
the on-chip network latency of a packet generated at the -th tile

and heading for the -th tile, i.e.,

 (3)

where is the number of hops between tile and tile , which is the

Manhattan distance for mesh network with XY routing. , , ,

and are the per-hop latency for router and link, per-router queuing
latency (0~1 cycles as observed in the simulation), and serialization
latency (pre-determined for a given packet format and NoC architec-
ture), respectively.

C. Thermal Impact of NoC Routers

NoC routers may have large impact on thermal issue due to their
higher power-to-area ratio compared to other on-chip components. To
illustrate, Figure 1 plots this ratio for the main components in Scorpio,
a newly fabricated 36-core CMP [5]. With 10% of chip’s area and 19%

of chip’s power, NoC has the highest power-to-area ratio. Figure 2 is
the thermal map of Scorpio by inputting the key chip parameters to
Hotspot [17]. The figure shows that NoC component can potentially
be the hotspot in each tile. However, reducing NoC temperature in
application mapping requires placing high-power cores far from each
other, whereas the goal of reducing on-chip latency may require these
active cores as close as possible. To address this issue, new tempera-
ture-aware mapping scheme is much needed, as proposed in this work.

III. PROBLEM FORMULATION

Suppose a NoC-based system has tiles, and a set of threads
(cores) to be mapped onto the chip. We define the thread communica-
tion graph (TG) as follows: within the TG, a vertex where
 indicates one thread, its weight is the power consump-
tion of this thread, and the directed edge from thread to has the
weight representing communication rate, i.e., the average number

of flits sent from thread to thread per unit time length.

Another directed graph, the tile latency graph (LG), has each of its
vertex indicating one tile on the chip, and the edge from tile to tile
has the weight indicating the average packet latency of sending

one flit from tile to . A router is affixed to each tile, and its power
consumption is calculated by

 (4)

where is the static power consumption of the router, and

 is the dynamic power consumption which is a function of the

traffic going through this router (in flits per cycle), calculated by
the sum of where the communication between core and goes

through this router. This relies on the locations of core and . There-
fore, is dependent on the core mapping results.

The goal of application mapping is to find a permutation

 (5)

where denotes that the -th core is mapped onto the
 -th tile.

As network latency is among the most important criteria of on-
chip networks, the temperature-aware mapping methods should ensure
as little latency increase as possible while reducing on-chip tempera-
ture. The overall average packet latency and the maximum on-chip
temperature are calculated by

 (6)

 (7)

where is the coordinates of tile .

Therefore, the optimization goal of the proposed temperature-
aware mapping algorithm is the balance between the maximum on-
chip temperature and the overall average packet latency ,

 (8)

The units of coefficients and are cycle-1 and K-1, respectively.
The objective function can be adjusted by varying these two coeffi-
cients.

Unfortunately, this optimization problem is hard. Even with
 in the formulated problem (latency-minimizing mapping), this
simplified version has the form of a Quadratic Assignment Problem
(QAP), which is NP-hard. Thus, the scalability of exact algorithms is
greatly restricted due to their high complexity, and an efficient heuris-
tic algorithm is needed.

IV. PROPOSED SOLUTION

A. Motivation

In traditional circuit partitioning algorithms, the primary goal is to
find the min-cut of a graph of gates, i.e., to minimize the total weight
of interconnections that cross the cutline. We apply similar approach
to application mapping based on Kernighan–Lin (KL) algorithm [11],
considering two factors in the weight of interconnection. First, the
weight needs to reflect the overall traffic (communication rate) be-

tween two partitions and , i.e.,

 . Since higher

power density regions usually lead to hotspots, the on-chip power
consumption should be evenly spread out in order to reduce the max-
imum chip temperature. Therefore, we add the difference in power

consumption between two partitions to the total cost

 of a cutline,

the second factor in addition to the traffic cost. In this way, minimiz-

ing

 means concurrently balancing power and minimizing latency
during partitioning.

Specifically, the partition cost of a cutline

 which divides the

current graph into block and is calculated by

 (9)

where the power of each tile on a partition is calculated as the
sum of the core power , the NoC router static power and the part of
router dynamic power caused by all the communication generated at
or destined for this tile. Note that the part of router dynamic power
caused by forwarding bypassing traffic is not included as it depends
on the mapping results and is not reflected at this step. It will be ac-
counted for in the final temperature and latency calculation.

The above equation (9) and the min-cut approach provide a quasi

means of performing tradeoff in equation (8): increase value

towards more latency-oriented mapping, and decrease towards
more temperature-oriented mapping.

B. Temperature-Aware Partition-and-Placement (TAPP)

The key idea behind the proposed TAPP is that the block place-
ment is carried out concurrently within each iteration of the hierar-
chical bi-partitioning. TAPP consists of three steps.

1) Step 1: Horizontal Partition-and-Placement.
The first step is to conduct horizontal partitioning with placement

until the size of each partition equals one row in the mesh network,

based on the partitioning cost calculation

 in (9). Each iteration

includes the partitioning and placement of all the current blocks, so
the number of blocks doubles after each iteration, as shown in Figure
3. As soon as the min-cut partitioning is finished in each partition, the
placement order of the two blocks is determined right away.

Take the third iteration as an example, where the size of each
block after partitioning is . Suppose the partition and placement is
performed from the bottom to the top, and the first and second parti-
tion-and-placement iterations have been finished (the shadowed four
blocks in Figure 3). The third block is partitioned into two blocks,
and . Whether or is placed on top is determined by the costs of

Figure 1. Power densities of
different components on a tile

in Scorpio.

Figure 2. Thermal map of one tile in
Scorpio (the core has three parts due to the

rectangular restriction in HotSpot).

N

N/2

N/2

N/4

N/4

N/4

N/4

A

B

2

1

N/8

N/8

N/8

N/8

3

Iter=1 Iter=2 Iter=3

Figure 3. Step 1.

A B

Placed modules

Figure 4. Step 2.

0

0.1

0.2

0.3

0.4

Router Core L1C L2C

P
o

w
er

 d
en

si
ty

 (
W

/m
m

2
)

L1_Dcache L1_Lcache

L1_DTag L1_LTag

Core_part0

Core_part1

Core_part2

Router L2_Cntrl_0
L2_Cntrl_1

L2_Cntrl_2
L2_Tag

L2_Cache_part0

L2_Cache_part1

320.67

320.46

320.25

320.05

319.84

319.64

319.43
319.30

these two placement options. For example, the cost of placed on top

 is the sum of the communication cost and the temperature in-

crease caused by and , comprised of on top

 and at

bottom

. The former can be calculated by the following equa-

tion (note that this cost in placement is different from the partitioning
cost used in min-cut):

 (10)

where is the total communication rate between

block and a placed block (e.g., a shaded block), and are

the Manhattan distance and Euclidean distance between the centers of
 and . This is because the tile assignment of each individual core
might not be determined at this stage, so we assume all the cores with-
in each block are placed at the center. Similarly we calculate the

part

, sum it up with

 to get

, and then compare it

with the cost of placed on top

.

The horizontal partition-and-placement in Step 1 has itera-

tions, each iteration containing times of KL partition algorithm.

The evaluation for placement after each partitioning takes

because the number of rows is . Since the time complexity of

KL is for a graph of size [11], the time complexity of Step 1
is calculated by

 (11)

2) Step 2: Vertical Partition-and-Placement
With the cores assigned to each row determined after the first step,

we perform the vertical bi-partitioning with placement hierarchically
until each block contains one core.

In each iteration, the bi-partitioning is performed bottom to top,
and left to right, as shown in Figure 4. Each of the current blocks is
partitioned with minimum cost as in (9), and the order of the two
blocks after partitioning is calculated similarly as in the horizontal
placement. For example in Figure 4, after the partitioning of the and
 block, we calculate the temperature and latency costs of all the
placed blocks (including the placed blocks in the same row) caused by
 and in the two placing ways, i.e., either on the left or on the
left, and choose the one with smaller cost.

Step 2 performs KL hierarchically for each row with size sim-
ilar to in Step 1, but the placement evaluation takes instead of

 , therefore the time complexity is

 .

3) Step 3: Local Adjustment
Before reaching the final placement solution, we conduct local ad-

justment to the assignment generated in Step 2 as fine tuning. A 2x2
window is slid from bottom left to top right, and the 24 permutations
of the four cores inside the window are evaluated, and we greedily
pick the permutation with minimum cost to assign them to the four
tiles, with complexity.

To sum up, the timing complexity of TAPP is .

C. Applicability in Run-Time Application Mapping

Run-time mapping can be much needed in many-core processors
with dynamic workloads, for example, where new threads are allocat-
ed to replace the ones that have been finished while other unfinished
threads continue running on certain tiles. Unlike the exiting time-
consuming temperature-aware mapping algorithms, the proposed
TAPP is applicable for dynamic mapping. Specifically, to solve the
run-time mapping problem in TAPP, the running threads are consid-
ered as fixed nodes in the KL partition algorithm, and the order of the
two partitioned blocks is also fixed if any one of them contains a fixed
block.

V. SIMULATION RESULTS

A. Simulation Setup

The proposed problem and schemes are evaluated with both CMP
traces and MPSoC traces. The CMP traces are generated by the cycle-
accurate gem5 simulator [3] and the McPAT power modeling frame-
work [14], with the multi-threaded PARSEC benchmarks [2]. The
MPSoC task graphs and power traces are generated by TGFF [6]. The
interconnection power consumption is calculated by DSENT [18].

We have the following five schemes.

1. Random, the average latency and temperature of randomly gener-
ated mapping results;

2. MinLat_SA, a simulated annealing algorithm aiming at minimiz-
ing the overall average packet latency, as the baseline algorithm;

3. CoreOnly_SA, a temperature-aware simulated annealing algo-
rithm which considers only core power for generating mapping
(the final temperature calculation includes routers);

4. CoreNoC_SA, a temperature-aware simulated annealing algorithm
solving the proposed temperature-aware mapping problem, i.e.,
considering both core power and NoC power;

5. CoreNoC_TAPP, the proposed heuristic algorithm to solve the
temperature-aware mapping problem.

B. Temperature and Latency Results

We test the five schemes on an 8x8 mesh network with grid size =
1 mm. For the CMP traces, we use four groups P1, P2, P3, and P4 as
listed in Table I, each of them containing four 16-thread PARSEC
benchmarks. For the MPSoC traces, we use TGFF to generate four
application graphs for the 64 cores to be placed, as listed in Table II.
The wide range of configurations in these two tables show a repre-
sentative set of workloads.

The CMP results and MPSoC results are plotted in Figure 5 as the
tradeoff curves of temperature and latency. The latency achieved by
Random is around 28.7 cycles for CMP and 30.7 cycles for MPSoC,
and the Random temperature result is shown as text. Note that the
CMP results show less than 20 cycles in delay because the actual
communication graph of each of the four groups is comprised of four
disconnected subgraphs due to the lack of inter-application communi-
cation.

We have the following three observations.

First, it is noted that the MinLat_SA which solely minimizes the
average network latency reduces the on-chip temperature compared to
Random mapping result because the MinLat_SA greatly reduces the
NoC communication power.

Second, the CoreOnly_SA, which only considers the core power
consumption during mapping, decreases the hotspot temperature, but
still averagely 1-2°C higher than the two solutions with NoC power-
awareness. This demonstrates that the proposed problem which takes
into account the NoC power is a better description of real thermal
distributions on chip.

TABLE I. PARSEC BENCHMARK CONFIGURATIONS.

No. PARSEC Benchmarks Avg Std dev

P1 blackscholes, bodytrack, canneal, ferret 0.4564 0.1678

P2 bodytrack, canneal, ferret, vips 0.5036 0.1028

P3 blackscholes, dedup, ferret, fluidanimate 0.3938 0.1779

P4 canneal, fluidanimate, swaptions, x264 0.3717 0.0757

TABLE II. TGFF BENCHMARK CONFIGURATIONS.

Testbench Avg Std dev

tgff1 0.8346 0.4036

tgff2 0.4259 0.3027

tgff3 0.8130 0.1514

tgff4 0.2502 0.1010

Third, the CoreNoC_SA and TAPP achieve averagely equal re-
sults. For the four CMP benchmarks, CoreNoC_SA and TAPP reduce
the maximum temperature by 1.36°C and 1.25°C with averagely 2.97%
and 2.17% latency penalty compared to MinLat_SA algorithm, re-
spectively. The maximum penalty of TAPP is 3.30% in PARSEC 1.
For the four MPSoC benchmarks, they reduce temperature by 3.66°C
and 4.40°C with averagely 1.87% and 2.32% latency penalty. The
maximum penalty of TAPP is 3.40% in TGFF 2. However, the results
achieved by TAPP are obtained within a much smaller execution time.
The SA results shown in Figure 5 are given 1e5 times of iterations
each, taking an average of 437.4 seconds, leading to 112X execution
time compared to TAPP which takes 3.9 seconds to finish.

C. Power Consumption

The power overhead associated with the temperature-aware map-
ping in previous and this work comes from the extra dynamic power
of NoC due to higher network activity. However, since the TAPP
algorithm achieves minimal latency penalty, the activity factor of NoC
is increased only by a small amount, thus introducing very small pow-
er overhead. According to McPAT and DSENT models, TAPP has an
average chip power overhead of 0.21% for PARSEC benchmarks and
0.96% for TGFF benchmarks.

VI. CONCLUSIONS

This paper addresses the important issue of temperature-aware ap-
plication mapping in many-core processors. We analyze the thermal
impact of NoC routers and formulate a mapping problem that takes
into consideration the power of cores and routers as well as the
tradeoff between latency and temperature. An efficient temperature-
aware partitioning and placement (TAPP) algorithm is proposed to
mitigate on-chip hotspots while sacrificing little network performance.
Simulation results on 8x8 mesh networks using PARSEC and TGFF
benchmarks demonstrate the effectiveness of TAPP in mapping results
and algorithm execution time.

VII. ACKNOWLEDGEMENT

We sincerely thank Dr. Zhiliang Qian and the anonymous review-
ers for their helpful comments and suggestions. This research is sup-
ported by the National Science Foundation (NSF) grant CCF-1321131,
Software and Hardware Foundations of the NSF and the Semiconduc-
tor Research Corporation.

REFERENCES

[1] C. Addo-Quaye, "Thermal-aware mapping and placement for 3-D NoC
designs." SOC Conference, 2005. IEEE, 2005.

[2] C. Bienia, and L. Kai. "Parsec 2.0: A new benchmark suite for chip-
multiprocessors." Proceedings of the 5th Annual Workshop on
Modeling, Benchmarking and Simulation. 2009.

[3] N. Binkert, et al. "The gem5 simulator." ACM SIGARCH Computer
Architecture News 39.2, 2011.

[4] W. J. Dally and B. Towles, "Principles and practices of inter-connection
networks," Morgan Kaufmann, 2003.

[5] B.K. Daya, et al. "SCORPIO: a 36-core research chip demonstrating
snoopy coherence on a scalable mesh NoC with in-network ordering."
International Symposium on Computer Architecture. IEEE, 2014.

[6] R. P. Dick, D. L. Rhodes, & W. Wolf, "TGFF: task graphs for free."
Proceedings of the 6th international workshop on Hardware/software
codesign, pp. 97-101. IEEE, 1998.

[7] A. Faruque, et al. "ADAM: run-time agent-based distributed application
mapping for on-chip communication." Proceedings of the 45th annual
Design Automation Conference. ACM, 2008.

[8] J. Howard, et al., "A 48-core IA-32 message-passing processor with
DVFS in 45nm CMOS," Proceedings of the Solid-State Circuits
Conference Digest of Technical Papers, 2010.

[9] J. Hu, and R. Marculescu, "Energy-aware mapping for tile-based NoC
architectures under performance constraints," Proceedings of the Asia
and South Pacific Design Automation Conference, 2003

[10] W. Hung, et al. "Thermal-aware IP virtualization and placement for
networks-on-chip architecture." Proceedings of International Conference
on Computer Design. IEEE, 2004.

[11] B. W. Kernighan, & S. Lin. An efficient heuristic procedure for
partitioning graphs. Bell Systems Technical Journal, 1970.

[12] F. Kreith. The CRC handbook of thermal engineering. Springer, 2000.
[13] S. Murali, and G. De Micheli, "Bandwidth-constrained mapping of cores

onto NoC architectures," Design, automation and test in Europe, 2004.
[14] S. Li, et al. "McPAT: an integrated power, area, and timing modeling

framework for multicore and manycore architectures." Micro-
architecture, IEEE/ACM International Symposium on. IEEE, 2009.

[15] Y. Liu, Y. Ruan, Z. Lai, & W. Jing. "Energy and thermal aware mapping
for mesh-based NoC architectures using multi-objective ant colony
algorithm." International Conference on Computer Research and
Development. IEEE, 2011.

[16] L. Shang, L. S. Peh, A. Kumar, & N. K. Jha, "Thermal modeling,
characterization and management of on-chip networks." Proceedings of
the 37th annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society, 2004.

[17] K. Skadron, et al. "Temperature-aware microarchitecture." ACM
SIGARCH Computer Architecture News. Vol. 31. No. 2. ACM, 2003.

[18] Sun, C., et al. (2012). DSENT - A Tool Connecting Emerging Photonics
with Electronics for Opto-Electronic Networks-on-Chip Modeling. In
International Symposium on Networks-on-Chip.

[19] S. Vangal, et al. "An 80-tile 1.28 TFLOPS network-on-chip in 65nm
CMOS." International Solid-State Circuits Conference. IEEE, 2007.

[20] D. Zhu, et al. "Balancing On-Chip Network Latency in Multi-
Application Mapping for Chip-Multiprocessors." IPDPS 2014.

Figure 5. PARSEC benchmark results (average latency of Random: 28.7 cycles) and TGFF benchmark results (average latency of Random: 30.7 cycles).

16 17 18 19
66.5

67

67.5

68

68.5

69

69.5
Random: 73.48

Latency (cycles)

T
em

p
er

at
u

re
 (

C
)

PARSEC 1

16 17 18 19 20
65.5

66

66.5

67

67.5

68

68.5
Random: 73.13

Latency (cycles)

PARSEC 2

MinLat_SA

CoreOnly_SA

CoreNoC_SA

CoreNoC_TAPP

16 17 18 19
61

61.5

62

62.5

63

63.5
Random: 66.08

Latency (cycles)

PARSEC 3

16 17 18 19
67.5

68

68.5

69

69.5

70

70.5
Random: 74.52

Latency (cycles)

PARSEC 4

21 22 23 24
76

78

80

82

84

86 Random: 89.35

Latency (cycles)

T
em

p
er

at
u
re

 (
C

)

TGFF 1

20 21 22 23 24
70

71

72

73

74

75

76
Random: 78.05

Latency (cycles)

TGFF 2

MinLat_SA

CoreOnly_SA

CoreNoC_SA

CoreNoC_TAPP

21 22 23 24
71

72

73

74

75

76

77
Random: 83.85

Latency (cycles)

TGFF 3

20 21 22 23 24
63

64

65

66

67
Random: 69.95

Latency (cycles)

TGFF 4

