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ABSTRACT

Emerging mobile systems integrate a lot of functionality into
a small form factor with a small energy source in the form of
rechargeable battery. This situation necessitates accurate esti-
mation of the remaining energy in the battery such that user
applications can be judicious on how they consume this scarce
and precious resource. This paper thus focuses on estimating the
remaining battery energy in Android OS-based mobile systems.
This paper proposes to instrument the Android kernel in order
to collect and report accurate subsystem activity values based on
real-time profiling of the running applications. The activity in-
formation along with offline-constructed, regression-based power
macro models for major subsystems in the smartphone yield the
power dissipation estimate for the whole system. Next, while ac-
counting for the rate-capacity effect in batteries, the total power
dissipation data is translated into the battery’s energy depletion
rate, and subsequently, used to compute the battery’s remaining
lifetime based on its current state of charge information. Finally,
this paper describes a novel application design framework, which
considers the batterys state-of-charge (SOC), batterys energy de-
pletion rate, and service quality of the target application. The
benefits of the design framework are illustrated by examining an
archetypical case, involving the design space exploration and op-
timization of a GPS-based application in an Android OS.

I. INTRODUCTION

Evolution of mobile systems including smartphones and
tablet-PCs has given rise to larger and more power hungry em-
bedded systems with advanced functionality and high perfor-
mance. Unfortunately, the increase in volumetric/gravimetric
energy density of (rechargeable) batteries has been much
slower than the increase in the power demand of these devices,
creating a “power crisis” for the smartphone technology devel-
opment and product line expansion.

Accurate power modeling and estimation is a key require-
ment of any power-aware design methodology and low power
design tool. We need system-level power information in order
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to develop power-aware applications because modern smart-
phone applications utilize many system resources including the
application processor, display, audio, wireless communication,
and so on, simultaneously. There have been several efforts to
provide system-level power estimation models for the smart-
phone platforms [1] including battery information-based mod-
els [2, 3]. These models are based on the component activities
within the system.

The state of charge (SOC) of the battery ultimately deter-
mines the service life (also called lifetime) of a smartphone.
At the same time, the service quality of an application that is
running on a smartphone is largely dependent on the system
lifetime since the application-provided services becomes use-
less if the smartphone has run out of battery energy. So it is
important for a smartphone owner/user to have accurate infor-
mation about the remaining amount of energy in the battery.
All this means that the smartphone users are less interested in
how much power is consumed in the smartphone and more in-
terested in how much energy is left in the battery that powers
up the smartphone.

From the above discussion, it is evident that one must de-
velop a battery capacity loss (depletion) rate estimator and not
simply a power dissipation estimator for mobile systems. The
former captures important effects related to the battery chem-
istry, as well as conversion and distribution losses. The con-
version from power dissipation to battery capacity loss rate is
not a constant factor, rather it is a highly nonlinear function
depending on SOC of the battery, the load power dissipation
and the rate capacity effect, and the ambient temperature to
name a few. Developing such an estimator is the precise fo-
cus of our paper. The proposed method instruments the An-
droid kernel to produce accurate subsystem’s activity as the
key factor of the proposed regression-based power consump-
tion model based on real-time profiling. The power consump-
tion data along with information about the battery SOC is used
to estimate the remaining the battery lifetime.

This paper also introduces an energy-aware application de-
sign framework for Android OS-based mobile systems with
the system-level power model, battery status model, and ser-
vice quality model. We explore the design of a GPS appli-
cation as a case study. We maximize the service quality of the
GPS application by considering the locating resolution and trip
coverage related to the battery lifetime in the case study.
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Fig. 1. Energy-aware application design framework.

II. RELATED WORK

There are numerous studies on power analysis and modeling
of the computing systems including both general purpose and
mobile embedded systems. Several parameterized power mod-
els for the mobile computing systems have been introduced.
A measurement-based power estimation model is introduced
in [1]. The authors collect system activity parameters and eval-
uate the system power consumption. Various coefficients of the
system power equation are derived by regression analysis.

The authors of [3] start from the observation that dependen-
cies of system energy models on the specific hardware archi-
tecture and configuration as well as the usage patterns suggest
personalized models are needed for a mobile system relying on
the battery interface. Reference [4] relies on on-chip bus per-
formance monitoring unit to produce accurate estimates of sys-
tem power consumption from a first-order linear power model
by utilizing system-level activity information exchanged on the
system bus. Reference [5] presents a runtime, feedback-based
full system energy estimation model for battery powered de-
vices. The authors rely on first-order, linear regression equa-
tions (i.e., the power model) that capture the energy consump-
tion of CPU and memory using feedback about program exe-
cution behavior by monitoring various system events.

The authors of [2] provide manually generated power mod-
els for HTC Dream and HTC Magic phones. This technique
uses built-in battery voltage sensors and knowledge of bat-
tery discharge behavior to monitor power consumption of in-
dividual components and their impact on the state of discharge
(SoD) of the battery. A software implementation of this es-
timator, called PowerTutor, has been released on the Android
market. This reference is the closest prior work to what we re-
port in this paper. However, as show later, PowerTutor tends to
overestimate the remaining energy capacity of the smartphone
battery because it ignores the effect of the current discharge
rate on the battery capacity loss (known as the rate capacity
effect), and the internal battery losses.

Battery models for the electronic systems have extensively
been studied during the past few decades. We can find
many analytical models based on electrochemical modeling
and analysis [6, 7], but the electrochemical battery models are
too complicated to be used for the system-level design of elec-
tronics. Battery models in the form of an electric circuit are
suitable for this purpose [8, 9].

GPS is widely used for the tracking and navigation ap-
plications nowadays. GPS devices consumes non-negligible
amount of power. Some low-power techniques for the GPS ap-
plications have been introduced. There are several approaches
to enhance the locating accuracy of the GPS system while con-
sidering the power consumption. A combination of an ac-
celerometer and GPS receiver was introduced in [10]. Another
method adjusts performance or functionality to prolong bat-
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Fig. 2. GPS service quality model.

tery lifetime. They use custom IC in addition to GPS front-
end chips [11]. A tradeoff between the locating resolution and
power consumption is considered to design the sensor node
application in [12, 13].

III. ENERGY-AWARE APPLICATION DESIGN

A. Design framework

The purpose of the proposed application design framework
is to estimate the power consumption and corresponding bat-
tery SOC at the application design time. We use three kinds of
profiles to achieve this goal: system-level power dissipation,
subsystem (component) activity, and battery current/voltage as
shown in Fig. 1. We synchronously collect the system activ-
ity parameters and measure components power consumptions.
Next, we develop a smartphone power dissipation model by
doing regression analysis on the measured data. The battery
is also pre-characterized under constant-current and pulsed-
current charging and discharging scenarios. The characteri-
zation data include rate capacity curve and internal resistance
value of the battery. The battery characterization data is subse-
quently used to estimate the internal battery losses and battery
SOC change as a result of the total power dissipation in the
smartphone.

We need a way to model the service quality of the applica-
tion so as to maximize the satisfaction of the smartphone user.
In this paper, we focus on modeling the service quality in re-
lation to overall power/energy efficiency. The service quality
of a battery-powered computing system (e.g., a smartphone) is
approximately modeled by a combination of the performance
and service time. In general, a higher performance provides a
higher service quality, but it also results in larger power con-
sumption and a shorter service time. Therefore, we should de-
sign the application, balancing performance and service time
with the objective of maximizing the service quality.

B. Case Study: Energy-Aware Service Quality Optimization of
GPS Application

The service quality of the GPS tracking application is deter-
mined by not only the locating accuracy but also the lifetime of



the system. For an application where remote long term track-
ing is needed (long distance road trip, emergency situation in
remote area, and so on), a longer service time is more impor-
tant. These applications generally require less locating accu-
racy between the sample points as they are tracking over long
distances and extended time periods. The accuracy is also af-
fected by the speed of the tracking object. A low speed means
that the object in question moves only a small distance over a
given time period. This is contradictory to applications where
high positioning precision is critical due to higher velocities
(such as aeronautical navigation). We will evaluate the ser-
vice quality of the application considering the service time as
well as the locating accuracy related to the sampling period
and speed of the tracking object.

The locating accuracy is inversely proportional to the locat-
ing error. The maximum locating error of GPS, ε, is propor-
tional to the velocity of the tracking object and GPS fixing pe-
riod. Which is given by

ε = v · t f ix + ε0 (1)

where v, t f ix, and ε0 denote velocity of tracing object, fixing
period, and intrinsic error from GPS, respectively. If we use
longer t f ix as shown in Fig. 2 (a) compared to (b), then we
have larger error by (1). We use a normalized error, ε = ε/v, to
evaluate the service quality.

The tracking application should be running for a required
time up to its conclusion. If the battery lifetime is equal or
longer than the required time for a given trip, then the ser-
vice quality is the maximum value (=1). Otherwise, the ser-
vice quality is determined as being proportional to the cov-
ered trip time. The service quality related to the trip cover-
age, Coverage, is proportional to the normalized service time,
which is given by

Coverage =
{

tservice/ttrip (tservice ≤ ttrip),
1 (otherwise), (2)

where tservice and ttrip denote the service time and, respectively.

IV. POWER ESTIMATION MODEL

We use an Odroid-A platform from Hardkernel [14] as a tar-
get platform. It is a high-end development platform for the
smartphone and tablet PC which has very similar features to
Samsung Galaxy S2. The specification of the Odroid-A plat-
form is summarized in Table I. The system-level power model
includes the CPU, 3G, wi-fi, display, audio, GPS, and vibration
motor. The parameters for the system components is collected
from Android OS by the activity profiler.

A. CPU

We characterize the CPU power consumption as a function
of the operating frequency and its utilization from the Android
OS, which is given by

Pcpu =Ccpu
f reqXcpu

f req(X
cpu
kernel +Xcpu

user)+Pcpu
0 , (3)

where Xcpu
f req, Xcpu

kernel , Xcpu
user, Ccpu

f req, and Pcpu
0 denote the operat-

ing frequency (MHz), kernel program utilization, user program
utilization, regression coefficient and offset value, respectively.

TABLE I
TARGET PLATFORM SPECIFICATION

Components Model Descrpition
Application processor Exynos4210 Dual-core CPU

3G module F5521GW G+GPS module
Wi-fi GB8632 Wi-fi+bluetooth module

Display LP101WH1 1366 x 768 TFT LCD
Audio codec MAX98089 full-featured codec

Vibration motor DMJBRK36S Vibration motor
Battery KPL6072196 Li-poly, 10Ah

B. 3G module

The 3G module consumes power approximately according
to its operating state. It has three operating state which are
IDLE, FACH, and DCH. We model the power consumption of
the module according to the state of the module as follows:

P3G = X3G
on (C3G

idleX3G
idle +C3G

f achX3G
f ach +C3G

dchX3G
dch), (4)

where X3G
on is 1 when the 3G module is activated or 0 otherwise.

X3G
idle, X3G

f ach, and X3G
dch denote the timing portion of each state for

a given sampling period, respectively. C3G
idle, C3G

f ach, and C3G
dch are

the regression coefficients.

C. Wi-fi module

The Wi-fi module also consumes power approximately ac-
cording to its operating state. It has two operating states, which
are LOW and HIGH. Each operating state represents the link
speed of the wireless channel. The model is given by:

Pw f = Xw f
on (Cw f

lowXw f
low +Cw f

highXw f
high), (5)

where Xw f
on is 1 when the Wi-fi module is activated or 0 other-

wise. Xw f
low and Xw f

high, denote the timing portion of LOW and

HIGH state for a given sampling period, respectively. Cw f
low and

Cw f
high are the regression coefficients.

D. Display

Power consumption of the LCD display in the Odroid plat-
form shows discrete characteristics. We can control the bright-
ness value from 0 to 255 by setting the value of a control reg-
ister. In general, the LCD power consumption is proportional
to its brightness This is also true for the Odroid platform as
long as the brightness value is not set to the maximum allowed.
However, if we set the brightness value to the maximum, the
display consumes much more power than before. , which is
given by

Plcd =Clcd
britX

lcd
britX

lcd
on +Clcd

f ullX
lcd
f ullX

lcd
on +Plcd

0 +Plcd
ctrl , (6)

where X lcd
on is 1 when LCD is turned on and X lcd

f ull is 1 when
the brightness is the maximum, or, otherwise, they are 0. X lcd

brit ,
Plcd

0 , and Plcd
ctrldenote the brightness value, power offset value,

and controller power consumption, respectively. Clcd
brit and Clcd

f ull
are the regression coefficients.
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Fig. 3. Li-ion battery equivalent circuit model.

E. Audio device

The average power consumptions of the audio amplifier and
speaker is proportional to the volume., which is given by

Paud = Xaud
on (Caud

vol Xaud
vol +Caud

on ), (7)

where Xaud
on is 1 when the audio module is activated or 0 oth-

erwise. Xaud
vol and Caud

vol denote the volume value and regression
coefficient, respectively.

F. GPS module

The power consumption of the GPS module is determined
by its operational state. The GPS module has three state which
are OFF, SLEEP, ACTIVE state. Each state consumes different
amount of power, which is given by

Pgps = Xgps
on (Cgps

o f f Xgps
o f f +Cgps

sleepXgps
sleep +Cgps

activeXgps
active), (8)

where Xgps
on is 1 when the GPS module is activated or 0 other-

wise. Xgps
o f f , Xgps

sleep, and Xgps
active denote the timing portion of each

state for a given sampling period, respectively. Cgps
o f f , Cgps

sleep,
and Cgps

active are the regression coefficients.

G. Vibration motor

The vibration motor consumes 150 mW to 600 mW on av-
erage depending on the size when it is turned on. The power
model is given by

Pvm =Cmotor
on Xmotor

on , (9)

where Xmotor
on is 1 when the motor is turned on or 0 otherwise.

Cmotor
on is the regression coefficient.

V. BATTERY LIFE MODEL

We need an appropriate battery model to estimate the battery
internal state where the estimation of the battery internal loss
is important for system lifetime estimation as well as the es-
timation of the component power consumption. According to
our characterization, the internal resistance of the Li-ion bat-
tery is about 100 mΩ which dissipates non-negligible amount
of power. In addition, the part of stored energy in the battery
cannot be used up to its discharging condition by rate-capacity
effect. In this section, we construct an equivalent circuit model
for the Li-ion battery considering the internal loss to avoid the
overestimation of battery lifetime which can be resulted in only
with the components power estimation.

A. Battery circuit model

We import an equivalent circuit model of the Li-ion battery
from [9] as shown in Fig. 3. This includes a runtime-based

TABLE II
EXTRACTED PARAMETERS FOR THE BATTERY MODELS.

Coeff. Value Coeff. Value Coeff. Value
b11 -0.265 b12 -61.649 b13 -2.039
b14 5.276 b15 -4.173 b16 1.654
b17 3.356 b21 -0.043 b22 -14.275
b23 0.154 kd 0.019

model as well as a circuit-based model for accurate capturing
of the battery service life and I-V characteristic. In this model
we use Cb to denote the remaining charge in the battery, and
vSOC as the voltaic representation of the battery SOC, defined
as the ratio of the charge currently stored in the battery to the
total charge when the battery is fully charged, i.e.,

vSOC =Cb/Cb, f ull×1 V, (10)

where Cb, f ull is the total charge of battery (in Coulomb) when
it is fully charged, given by

Cb, f ull = 3600×Capacity (11)

where Capacity is the nominal battery capacity in Ahr. In the
battery model, the open circuit terminal voltage (OCV) of the
battery, denoted by vOC in Fig. 3, as well as other internal re-
sistances and capacitances, are all functions of the SOC value
vSOC. Since the charging/discharging current of the battery
in the mobile platform is relatively small (typically less than
C/10), the effects of the battery internal capacitances are not
phenomenal. Therefore we only provides model of the OCV
vOC and total internal resistance Rtotal as a function of the SOC
value vSOC in the following nonlinear equations, in which Rtotal
is the sum of the battery internal resistances Rs, Rts and Rtl
shown in Figure 3.

vOC =b11eb12vSOC +b13vSOC
4 +b14vSOC

3+

b15vSOC
2 +b16vSOC +b17,

Rtotal =b21eb22vSOC +b23, (12)

where bi j are empirically-extracted regression coefficients.
The rate capacity effect of batteries specifies the fact that the

available discharging time of a battery is strongly dependent on
the battery discharging current ib. Equivalently, we use the bat-
tery discharging efficiency, η(ib), defined as the ratio between
the battery discharging current and the charge loss rate inside
the battery, to incorporate the rate capacity effect in the battery
runtime model shown in Fig. 3. According to the Peukert’s
Law [15], the battery discharging efficiency η(ib) can be ap-
proximated by 1/((ib)kd ) We extract the equation parameters
from KPL6072196 Li-ion cell in the Odroid platform by mea-
surements. as presented in Table II.

B. Battery state of charge estimation

We develop a battery state estimation model based on the
power estimation model and battery model introduced in the
Sections IV and V. The battery SOC, E, is calculated by

E(t +∆t) = E(t)−∆E, (13)

where the energy difference, ∆E, is given by

∆E = ∆t(Pcpu+Plcd +Paudio+P3G+Pw f +Pvm)+Eloss, (14)
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where ∆t, T , and N denotes the discrete time period for energy
estimation, temperature, and number of cycles. The internal
loss of battery for ∆t is derived from (12), which is given by

Eloss = ∆t(i2bRtotal + ib · vOC · (1/η(ib)−1)). (15)

Finally, we translate the power estimation in Section IV result
based on the activity profile into the battery energy state profile
by using (13), (14), and (15).

VI. EXPERIMENT

A. Model verification

We measure the power consumption of major components
in the Odroid-A platform with the experimental setup shown
in Fig. 4, and construct the power estimation model as summa-
rized in Table III. We implement a current measurement mod-
ule, which consists of shunt resistors and the INA194 shunt
monitors form Texas instruments. We use a DAQpad-6016
data acquisition system with a LabView from National instru-
ments to collect the measured data. An E3610 Power supply
and A34410A digital multimeter from Agilent are used to sup-
ply power and measured data verification.

We compare the remaining battery energy estimates of the
proposed model with those of the model introduced in [2]. The
authors of that paper argue that the error resulting from as-
suming that the battery energy capacity is independent of dis-
charge rate is quite small, and hence, they go on to use a pre-
characterized battery characteristic curve under low constant-
current discharge to estimate the remaining battery energy
and then, from that derive the regression coefficients of their
system-level power model. We, on the other hand, calculate
the remaining battery energy from the system-level power con-
sumption modulated by information about the current SOC of
the battery itself. According to our observations, the effect of

TABLE III
BATTERY STATUS ESTIMATION MODEL BASED ON ANDROID SYSTEM

ACTIVITY PARAMETERS

Components Coeff. Value Coeff. Value Coeff. Value
Processor Ccpu

f req 0.00642 Pcpu
0 0.332

3G C3G
idle 0.011 C3G

dch 0.672 C3G
f ach 0.322

Wi-fi Cw f
high 0.020 Cw f

low 0.740
Display Clcd

birt 0.004 Plcd
0 0.224 Clcd

f ull 1.307
Plcd

ctrl 0.067
Audio Caud

on 0.024 Caud
vol 0.00009

Vibrator Cvib
on 0.003

GPS CGPS
o f f 0.011 CGPS

active 0.212 CGPS
sleep 0.069

Voltage Current

Coulomb counting
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Fig. 5. Battery measurement result (a) and energy model verification (b).

discharge rate on the translation of the total system power dis-
sipation to the depletion rate of the battery energy capacity is
sizeable.

We compare our results with the coulomb counting result
and the battery sensor value. The coulomb counting method
is known to be more accurate than the open-circuit voltage
(OCV) based approaches, and is considered as the golden
result here. The Odroid-A platform is equipped with the
MAX17010 fuel gauge meter IC from Maxim as the battery
sensor. This IC uses OCV to estimate the batterys remaining
energy capacity. We charge the battery until the smartphone
battery sensor indicates a 100 % SOC and discharge the battery
by running different tasks, including 3G and Wi-fi communi-
cation and GPS operations. Our proposed method produces
remaining energy estimates that are much closer to those ob-
tained by the coulomb counting method (see Fig. 5). The bat-
tery sensor produces very pessimistic estimates compared to
the coulomb counting method, while the model from [2] shows
overestimated results. Note that the primary purpose of the bat-
tery fuel gauge sensor is to protect the system from unexpected
shut-down, and, therefore, it is reasonable for its remaining en-
ergy estimates to be very conservative.

The overestimated result of the model from [2] is mainly be-
cause of the underestimation of the battery internal losses due
to the rate capacity effect. The authors of [2] discharged the
battery with a very small current in the sleep state of the sys-
tem to minimize the internal losses in the battery. They di-
rectly mapped the battery OCV to the battery SOC. The differ-
ence between two OCV readouts (and hence, two SOC values)
is then translated into a battery depletion rate, and hence, a
system-level power consumption value. As a result, the energy
difference of the battery SOCs is almost the same as the inte-
gration of the power dissipation over time. The internal losses
in the battery were ignored during the characterization process.

However, the internal battery losses are strongly affected by
the amount of current drawn from the battery. For example,
the IR drop loss of the battery caused by the internal resistance
grows rapidly, being proportional to the square of the current
value. Therefore, the energy estimation results of [2] turn out
to overestimate the battery SOC in spite of the fact that their
system-level power estimates are quiet accurate. We consider
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the battery internal losses as a function of the battery current
(which is in turn a function of the power demand of the system
depending on what applications are running). As a result, the
proposed method shows a mere 2.2 % average error while the
model from [2] shows 11.2 % average error.

B. Design space exploration for GPS application

The average energy consumption of GPS operation is ap-
proximated from (14) to following equation:

∆EGPS = ∆t(CGPS
o f f XGPS

o f f +CGPS
sleepXGPS

sleep +CGPS
activeXGPS

active)

+∆Eother +Eloss(vOC,T,N), (16)

where Eother is the average power consumption of other de-
vices.

We characterize the GPS status by using the requestLoca-
tionUpdate() method with variable t f ix. The characterization
result of GPS operation is shown in Fig. 6. The relation be-
tween t f ix and state ratio is as follows:

XGPS
active = tactive/t f ix,

XGPS
sleep =

{
(t f ix− tactive)/t f ix (t f ix ≤ tgoo f f ),
(tgoo f f − tactive)/t f ix (t f ix > tgoo f f ),

XGPS
o f f = 1−XGPS

active−XGPS
sleep, (17)

where t f ix is longer than tgoo f f . tactive and tgosleep denote AC-
TIVE state time duration per each fixing period and SLEEP
state time duration before going to OFF state. Finally, the ser-
vice time (= battery lifetime), tservice, is given by

tservice =Capacity/∆EGPS. (18)

We maximize the service quality for the example case il-
lustrated in Fig. 2 (c). The estimated trip time, ttrip, for the
523-mile road trip from Sacramento to San diego is 8 h 20 min
from Google maps when the average speed is about 60 miles
per hour. With the same battery capacity in Section V, the es-
timated normalized trip coverage, Coverage, and normalized
accuracy, (1− ε), for different t f ix is shown in Fig. 7. We use
3.5231 J for ∆Eother, 10 s for tactive, and 5 s for tgoo f f . The other
parameters are all the same as presented in Sections V and VI.
A combined service quality, Qservice =Coverage ·(1−ε) shows
convex shape. When we do not consider the battery internal
loss, the maximum service quality value where t f ix is 55 s. t f ix
is 48 s when we consider the battery internal loss.
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Fig. 7. Design space exploration for GPS applications (a) only with power
estimation and (b) considering battery internal loss.

VII. CONCLUSION

This paper introduces accurate power estimation, remaining
battery charge estimation and power-aware application design
for Android OS-based mobile systems. We developed power
models for major subcomponents including the CPU, wi-fi,
display, audio, GPS, vibration motor, etc., considering their
digital and analog states such as display brightness, audio vol-
ume, and so on, as well as their on/off states. As none of previ-
ous work led the power consumption to the remaining battery
life, we derived a battery status of charge model as a function
of the smartphone activities. All the device models are based
on the measured results of commercially widely used compo-
nents. We verified the models comparing with real platform
measurement showing much more accurate result duration of
full-capacity discharging. We also demonstrated power-aware
application design with a GPS application practice. We per-
formed design space exploration and introduced quality and
battery lifetime tradeoff. The result shows that we achieved the
maximum service quality value though the proposed power-
aware design framework.
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