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A rotation-based synthesis framework for reversible logic is proposed. We develop a

canonical representation based on binary decision diagrams and introduce operators to

manipulate the developed representation model. Furthermore, a recursive functional bi-
decomposition approach is proposed to automatically synthesize a given function. While

Boolean reversible logic is particularly addressed, our framework constructs intermedi-
ate quantum states that may be in superposition, hence we combine techniques from

reversible Boolean logic and quantum computation. The proposed approach results in

polynomial gate count for multiple-control Toffoli gates without ancillae where the pre-
vious approach uses exponential number of gates. We also improve circuit depth for

quantum carry-ripple adder by a constant factor, and circuit size for quantum multi-

plexer from O(n2) to O(n log2 n).
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1 Introduction

The appeal for research on quantum information processing [1] is due to three major reasons.

(1) Working with information encoded at the atomic scale such as ions and even elemen-

tary particles such as photons is a scientific advance. (2) Direct manipulation of quantum

information may create new capabilities such as ultra-precise measurement [2], telemetry,

and quantum lithography [3], and computational simulation of quantum-mechanical phenom-

ena [4]. (3) Some time-exponential computational tasks with non-quantum input and output

have efficient quantum algorithms [1]. Particularly, most quantum circuits achieve a quantum

speed-up over conventional algorithms [5]. However, useful applications remain limited.

Recent advances in fault-tolerant quantum computing decrease per-gate error rates below

the threshold estimate [6] promising larger quantum computing systems. To be able to do

efficient quantum computation, one needs to have an efficient set of computer-aided design

tools in addition to the ability of working with favorable complexity class and controlling

quantum mechanical systems with a high fidelity and long coherence times. This is comparable

with the classical domain where a Turing machine, a high clock speed and no errors in

switching were not adequate to design fast modern computers.

Quantum circuit design with algorithmic techniques and CAD tools has been followed

by several researchers. The proposed methods either addressed permutation matrices [7]
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2 Reversible Logic Synthesis by Quantum Rotation Gates

or unitary matrices, e.g., [8]. Permutation matrices and reversible circuits are an important

class of computations that should be efficiently performed for the purpose of efficient quantum

computation. Indeed, Boolean reversible circuits have attracted attention as components in

several quantum algorithms including Shor’s quantum factoring [9, 10] and stabilizer circuits

[11].

In this paper, a canonical decision diagram-based representation is presented with novel

techniques for synthesis of circuits with binary inputs. This work may be considered along

with the work done for the synthesis of reversible circuits [7]. However, we work with rotation-

based gates which allow computing a Boolean function by leaving the Boolean domain [12].

Therefore, this approach may be viewed as a step to explore synthesis of reversible functions by

gates other than generalized Toffoli and Fredkin gates. We show that applying the proposed

approach improves (1) circuit size for multiple-control Toffoli gates from exponential in [13] to

polynomial, (2) circuit depth for quantum carry-ripple adders by a constant factor compared

to [14], and (3) circuit size for quantum multiplexers from O(n2) to O(n log2 n).

The reminder of this paper is organized as follows. In Section 2, we touch upon necessary

background in reversible and quantum circuits. Readers familiar with quantum circuits may

ignore this section. Section 3 summarizes the previous work on quantum and reversible

circuit synthesis. In Section 4, the proposed rotation-based technique is described. In Section

5, we provide an extension of the proposed synthesis algorithm to handle a more general

logic functions, i.e., functions with binary inputs and arbitrary outputs. Synthesis of several

function families are discussed in Section 6, and finally Section 7 concludes the paper. A

partial version of this paper was presented in [15].

2 Basic Concepts

A quantum bit, qubit, can be realized by a physical system such as a photon, an electron or

an ion. In this paper, we treat a qubit as a mathematical object which represents a quantum

state with two basic states |0〉 and |1〉. A qubit can get any linear combination of its basic

states, called superposition, as |ψ〉 = α|0〉 + β|1〉 where α and β are complex numbers and

|α|2 + |β|2 = 1.

Although a qubit can get any linear combination of its basic states, when a qubit is

measured, its state collapses into the basis |0〉 and |1〉 with the probability of |α|2 and |β|2,

respectively. It is also common to denote the state of a single qubit by a 2 × 1 vector

as [ α β ]T in Hilbert space H where superscript T stands for the transpose of a vector.

A quantum system which contains n qubits is often called a quantum register of size n.

Accordingly, an n-qubit quantum register can be described by an element |ψ〉 = |ψ1〉⊗ |ψ2〉⊗
. . .⊗|ψn〉 (simply |ψ1ψ2 · · ·ψn〉) in the tensor product Hilbert space H = H1⊗H2⊗· · ·⊗Hn.

An n-qubit quantum gate performs a specific 2n × 2n unitary operation on selected n

qubits. A matrix U is unitary if UU† = I where U† is the conjugate transpose of U and I

is the identity matrix. The unitary matrix implemented by several gates acting on different

qubits independently can be calculated by the tensor product of their matrices. Two or

more quantum gates can be cascaded to construct a quantum circuit. For a set of k gates

g1, g2, · · · , gk cascaded in a quantum circuit C in sequence, the matrix of C can be calculated

as MkMk−1 · · ·M1 where Mi is the matrix of the ith gate (1 ≤ i ≤ k). For a quantum circuit

with unitary matrix U and input vector ψ1, the output vector is ψ2 = Uψ1.



A. Abdollahi, M. Saeedi, M. Pedram 3

a • p = a a • p = a a • • • p = a

b q = a⊕ b b • q = b b • • q = b

c r = ab⊕ c c V V † V r = ab⊕ c

(a) (b) (c)

Fig. 1. CNOT (a) and Toffoli (b) gates. Decomposition of a Toffoli gate into 2-qubit gates (c) where
V = (1− i)(I + iX)/2 [13].

Various quantum gates with different functionalities have been introduced. The θ-rotation

gates (0 ≤ θ ≤ 2π) around the x, y and z axes acting on one qubit are defined as Eq. (1).

The single-qubit NOT gate is described by the matrix X in Eq. (2). The CNOT (controlled

NOT) acts on two qubits (control and target) is described by the matrix representation shown

in Eq. (2). The Hadamard gate, H, has the matrix representation shown in Eq. (2).

Rx(θ) =

(
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

)
, Ry(θ) =

(
cos θ

2
− sin θ

2

sin θ
2
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)
, Rz(θ) =
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e−iθ

2
0

0 e iθ
2

)
(1)

X =

(
0 1
1 0

)
,CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,H =
1√
2

(
1 1
1 −1

)
(2)

Given any unitary U over m qubits |x1x2 · · · xm〉, a controlled-U gate with k control

qubits |y1y2 · · · yk〉 may be defined as an (m+ k)-qubit gate that applies U on |x1x2 · · · xm〉
iff |y1y2 · · · yk〉=|11 · · · 1〉. For example, CNOT is the controlled-NOT with a single control,

Toffoli is a NOT gate with two controls, and CRx(θ) is a Rx(θ) gate with a single control.

Similarly, a multiple-control Toffoli gate CkNOT is a NOT gate with k controls. Fig. 1 shows

CNOT and Toffoli gates. For a circuit implementing a unitary U , it is possible to implement

a circuit for the controlled-U operation by replacing every gate by a controlled gate. In circuit

diagrams, • is used for conditioning on the qubit being set to value one.

3 Previous Work

Synthesis of 0-1 unitary matrices, also called permutation, has been followed by several re-

searchers during the recent years. Here, we review the recent approaches with favorable

results. More information can be found in [7]. Transformation-based methods [16] iteratively

select a gate to make a given function more similar to the identity function. These methods

construct compact circuits mainly for permutations with repeating patterns in output code-

words. Search-based methods [17] explore a search tree to find a realization. These methods

are highly useful if the number of circuit lines and the number of gates in the final circuit are

small. Cycle-based methods [18] decompose a given permutation into a set of disjoint (often

small) cycles and synthesize individual cycles separately. These methods are mainly efficient

for permutations without repeating output patterns. BDD-based methods [19] use binary

decision diagrams to improve sharing between controls of reversible gates. These techniques

scale better than others. However, they require a large number of ancilla qubits.

Quantum-logic synthesis deals with general unitary matrices and is more challenging than

reversible-logic synthesis. Synthesis of an arbitrary unitary matrix from a universal set of
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a • p = a a • p = a a • •
p1

• p = a

b Rx(π) q = a⊕ b b • q = b b • Rx(π)
q1

• Rx(π) q = b

c Rx(π) r = ab⊕ c c Rx(π/2)
r2

Rx(π/2)
r1

Rx(−π/2) r = ab⊕ c

(a) (b) (c)

Fig. 2. New definitions for CNOT (a) and Toffoli (b) gates using controlled rotation gates. Decomposition
of a Toffoli gate into 5 2-qubit controlled-rotation gates (c).

gates including one-qubit operations and CNOTs has a rich history. Barenco et al. in 1995

[13] showed that the number of CNOT gates required to implement an arbitrary unitary

matrix over n qubits was O(n34n). As of 2012, the most compact circuit constructions use
23
484n− 3

22n+ 4
3 CNOTs [8, 20] and 1

24n+ 1
22n−n−1 one-qubit gates [21]. The sharpest lower

bound on the number of CNOT gates is
⌈

1
4 (4n − 3n− 1)

⌉
[22]. Different trade-offs between

the number of one-qubit gates and CNOTs are explored in [23].

4 Rotation-Based Synthesis of Boolean Functions

In this section, we address the problem of automatically synthesizing a given Boolean function

f by using rotation and controlled-rotation gates around the x axis. In this paper, we change

the basis states as 0̂ =
[

1 0
]T

and 1̂ = Rx(π)0̂ =
[

0 −i
]T

. With this definition of 0̂

and 1̂, the basis states remain orthogonal. Also, inversion (i.e., the NOT gate) from one basis

state to the other is simply obtained by a Rx(π) gate.1 Subsequently, the CNOT gate can

be described by using the CRx(π) operator shown in Fig. 2(a). In addition, the Toffoli gate

may be described by using the C2Rx(π) operator illustrated in Fig. 2(b). Toffoli gate can be

implemented using 5 controlled-rotation operators as demonstrated in Fig. 2(c). Recall that

a 3-qubit Toffoli gate needs 5 2-qubit gates if |0〉 and |1〉 are used as the basis states (Fig.

1(c)).

For a 2-qubit CRx(θ) gate with a control qubit a and a target qubit b, the first output is

equal to a. However, the second output depends on both the control line a and the target line

b. We use the notation aRx(θ)b to describe the second output. Furthermore, we write Rx(θ)b

to unconditionally apply a single-qubit Rx(θ) to the qubit b. Additionally, one can show that

for binary variables a, b, c we have aRx(θ1)[aRx(θ2)b] = aRx(θ1 + θ2)b, aRx(θ1) [bRx(θ2)c] =

bRx(θ2) [aRx(θ1)c], aRx(π)1̂ =∼ a (∼ is used for negation), and aRx(π)0̂ = a.

Definition 1 0̂ and all variables are in the rotation-based factored (factored in short) form.

If h and g are in the factored form, then Rx(θ)h and gRx(θ)h are in the factored form too.

In a quantum circuit synthesized with Rx(θ) and CRx(θ) operators, all outputs and inter-

mediate signals in the given circuit can be described in the factored form. For example, the

output r in Fig. 2(c) can be described as r = [aRx(π)b]Rx(−π/2) [aRx(π/2) [bRx(π/2)c]].

Definition 2 0̂ and all variables are rotation-based cascade (cascade in short) expressions.

1While we used 0̂ and 1̂ as the basis states, the presented algorithm can be easily modified to be applicable to
quantum functions described in terms of |0〉 and |1〉. An alternate solution is to define the following operators
and use M to transform the |0〉 and |1〉 states to 0̂ and 1̂ states and operator M−1 to perform the reverse
transformation. Hence to compute in |0〉 and |1〉 basis, one needs to apply M and M−1 single-qubit operators
before and after the computation done in the 0̂ and 1̂ basis, respectively. Notice that M and M−1 are rotations
around the z axis.

M =

[
1 0
0 −i

]
,M−1 =

[
1 0
0 i

]
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If h is a cascade expression and v is a variable 6∈ h, then Rx(θ)h and vRx(θ)h are cascade

expressions too (∀θ).
A cascade expression can be expressed as Rx(θ0)

[
v1Rx(θ1)

[
v2Rx(θ2) · · ·

[
vnRx(θn)0̂

] ] ]
.

The problem of realizing a function with Rx(θ) and CRx(θ) operators is equivalent to finding

a cascade expression for the function. To do this, we first introduce a graph-based data

structure in the form of a decision diagram for representing functions.

4.1 A Rotation-Based Data Structure

The concept of binary decision diagram (BDD) was first proposed by Lee [24] and later

developed by Akers [25] and then by Bryant [26], who introduced Reduced Ordered BDD

(ROBDD) and proved its canonicity property. Bryant also provided a set of operators for

manipulating ROBDDs. In this paper, we omit the prefix RO. BDD has been extensively

used in classical logic synthesis. Furthermore, several variants of BDD were also proposed for

logic synthesis [19], verification [27, 28, 29] and simulation [30, 31] of reversible and quantum

circuits. In this section, we describe a new decision diagram for the representation of functions

based on rotation operators. Next, we use it to propose a synthesis framework for logic

synthesis with rotation gates.

Definition 3 A Rotation-based Decision Diagram (RbDD) is a directed acyclic graph with

three types of nodes: a single terminal node with value 0̂, a weighted root node, and a set of

non-terminal (internal) nodes. Each internal node represents a function and is associated with

a binary decision variable with two outgoing edges: a weighted 1̂-edge (solid line) leading to

another node, the 1̂-child, and a non-weighted 0̂-edge (dashed line) leading to another node,

the 0̂-child. The weights of the root node and 1̂-edges are in the form of Rx(θ) matrices. We

assume that −π < θ ≤ π. When a weight (either for an edge or the root node) is the identity

matrix (i.e., Rx(0) = I), it is not shown in the diagram.

The left RbDD in Fig. 3(a) shows an internal node f with decision variable a, the corre-

sponding 0̂ and 1̂ edges, and child nodes f0 and f1. The relation between the RbDD nodes

in this figure is as follows. If a = 1̂, then f = Rx(θ)f1 else f = f0. In addition, if f is

a weighted root node as shown in the right RbDD in Fig. 3(a), then for a = 1̂ we have

f = Rx(θr)Rx(θ)f1 = Rx(θr + θ)f1; otherwise f = Rx(θr)f0. Similar to BDDs, in RbDDs

isomorphic sub-graphs which are nodes with the same functions are merged. Additionally, if

the 0̂-child and the 1̂-child of a node are the same and the weight of 1̂-edge is Rx(0) = I,

then that node is eliminated. Using these two reduction rules and a given total ordering ≺ on

input variables, one can uniquely construct the RbDD of a given function. Notably, a deci-

sion diagram called DDMF was proposed in [28], where each edge can represent any unitary

matrix including rotation operators. DDMF was used for verification of quantum circuits.

For a given function f with n binary variables v1, v2, · · · , vn, each value assignment to

v1, v2, · · · , vn corresponds to a path from the root to the terminal node in the RbDD of

f . Assuming the variable ordering v1 < v2 < · · · < vn, the corresponding path can be

identified by a top-down traversal of the RbDD starting from the root node. For each node

visited during the traversal, we select the edge corresponding to the value of its decision

variable vi. Denote the weight of the root node by w0 and the weight of the selected edges by

w1, w2, · · · , wn−1. We have f(v1, v2, · · · , vn) = w0w1 · · ·wn−10̂ = w0w1 · · ·wn−1

[
1 0

]T
.

If a 0̂-edge is selected for variable vi (i.e., if vi = 0̂), we have wi = I. Note that when the
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Consider performing q-apply to obtain gfRh x )( . q-apply takes two QDD nodes f and g as 

arguments and compares the corresponding decision variables of the nodes. Next, after including 

the weights of the root node and 1̂ -edge in the corresponding 1̂ -child and 0̂ -child, it adds a new 

node to the resulting QDD, h, by using one of three rules provided in  Figure 7. Assume that the 

corresponding variables for QDD nodes f and g are a and b, respectively. The new node 

generated by q-apply depends on the variable ordering of a and b as demonstrated in Figure 7. 

For example, suppose that a<b. Rule 1 is invoked, generating a new node in the resulting QDD 

(h) containing variable a. Rule 1 directs the q-apply operation to recursively call itself.   

 

 

Figure 7. Rules for implementing the q-apply operator on two QDD’s.  
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For terminal conditions, the following relations are used:  vvRx )(0̂   and vRvR xx )()(1̂   . 

Since f only assumes 0̂  and 1̂  values, these are the only possible terminal conditions. 

After recursive computation of the 1̂ -child and 0̂ -child of h, in order to maintain the canonicity 

of the resulting QDD, isomorphic sub-graphs are merged and if the 0̂ -child and the 1̂ -child of a 

node are the same and the weight of the 1̂ -edge is 

IRx )0( , then that node will be eliminated.  In 

addition, make QDD of h canonical, the resulting 

weights for the nodes (1̂ -child and 0̂ -child of h) 

are modified as demonstrated in Figure 8 to.  

  [Rx(r+)f1] Rx() g 
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a
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Rx(0)

Rx(1)

a

 h

Rx(0) 

Rx(1-0)

a

 h

Figure 8. Weight modification during q-apply
to maintain canonicity of the resulting QDD

 f Rx() [Rx(r)g0] 

(c)

Figure 6: (a) Operands for operation h = fRx(γ)g. (b) The result of apply operator which adds a
new node to the resulting RbDD h by using one of the three rules: if a < b (Rule 1), v = a, w1 =
[Rx(αr + α)f1]Rx(γ)g, w0 = [Rx(αr)f0]Rx(γ)g. If b < a (Rule 2), v = b, w1 = fRx(γ)[Rx(βr + β)g1],
w0 = fRx(γ)[Rx(βr)g0]. If a = b (Rule 3), v = a = b, w1 = [Rx(αr + α)f1]Rx(γ)[Rx(βr + β)g1],
w0 = [Rx(αr)f0]Rx(γ)[Rx(βr)g0]. (c) Weight modification for the apply operator to maintain canonicity
of the resulting RbDD.

4.2 Operations on RbDDs

Suppose that the RbDD for a function f is given. The RbDD for h = Rx(γ)f can be obtained by
multiplying the root weight of f by Rx(γ). To obtain h = fRx(γ)g for given RbDDs of f and g, we
use the apply operator.2 In this context, f and g are called RbDD operands of h. The apply operator
is implemented by a recursive traversal of the two RbDD operands. For each pair of nodes in f and g
visited during the traversal, an internal node is added to the resulting RbDD by utilizing the following
rules which depend on the selected variable ordering ≺ (also see Figure 6). We assume that f and g have
two general RbDDs shown in Figure 6(a). The apply operator is recursively called with the terminal
conditions 0̂Rx(θ)v = v and 1̂Rx(θ)v = Rx(θ)v.

• Rule 1 (a < b) The new node for h is a. The weights of 1̂-child and 0̂-child are [Rx(αr +
α)f1]Rx(γ)g, and [Rx(αr)f0]Rx(γ)g, respectively.

• Rule 2 (b < a) The new node for h is b. The weights of 1̂-child and 0̂-child are fRx(γ)[Rx(βr+
β)g1], and fRx(γ)[Rx(βr)g0], respectively.

• Rule 3 (a = b) The new node for h is a (or b). The weights of 1̂-child and 0̂-child are
[Rx(αr + α)f1]Rx(γ)[Rx(βr + β)g1], and [Rx(αr)f0]Rx(γ)[Rx(βr)g0], respectively.

After recursive computation of the 1̂-child and 0̂-child of h, to maintain the canonicity of the resulting
RbDD, isomorphic sub-graphs are merged and if the 0̂-child and the 1̂-child of a node are the same
and the weight of the 1̂-edge is Rx(0) = I, then that node will be eliminated. In addition, to make
RbDD of h canonical, the resulting weights for the 1̂-child and the 0̂-child of h should be modified by
the method illustrated in Figure 6(c). Figure 7(a) demonstrates the result of performing apply operator
on q1 and r1 in Figure 4(a) (redrawn in Figure 7(a)) to obtain r = q1Rx(−π/2)r1.3 To construct
RbDD for r, one needs to initially apply Rule 3 because both q1 and r1 use a as roots. Accordingly,
w1 = [Rx(π)b]Rx(−π/2)[Rx(π/2)r2] and w0 = bRx(−π/2)r2. The final figure in Figure 7(a) is obtained
after eliminating redundant nodes and edges.

2In general, for a binary operation op and two BDDs of functions f and g, the apply operator computes a BDD for
f op g [14].

3Note that the commutative property of matrix multiplication for Rx(θ) matrices is critical for the apply operator.
Performing apply as described may not generate the correct result for decision diagrams with non-commutative weights.
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(c)

Fig. 3. (a) Internal structure of a rotation-based decision diagram (RbDD) without and with a weighted

root. (b) For a node f , if the 0̂-child and the 1̂-child are the same node g, f can be directly realized by a

Rx(θ) operator as shown in (c).
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weight of the selected edges by w1, w2, ..., wn-1. The value of the function f  for assigned values to 

v1, v2, ..., vn is: 







  0

1
...0̂...),...,,( 11011021 nnn wwwwwwvvvf . 

Clearly, if during this graph traversal a 0̂ -edge is selected for variable vi (i.e., if vi= 0̂ ), then the 

corresponding edge weight will be wi=I. 

We have shown that QDD’s provide a concise and canonical representation for quantum 

functions. Notice that QDD’s can be regarded as a generalization of BDD’s i.e., each BDD can 

also be regarded as a QDD (A QDD is a BDD exactly if all the weights of the QDD are either 

IRx )0(  or )(xR .) As will be shown later, the synthesis process starts with the QDD of the 

given logic function (which is also a QDD) and decomposes the given QDD to realizable 

QDD’s. 

The QDD structure has some useful properties. One important 

property, i.e., the linear topology property, is demonstrated in Figure 

5. The idea is that when the 0̂ -child and the 1̂ -child of a node f are 

the same node g, then that node can be directly realized by a 

controlled- )(xR  operator in terms of its child i.e., gaRf x )( . 

 

Figure 6. QDD’s for intermediate signals of the synthesized three-input Toffoli gate.  
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Since f only assumes 0̂  and 1̂  values, these are the only possible terminal conditions. 

After recursive computation of the 1̂ -child and 0̂ -child of h, in order to maintain the canonicity 

of the resulting QDD, isomorphic sub-graphs are merged and if the 0̂ -child and the 1̂ -child of a 

node are the same and the weight of the 1̂ -edge is 

IRx )0( , then that node will be eliminated.  In 

addition, make QDD of h canonical, the resulting 

weights for the nodes (1̂ -child and 0̂ -child of h) 

are modified as demonstrated in Figure 8 to.  
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 f Rx() [Rx(r)g0] 
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Figure 6: (a) Operands for operation h = fRx(γ)g. (b) The result of apply operator which adds a
new node to the resulting RbDD h by using one of the three rules: if a < b (Rule 1), v = a, w1 =
[Rx(αr + α)f1]Rx(γ)g, w0 = [Rx(αr)f0]Rx(γ)g. If b < a (Rule 2), v = b, w1 = fRx(γ)[Rx(βr + β)g1],
w0 = fRx(γ)[Rx(βr)g0]. If a = b (Rule 3), v = a = b, w1 = [Rx(αr + α)f1]Rx(γ)[Rx(βr + β)g1],
w0 = [Rx(αr)f0]Rx(γ)[Rx(βr)g0]. (c) Weight modification for the apply operator to maintain canonicity
of the resulting RbDD.

4.2 Operations on RbDDs

Suppose that the RbDD for a function f is given. The RbDD for h = Rx(γ)f can be obtained by
multiplying the root weight of f by Rx(γ). To obtain h = fRx(γ)g for given RbDDs of f and g, we
use the apply operator.2 In this context, f and g are called RbDD operands of h. The apply operator
is implemented by a recursive traversal of the two RbDD operands. For each pair of nodes in f and g
visited during the traversal, an internal node is added to the resulting RbDD by utilizing the following
rules which depend on the selected variable ordering ≺ (also see Figure 6). We assume that f and g have
two general RbDDs shown in Figure 6(a). The apply operator is recursively called with the terminal
conditions 0̂Rx(θ)v = v and 1̂Rx(θ)v = Rx(θ)v.

• Rule 1 (a < b) The new node for h is a. The weights of 1̂-child and 0̂-child are [Rx(αr +
α)f1]Rx(γ)g, and [Rx(αr)f0]Rx(γ)g, respectively.

• Rule 2 (b < a) The new node for h is b. The weights of 1̂-child and 0̂-child are fRx(γ)[Rx(βr+
β)g1], and fRx(γ)[Rx(βr)g0], respectively.

• Rule 3 (a = b) The new node for h is a (or b). The weights of 1̂-child and 0̂-child are
[Rx(αr + α)f1]Rx(γ)[Rx(βr + β)g1], and [Rx(αr)f0]Rx(γ)[Rx(βr)g0], respectively.

After recursive computation of the 1̂-child and 0̂-child of h, to maintain the canonicity of the resulting
RbDD, isomorphic sub-graphs are merged and if the 0̂-child and the 1̂-child of a node are the same
and the weight of the 1̂-edge is Rx(0) = I, then that node will be eliminated. In addition, to make
RbDD of h canonical, the resulting weights for the 1̂-child and the 0̂-child of h should be modified by
the method illustrated in Figure 6(c). Figure 7(a) demonstrates the result of performing apply operator
on q1 and r1 in Figure 4(a) (redrawn in Figure 7(a)) to obtain r = q1Rx(−π/2)r1.3 To construct
RbDD for r, one needs to initially apply Rule 3 because both q1 and r1 use a as roots. Accordingly,
w1 = [Rx(π)b]Rx(−π/2)[Rx(π/2)r2] and w0 = bRx(−π/2)r2. The final figure in Figure 7(a) is obtained

2In general, for a binary operation op and two BDDs of functions f and g, the apply operator computes a BDD for
f op g [14].

3Note that the commutative property of matrix multiplication for Rx(θ) matrices is critical for the apply operator.
Performing apply as described may not generate the correct result for decision diagrams with non-commutative weights.

5

(b)

Fig. 4. RbDDs for intermediate signals of a 3-input Toffoli gate shown in Fig. 2(c), redrawn in (b). In this

figure, we have q1 = aRx(π)b, r1 = aRx(π/2)r2, and r2 = bRx(π/2)c.

0̂-child and the 1̂-child of a node f are the same node g, then that node can be directly realized

by a Rx(θ) operator, as f = aRx(θ)g demonstrated in Fig. 3(b) and Fig. 3(c), in terms of its

child. Fig. 4(a) shows the RbDDs of functions p1, q1 and r1 in Fig. 2(c) (reproduced in Fig.

4(b)). Every RbDD with a chain structure such as the ones shown in Fig. 4(a) is associated

with a cascade expression and can be realized with rotation and controlled-rotation operators.

Suppose that the RbDD for a function f is given. The RbDD for h = Rx(γ)f can be

obtained by multiplying the root weight of f by Rx(γ). To obtain h = fRx(γ)g for given

RbDDs of f and g, we use the apply operator.2 In this context, f and g are called RbDD

operands of h. The apply operator is implemented by a recursive traversal of the two RbDD

operands. For each pair of nodes in f and g visited during the traversal, an internal node is

added to the resulting RbDD by utilizing the following rules which depend on the selected

variable ordering ≺ (also see Fig. 5). We assume that f and g have two general RbDDs

shown in Fig. 5(a). The apply operator is recursively called with the terminal conditions

0̂Rx(θ)v = v and 1̂Rx(θ)v = Rx(θ)v.

2In general, for a binary operation op and two BDDs of functions f and g, the apply operator computes a
BDD for f op g [26].
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• Rule 1 (a < b) The new node for h is a. The weights of 1̂-child and 0̂-child are
[Rx(αr + α)f1]Rx(γ)g, and [Rx(αr)f0]Rx(γ)g, respectively.

• Rule 2 (b < a) The new node for h is b. The weights of 1̂-child and 0̂-child are
fRx(γ)[Rx(βr + β)g1], and fRx(γ)[Rx(βr)g0], respectively.

• Rule 3 (a = b) The new node for h is a (or b). The weights of 1̂-child and 0̂-child are
[Rx(αr + α)f1]Rx(γ)[Rx(βr + β)g1], and [Rx(αr)f0]Rx(γ)[Rx(βr)g0], respectively.

 16
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 f Rx() [Rx(r)g0] 

(c)

Fig. 5. (a) Operands for operation h = fRx(γ)g. (b) The result of apply operator which adds a new node to
the resulting RbDD h by using one of the three rules: if a < b (Rule 1), v = a, w1 = [Rx(αr +α)f1]Rx(γ)g,

w0 = [Rx(αr)f0]Rx(γ)g. If b < a (Rule 2), v = b, w1 = fRx(γ)[Rx(βr + β)g1], w0 = fRx(γ)[Rx(βr)g0]. If
a = b (Rule 3), v = a = b, w1 = [Rx(αr +α)f1]Rx(γ)[Rx(βr + β)g1], w0 = [Rx(αr)f0]Rx(γ)[Rx(βr)g0]. (c)

Weight modification for the apply operator to maintain canonicity of the resulting RbDD.

After recursive computation of the 1̂-child and 0̂-child of h, to maintain the canonicity of

the resulting RbDD, isomorphic sub-graphs are merged and if the 0̂-child and the 1̂-child of

a node are the same and the weight of the 1̂-edge is Rx(0) = I, then that node will be elimi-

nated. In addition, to make RbDD of h canonical, the resulting weights for the 1̂-child and the

0̂-child of h should be modified by the method illustrated in Fig. 5(c). Fig. 6(a) demonstrates

the result of performing apply operator on q1 and r1 in Fig. 4(a), redrawn in Fig. 6(a), to

obtain r = q1Rx(−π/2)r1. To construct RbDD for r, one needs to initially apply Rule 3

because both q1 and r1 use a as roots. Accordingly, w1 = [Rx(π)b]Rx(−π/2)[Rx(π/2)r2] and

w0 = bRx(−π/2)r2. To continue, consider w1 and note that both [Rx(π)b] and [Rx(π/2)r2]

use b.3 As a result, applying Rule 3 leads to w1,1 = [Rx(0)0̂]Rx(−π/2)[Rx(π/2 + π/2)c] and

w1,0 = [Rx(π)0̂]Rx(−π/2)[Rx(π/2)c]. On the other hand, applying Rule 3 on w0 leads to

w0,1 = [Rx(π)0̂]Rx(−π/2)[Rx(π/2)c] and w0,0 = [Rx(0)0̂]Rx(−π/2)c. Using terminal condi-

tions results in w1,1 = Rx(π)c, w1,0 = c, w0,1 = c, and w0,0 = c. Since w0,1 = w0,0 = c,

we can remove variable b as the 0̂-child of a. The final figure in Fig. 6(a) is obtained after

eliminating redundant nodes and edges.4

4.2 Functional Decomposition and r-Linearity

The problem of realizing a function f using Rx(θ) and CRx(θ) operators is equivalent to find-

ing a rotation-based factored form for f , which can be performed by recursive bi-decomposition

3To understand the RbDDs of [Rx(π)b] and [Rx(π/2)r2], recall RbDDs of b and r2 in Fig. 6(a) and use weights
Rx(π) and Rx(π/2) for roots of b and r2, respectively.
4Note that the commutative property of matrix multiplication for Rx(θ) matrices is critical for the apply

operator. Performing apply as described may not generate the correct result for decision diagrams with
non-commutative weights.
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are modified as demonstrated in Figure 8 to.  

Figure 9 demonstrates the result of performing q-apply operation on q1 and r1 (taken from Figure 

6) to obtain r=q1Rx(-/2)r1. It is noteworthy that the commutative property of matrix 

multiplication for )(xR  matrices is critical for the q-apply to generate the correct result i.e., 

performing q-apply as described may not generate the correct result for decision diagrams with 

weights that are not commutative. 

 

Figure 9. An example of performing q-apply on two QDD’s.  

4.4 QDD-based Functional Decomposition and the Notion of Q-Linearity 

As mentioned earlier, the problem of realizing a function, f, using )(xR and controlled- )(xR  

operators is equivalent to finding a quantum factored form for the function, which can in turn be 

performed by recursive bi-decomposition of f.  We refer the reader to Lai et al.  [37] and Karplus 

 [38] for a review of prior work related to functional decomposition in general, and bi-

decomposition in particular.  

Definition: Quantum bi-decomposition of f is defined as finding functions g and h and value  

such that hgRf x )(  where g only assumes values 0̂  and 1̂ . 
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Next we provide an algorithm for quantum bi-composition which can be used to bi-decompose a 

given function f to hgRx )( . Subsequently, g and h are recursively bi-decomposed, which will 

eventually result in a quantum factored for f. The bi-decomposition algorithm is based on the 

notion of quantum linear (q-linear) variables. 

In the remainder of this paper, when expressing a function as ),...,,( 21 nvvvf , it is implicitly 

assumed that f depends on all variables nvvv ,...,, 21  (i.e., f is not invariant with respect to any 

variable among nvvv ,...,, 21 ). 

Definition: For a given function ),...,,,,...,,( 1121 niii vvvvvvf  , variable vi  will be called ‘q-linear’ 

if there exists a rotation value, i , such that for every value assignment to nii vvvvv ,...,,,...,, 1121  : 

ivixiv fRf )( , where we define ),...,,1̂,,...,,( 1121 niiv vvvvvff   and 

),...,,0̂,,...,,( 1121 niiv
vvvvvff  . A variable will be called q-

nonlinear if it is not q-linear. 

Next we present a number of key results. 

Lemma 1: Consider function ),...,,( 21 nvvvf with variable ordering 

nvvv  ...21 . If (and only if) variables nkk vvv ,...,, 21   are q-

linear (i.e., for each iv , k+1<i<n, there is a i  that for all 

nii vvvvv ,...,,,...,, 1121   values, 
ivixiv fRf )( ,) then for each 

variable vi, k+1<i<n, there is only one QDD node, ni, with 

decision variable vi. The weight of the 1̂ -edge of ni will be )( ixR  . 

Also no edge originating from nodes above nj (i.e., nodes with 

decision variable vj, j<i) will end at a node below ni (i.e., a node 

with decision variable vj, j>i.)  

. 

. 

. 

. 

. 

. 

v1 

 f 

vk+2 

vk+1 

vk 

Rx(k+1) 

Rx(1) 

vk 

Rx(2)

vn 

Rx(n) 

0̂

Figure 10. A general QDD 
structure with q-linear 

variables vk+1 … vn.   

(b)

Fig. 6. (a) An example of performing apply operator on two RbDDs. In the first call of the apply operator,
w1 = [Rx(π)b]Rx(−π/2)[Rx(π/2)r2] and w0 = bRx(−π/2)r2. The final figure is obtained after eliminating

redundant nodes and edges. (b) A general RbDD structure with r-linear variables vk+1, · · · , vn.

of f .

Definition 4 Rotation-based bi-decomposition (bi-decomposition in short) of f is defined as

finding functions g and h and value γ such that f = gRx(γ)h.

We use bi-composition of a given function f to construct f = gRx(γ)h. Subsequently, g

and h are recursively bi-decomposed, which will eventually result in a factored form of f . The

bi-decomposition algorithm is based on the notion of r-linearity.

Definition 5 For function f(v1, · · · , vi−1, vi, vi+1, · · · , vn), variable vi is r-linear if there ex-

ists a rotation value θi such that for every value assignment to v1, · · · , vi−1, vi+1, · · · , vn : fvi =

Rx(θi)fvi , where fvi = f(v1, · · · , vi−1, 1̂, vi+1, · · · , vn) and fvi = f(v1, · · · , vi−1, 0̂, vi+1, · · · , vn).

A variable is r-nonlinear if it is not r-linear.

Now we present a number of key results.

Lemma 1 Consider a function f(v1, v2, · · · , vn) with variable ordering v1 < v2 < · · · < vn
and assume that k + 1 ≤ i ≤ n. Iff each variable vi is r-linear, then there is only one RbDD

node ni for each r-linear decision variable vi. The weight of the 1̂-edge of ni is Rx(θi).

Proof. The proof is by induction on vn, vn−1, vn−2, · · · , vk+1 starting from vn.

Let vk be the lowest indexed r-nonlinear variable after which vk+1, vk+2, · · · , vn are r-linear

variables of f . From Lemma 1, for k + 1 ≤ j ≤ n we have fvj = Rx(θj)fvj where θj is fixed

independent of v1, v2, · · · , vj−1, vj+1, · · · , vn values. As illustrated in Fig. 6(b), every path

from the root node of the RbDD to the terminal node will either go through an internal node

with decision variable vk or it will skip any such node and directly go the single RbDD node

with decision variable vk+1. For the latter case, fvk = Rx(0)fv̄k = fv̄k and for any former

case fvk = Rx(αi)fv̄k for some (vs. all) v1, · · · , vk−1, vk+1, · · · , vn. Additionally, the number

of different rotation angles (e.g., α1, α2 in Fig. 6(b)) for variable vk is equal to the number of

internal nodes with decision variable vk in the RbDD.
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Algorithm 1 factor (f)

1: If all variables are r-linear, then return the corresponding cascade expression for f .
2: Find the lowest indexed r-nonlinear variable vk after which vk+1, vk+2, · · · , vn are r-linear.
3: Bi-decompose f using vk as f = g1Rx(γ)h where g1, h, and γ are given in Theorem 1.
4: Return [factor(g1)]Rx(γ)[factor(h)].

Definition 6 The degree of r-nonlinearity of variable vk, r-deg(vi), is m− 1 where m is the

number of different rotation angles αi (including 0 if any) that fvk = Rx(αi)fv̄k for some

v1, · · · , vk−1, vk+1, · · · , vn. For r-linear variables the degree of r-nonlinearity is zero.

As an example, consider the RbDD of r in Fig. 6(a) and note that r-deg(b) = 1 as there

are two rotation angles (i.e., 0 and π) for b. Similarly, r-deg(c) = 0 and c is r-linear.

Lemma 2 Let m denote the number of internal nodes with decision variable vk. If all paths

from the root node of the RbDD to the terminal node go through an internal node with

decision variable vk, r-deq(vk) = m− 1; otherwise r-deg(vk) = m.

Proof. The proof follows from considering the general structure of RbDDs and the defi-

nition of r-nonlinearity.

Theorem 1 Consider a function f(v1, v2, · · · , vn) with variable ordering v1 < v2 < · · · <
vn. Define g such that if fvk = Rx(α1)fvk then g = 1̂; otherwise g = 0̂. Assume that

vk+1, vk+2, · · · , vn are r-linear variables of f and vk is a r-nonlinear variable of f with r-

deg(vk) = m−1. Additionally, for each value assignment to variables v1, · · · , vk−1, vk+1, · · · , vn
suppose exactly one of the following m relations holds: fvk = Rx(α1)fvk , fvk = Rx(α2)fvk ,

· · · , fvk = Rx(αm)fvk . We have

I f can be bi-decomposed as f = g1Rx(γ)h where g1 = vkRx(π)g, γ = (α2 − α1)/2,

h = g1Rx(−γ)f .

II g1 is a function of v1, v2, · · · , vk, i.e., g1 is invariant with respect to vk+1, vk+2, · · · , vn.

III vk is a r-linear variable of g1.

IV h is a function of v1, v2, · · · , vn and vk+1, vk+2, · · · , vn are r-linear variables of h.

V r-deg(vk) in h is ≤ m− 2.

Proof. We initially prove that function g is invariant with respect to vk+1, vk+2, · · · , vn,

i.e., gvi = gvi for k + 1 ≤ i ≤ n. Since vi is r-linear, there exists θi such that for all

v1, · · · , vi−1, vi+1, · · · , vn values, fvi = Rx(θi)fvi which results in fvivk = Rx(θi)fvivk and

fvivk = Rx(θi)fvivk . From the definition of g we have:

• If fvivk = Rx(α1)fvivk , then gvi = 1̂, else gvi = 0̂.

• If fvivk = Rx(α1)fvivk , then gvi = 1̂, else gvi = 0̂.

Combining these relations proves gvi = gvi :

fvivk = Rx(α1)fvivk ⇔ Rx(θi)fvivk = Rx(α1 + θi)fvivk ⇔ fvivk = Rx(α1)fvivk
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Since g1 = vkRx(π)g, g1 is also invariant with respect to vk+1, vk+2, · · · , vn (part II).

Moreover g1vk = Rx(π)g and g1v̄k = g which results in g1vk = Rx(π)g1v̄k , i.e., vk in g1 is

r-linear (part III).

The first sentence of part IV is clear from the definition of h = g1Rx(−γ)f . As for the

second one, note that vk+1, vk+2, · · · , vn are r-linear variables of f . Additionally, g is invariant

with respect to vk+1, vk+2, · · · , vn. Putting these facts together proves part IV.

Now we prove r-deg(vk) ≤ m−2 in h = g1Rx(−γ)f . For each value assignment to variables

v1, v2, · · · , vk−1, vk+1, · · · , vn exactly one of the following m relations holds: fvk = Rx(α1)fvk ,

fvk = Rx(α2)fvk , · · · , fvk = Rx(αm)fvk . For each of the above cases, we examine the relation

between hvk and hvk :

• fvk = Rx(α1)fvk : By definition g = 1̂ and we have:

hvk = 1̂Rx(−γ)fvk = Rx(−γ)fvk ⇒ fvk = Rx(γ)hvk
hvk = [Rx(π)1̂]Rx(−γ)fvk = fvk = Rx(α1)fvk = Rx(α1 + γ)hvk , γ = (α2 − α1)/2⇒
hvk = Rx(α1+α2

2 )hvk

• fvk = Rx(α2)fvk : By definition g = 0̂ and we have:

hvk = 0̂Rx(−γ)fvk = fvk
hvk = [Rx(π)0̂]Rx(−γ)fvk = Rx(−γ)fvk = Rx(−γ + α2)fvk , γ = (α2 − α1)/2⇒
hvk = Rx(α1+α2

2 )hvk

• fvk = Rx(αi)fvk , 3 ≤ i ≤ m: By definition g = 0̂ and hvk = Rx(−γ + αi)hvk .

The first two cases result in the same relation between hvk and hvk as hvk = Rx(α1+α2

2 )hvk .

The remaining m − 2 cases result in at most m − 2 different relations between hvk and hvk .

Therefore, the total number of different relations between hvk and hvk is ≤ m−1. Accordingly,

r-deg(vk) in h is ≤ m− 2 (part V).

Finally, from h = g1Rx(−γ)f it follows that g1Rx(γ)h = g1Rx(γ) [g1Rx(−γ)f ]. Consider

g1 = vkRx(π)g and assume g = 1̂ (or g = 0̂) which leads to g1 = vkRx(π)1̂ =∼ vk (or g1 =

vkRx(π)0̂ = vk). Altogether for both vk = 1̂ and vk = 0̂, we have g1Rx(γ) [g1Rx(−γ)f ] = f .

Hence, f can be bi-decomposed as f = g1Rx(γ)h (part I).

Using the proposed bi-decomposition approach, f can be bi-decomposed into f = g1Rx(γ)h

where g1 and h are themselves recursively bi-decomposed until a rotation-based factored form

is obtained.

Theorem 2 The proposed bi-decomposition approach always results in a cascade expres-

sion for a given function f .

Proof. Following the definitions given in Theorem 1 for f = g1Rx(γ)h, since g1 is invariant

of vk+1, vk+2, · · · , vn and vk in g is r-linear and r-deg(vk) in h is ≤ m− 2, the recursion will

finally stop at terminal cases where g1 and/or h have directly realizable RbDDs — all variables

are r-linear in the functions and they have rotation-based cascade expressions corresponding

to RbDDs with a chain structure.5

5As a result of Lemma 1, in a function with chain structured RbDD, all variables are r-linear.
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Algorithm 2 g1-factor(RbDDf)

1: Change all of the weights to Rx(0) = I.
2: Create a RbDD node vk with w1 = Rx(π) and w0 = I to the terminal node (i.e., 0̂).
3: Redirect all edges toward n1 to node vk and make the weight of all such edges Rx(π).
4: Redirect all edges toward n2, n3, · · · , nm to node vk and make the weight of all such edges
Rx(0).

5: Discard nodes n2, n3, · · · , nm.
6: Merge isomorphic sub-graphs, eliminate nodes with the same 0̂-child and 1̂-child exactly

if the weight of the 1̂-edge is Rx(0) = I. Update weights of the RbDD to make the RbDD
of g1 canonical.

Algorithm 1 uses the proposed recursive bi-decomposition approach to generate a rotation-

based factored form for a given function f . All steps in Algorithm 1 can be directly performed

on RbDDs. If the RbDD of a function f is a chain structure, we have a cascade expression for

f (Step 1). For Step 2 as depicted in Fig. 6(b) and according to Lemma 1, identifying vk is

equivalent to identifying the lower chain-structure part of the RbDD. As for Step 3, according

to Lemma 2 values α1, α2, · · · , αm can be obtained from weights of the 1̂-edges of nodes with

decision variables vk. Hence, γ = (α2 − α1)/2 is obtained. Let ni(1 ≤ i ≤ m) denote nodes

with decision variable vk and 1̂-edges weight Rx(αi). Starting from the RbDD of f , one can

perform Algorithm 2 to construct RbDD of g1. Having the RbDDs for g1 and f , the RbDD of

h = g1Rx(−γ)f can be obtained by using the apply operation. As an example of Algorithm

2, see RbDDs of s and g1 in Fig. 8 and Fig. 9 where vk = c and m = 2. This example is

described in detail in Section 6.

The final form after apply is f = g1Rx(γ1)
[
g2Rx(γ2)

[
g3Rx(γ3) · · ·

[
gkRx(γk)0̂

] ] ]
. Note

that gi functions should also be decomposed. The factor algorithm is not optimal. In

particular, f can be rewritten as f = gp1Rx(γp1)
[
gp2Rx(γp2)

[
gp3Rx(γp3) · · ·

[
gpkRx(γpk)0̂

] ] ]

where (p1, p2, · · · , pk) is a permutation of 1, 2, · · · , k. Different permutations of 1, 2, · · · , k
may result in different number of gates after synthesis. For example, consider the RbDDs of

the output s in a 4-input Toffoli gate, shown in Fig. 8, for two different variable orderings

a > b > c > d and a > b > d > c. In Fig. 8(b), d is r-linear. However, none of the

variables in Fig. 8(c) are r-linear. Accordingly, the proposed approach results in fewer gates

for a > b > c > d. The former case is further discussed in Section 6. Indeed, working with

a > b > d > c leads to s = g1Rx(−π/2)h where g1 = abd⊕ c is a 4-input Toffoli gate targeted

on the last qubit c for a > b > d > c.

5 Working with Arbitrary Outputs

For the input vector U , a function f with binary inputs and outputs can be written as f(U) =

ĝ1(U)Rx(γ1)
[
ĝ2(U)Rx(γ2)

[
· · ·
[
ĝk(U)Rx(γk)0̂

] ] ]
. Since functions ĝi(U) only take values 0̂

and 1̂, f(U) can also be represented as f(U) = Rx(g1(U)γ1 + g2(U)γ2 + · · ·+ gk(U)γk)0̂

where gi(U) values are either zero (0) or one (1).6Define γ(U) = g1(U)γ1 + g2(U)γ2 + · · · +
gk(U)γk which leads to f(U) = Rx(γ(U))0̂. Accordingly, the structure of the synthesized

6To prove, assign arbitrary values 0̂ and 1̂ to ĝi terms and consider the resulting rotations by different γi
values.
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U \ G G′ U

0̂ \ RV (γ) f(U)

Figure 11: sdfsd.
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algorithm can easily be generalized to be applicable to 

quantum functions whose output values for all possible basis 

input vectors are on a single (arbitrary) circle C with the origin 

as its center. Each point on circle C can be represented as 

VVR 0̂)(  where V is a vector passing thru the origin and 

perpendicular to circle C. In addition, )(VR  is the quantum -

degree rotation operation around the vector V and 0̂V
can be set 

to any point on the circle C (cf. Figure 19.) 

Such a function can be represented with a QDD where the terminal node is 0̂V
and the weights of 

edges and the root node are in the form of ( )VR  . Notice that the quantum circuit synthesized by 

using the q-factor algorithm has the property that for the basis input vectors, the values of all 

internal (and output) signals will lie on some circle, C.  

The final factored form resulting from q-apply has the 

form      0̂)()(  ... )()()()()( 2211 kVkVV RUgRUgRUgUf   where U is the input vector. Since 

functions gi(U) only take values 0̂  and 1̂  for basis input vectors, it can be seen that f(U) can also 

be represented as:  0̂).(...).().()( 2211 kkV UgUgUgRUf    where gi(U) values are regarded 

as real values. ( 00̂   and 11̂  .) Let’s define the real valued function  (U) as 

kk UgUgUgU  ).(...).().()( 2211   

Consequently, function f(U) can be represented as 

 0̂)()( URUf V  .The structure of the synthesized circuit 

can be represented as Figure 20. Note that G’ is the inverse 

function of G with regard to U.  
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Figure 12: (a)Bloch sphere representation. (b) Quantum circuit performing f(U) = RV [γ(U)] 0̂.

The final factored form resulting from q-apply has the form f(U) = g1(U)RV (γ1)
[
g2(U)RV (γ2)

[
· · ·
[
gk(U)RV (γk)0̂

] ] ]

where U is the input vector. Since functions gi(U) only take values 0̂ and 1̂ for basis input vectors, it can
be seen that f(U) can also be represented as f(U) = RV [g1(U)γ1 + g2(U)γ2 + · · ·+ gk(U)γk] 0̂ where
gi(U) values are regarded as real values (0̂ → 0 and 1̂ → 1). Lets define the real valued function
γ(U) as γ(U) = g1(U)γ1 + g2(U)γ2 + ... + gk(U)γk. Consequently, function f(U) can be represented as
f(U) = RV [γ(U)] 0̂. The structure of the synthesized circuit can be represented as Figure 12(b). Note
that G is the inverse function of G with regard to U . The right portion of the circuit is needed only
if it is required that qubits associated with input lines U maintain their initial value U . To clarify the
roles of G and G, it will be beneficial to compare this circuit with the three-input multiplexer circuit
f = sx1 + s̄x2 synthesized by the q-factor algorithm in Figure 13. If instead of 0̂, another quantum
value q is used in this circuit as the initial value for the input, then the resulting circuit will implement
the following function f(U) = RV [γ(U)] q.

Now we generalize the synthesis approach for synthesizing quantum functions that for given basis input

vectors generate a general quantum value f(U) =
[
f0(U) f1(U)

]T
. Because |f0(U)|2 + |f1(U)|2 = 1,

we may rewrite f(U) as f(U) = eiδ(U)
[
e−iγ(U)/2 cos θ(U)

2 −ieiγ(U)/2 sin θ(U)
2

]T
. Hence, f(U) can be

expressed as f(U) = eiδ(U)Rz(γ(U))Rx(θ(U))0̂ where Rz is the rotation operator around the Z axis

defined as Rz(γ) =

[
e−iγ/2 0

0 eiγ/2

]
. We can ignore the term eiδ(U) since it has no observable effects []

and therefore we can effectively write f(U) = Rz(γ(U))Rx(θ(U))0̂ (see Figure 14(a)). This concept can

s • • • • s

x1 • π • π x1

x2 • π • π x2

0̂ π/2 π/2 −π/2 π/2 f

Figure 13: Quantum three-input multiplexer.
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· · ·
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] ] ]

where U is the input vector. Since functions gi(U) only take values 0̂ and 1̂ for basis input vectors, it can
be seen that f(U) can also be represented as f(U) = RV [g1(U)γ1 + g2(U)γ2 + · · ·+ gk(U)γk] 0̂ where
gi(U) values are regarded as real values (0̂ → 0 and 1̂ → 1). Lets define the real valued function
γ(U) as γ(U) = g1(U)γ1 + g2(U)γ2 + ... + gk(U)γk. Consequently, function f(U) can be represented as
f(U) = RV [γ(U)] 0̂. The structure of the synthesized circuit can be represented as Figure 12(b). Note
that G is the inverse function of G with regard to U . The right portion of the circuit is needed only
if it is required that qubits associated with input lines U maintain their initial value U . To clarify the
roles of G and G, it will be beneficial to compare this circuit with the three-input multiplexer circuit
f = sx1 + s̄x2 synthesized by the q-factor algorithm in Figure 13. If instead of 0̂, another quantum
value q is used in this circuit as the initial value for the input, then the resulting circuit will implement
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The final factored expression has the form f(U) = ĝ1(U)RV (γ1)
[
ĝ2(U)RV (γ2)

[
· · ·
[
ĝk(U)RV (γk)0̂

] ] ]

where U is the input vector. Since functions ĝi(U) only take values 0̂ and 1̂ for basis input vectors, f(U)
can also be represented as f(U) = RV (g1(U)γ1 + g2(U)γ2 + · · ·+ gk(U)γk)0̂ where gi(U) values are ei-
ther zero (0) or one (1).4 Define function γ(U) as γ(U) = g1(U)γ1 + g2(U)γ2 + ...+ gk(U)γk which leads
to f(U) = RV (γ(U))0̂. Accordingly, the structure of the synthesized circuit can be represented as Figure
11(b). In this figure, G is a circuit that constructs γ(U) and G′ is the inverse of G. Note that G′ should
be used only if one wants to keep input lines unchanged.

To clarify the roles of G and G, it will be beneficial to compare this circuit with the three-input
multiplexer circuit f = sx1 + s̄x2 synthesized by the q-factor algorithm in Figure 12. If instead of 0̂,
another quantum value q is used in this circuit as the initial value for the input, then the resulting circuit
will implement the following function f(U) = RV [γ(U)] q.

Now we generalize the synthesis approach for synthesizing quantum functions that for given basis input

vectors generate a general quantum value f(U) =
[
f0(U) f1(U)

]T
. Because |f0(U)|2 + |f1(U)|2 = 1,

we may rewrite f(U) as f(U) = eiδ(U)
[
e−iγ(U)/2 cos θ(U)

2 −ieiγ(U)/2 sin θ(U)
2

]T
. Hence, f(U) can be

expressed as f(U) = eiδ(U)Rz(γ(U))Rx(θ(U))0̂ where Rz is the rotation operator around the Z axis

defined as Rz(γ) =

[
e−iγ/2 0

0 eiγ/2

]
. We can ignore the term eiδ(U) since it has no observable effects []

and therefore we can effectively write f(U) = Rz(γ(U))Rx(θ(U))0̂ (see Figure 13(a)). This concept can
be demonstrated by using the Bloch sphere representation. Note that the quantum value Rz(γ)Rx(θ)0̂
results from θ rotation of 0̂ around the X axis followed by γ rotation around the Z axis. The quantum
circuit for f(U) = Rz(γ(U))Rx(θ(U))0̂ can be synthesized as .

• Synthesize g(U) = Rx(θ(U))0̂ by using the q-factor algorithm.

• Synthesize h(U) = Rz(γ(U))0̂ by using the q-factor algorithm.

• Cascade the resulting circuits as depicted in Figure 13(b).

The constant ancilla in the architecture of Figure 13(b) is not always necessary. For example, the
controlled rotation Rx(π) with control qubit a and target 0̂ generates a as the second output and the

4To prove, assign arbitrary values 0̂ and 1̂ to ĝi and consider the resulting rotations by different γi values.
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The final factored form resulting from q-apply has the form f(U) = g1(U)RV (γ1)
[
g2(U)RV (γ2)

[
· · ·
[
gk(U)RV (γk)0̂

] ] ]

where U is the input vector. Since functions gi(U) only take values 0̂ and 1̂ for basis input vectors, it can
be seen that f(U) can also be represented as f(U) = RV [g1(U)γ1 + g2(U)γ2 + · · ·+ gk(U)γk] 0̂ where
gi(U) values are regarded as real values (0̂ → 0 and 1̂ → 1). Lets define the real valued function
γ(U) as γ(U) = g1(U)γ1 + g2(U)γ2 + ... + gk(U)γk. Consequently, function f(U) can be represented as
f(U) = RV [γ(U)] 0̂. The structure of the synthesized circuit can be represented as Figure 12(b). Note
that G is the inverse function of G with regard to U . The right portion of the circuit is needed only
if it is required that qubits associated with input lines U maintain their initial value U . To clarify the
roles of G and G, it will be beneficial to compare this circuit with the three-input multiplexer circuit
f = sx1 + s̄x2 synthesized by the q-factor algorithm in Figure 13. If instead of 0̂, another quantum
value q is used in this circuit as the initial value for the input, then the resulting circuit will implement
the following function f(U) = RV [γ(U)] q.

Now we generalize the synthesis approach for synthesizing quantum functions that for given basis input

vectors generate a general quantum value f(U) =
[
f0(U) f1(U)

]T
. Because |f0(U)|2 + |f1(U)|2 = 1,

we may rewrite f(U) as f(U) = eiδ(U)
[
e−iγ(U)/2 cos θ(U)

2 −ieiγ(U)/2 sin θ(U)
2

]T
. Hence, f(U) can be

expressed as f(U) = eiδ(U)Rz(γ(U))Rx(θ(U))0̂ where Rz is the rotation operator around the Z axis

defined as Rz(γ) =

[
e−iγ/2 0

0 eiγ/2

]
. We can ignore the term eiδ(U) since it has no observable effects []

and therefore we can effectively write f(U) = Rz(γ(U))Rx(θ(U))0̂ (see Figure 14(a)). This concept can

s • • • • s

x1 • π • π x1

x2 • π • π x2

0̂ π/2 π/2 −π/2 π/2 f

Figure 13: Quantum three-input multiplexer.
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(c)

Fig. 7. (a) Quantum circuit performing f(U) = Rx(γ(U))0̂. (b) Quantum 3-input multiplexer. Dashed

boxes represent G, G′, and Rx(γ) in (a). Only rotation angles are reported for Rx(θ) gates. (c) Quantum
circuit performing f(U) = Rz(γ(U))Rx(θ(U))0̂.

circuit can be represented as Fig. 7(a). In this figure, G is a circuit that constructs γ(U)

and G′ is the inverse of G. Note that G′ should be used only if one wants to keep input lines

unchanged. To clarify the roles of G and G, see the 3-input multiplexer circuit f = sx1 + s̄x2

synthesized by the factor algorithm in Fig. 7(b). If instead of 0̂, another quantum value

q is used in this circuit as the initial value for the input, the resulting circuit implements

f(U) = Rx [γ(U)] q. The constant ancilla register in Fig. 7(a) may not be necessary in some

case. For example, the controlled rotation Rx(π) with control qubit a and target 0̂ generates

a as the second output and the use of the controlled rotation Rx(π) in this case is unnecessary

(i.e., aRx(π)0̂ = a). Section 6 shows several examples.

Now consider a given function that for given basis input vectors generates a general value

f(U) =
[
f0(U) f1(U)

]T
. Since |f0(U)|2 + |f1(U)|2 = 1, we may rewrite f(U) as:

f(U) = eiδ(U)
[
e−iγ(U)/2 cos θ(U)

2 −ieiγ(U)/2 sin θ(U)
2

]T

Hence, f(U) can be expressed as f(U) = eiδ(U)Rz(γ(U))Rx(θ(U))0̂ where Rz is the ro-

tation operator around the z axis. We can ignore the global phase eiδ(U) since it has no

observable effects [1]. Therefore, one can effectively write f(U) = Rz(γ(U))Rx(θ(U))0̂. Note

that Rz(γ)Rx(θ)0̂ results from θ rotation of 0̂ around the x axis followed by γ rotation around

the z axis in the Bloch sphere. The quantum circuit for f(U) = Rz(γ(U))Rx(θ(U))0̂ can be

synthesized as:

• Synthesize g(U) = Rx(θ(U))0̂ by using the factor algorithm.

• Synthesize h(U) = Rz(γ(U))0̂ by using the factor algorithm.

• Cascade the resulting circuits as depicted in Fig. 7(c). In this figure, G1 and G2 are for

g(U) and h(U), respectively. Accordingly, G′1 and G′2 are the inverse circuits of G1 and

G2.

6 Results

Multiple-control Toffoli gate. Consider a 4-input Toffoli gate in Fig. 8(a) and the

RbDD of the target output in Fig. 8(b) with variable ordering a < b < c < d. Comparing the

RbDD of s with the general RbDD structure in Fig. 6(b) reveals that variable c corresponds

to vk. Additionally, r-deg(c)=1, α1 = 0 and α2 = π which result in γ = π/2 (Theorem 1).7

7One may set α1 = π and α2 = 0. This combination generates a different circuit with the same functionality.
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Abstract

1 Introduction

2 Basic Concepts

3 Previous Work

4 Rotation-Based Logic Synthesis

In this section, we address the problem of automatically synthesizing a given Boolean function f by using
rotation and controlled-rotation gates around the X axis. We denote the quantum states representing

basis states as 0̂ =
[

1 0
]T

and 1̂ = Rx(π)0̂ =
[

0 −i
]T

. With this definition of 0̂ and 1̂, the
basis states remain orthogonal. Also, inversion (i.e., the NOT gate) from one basis state to the other is
simply obtained by a Rx(π) gate. Subsequently, the CNOT gate can be described by using the CRx(π)
operator as shown in Figure 2-a. In addition, the Toffoli gate may be described by using the C2Rx(π)
operator illustrated in Figure 2-b. Toffoli gate can be implemented using 5 controlled-rotation operators
as demonstrated in Figure 2-c. Recall that a 3-qubit Toffoli gate needs 5 2-qubit gates if |0〉 and |1〉 are
used as the basis states [].

For a 2-qubit CRx(θ) gate with a control qubit a and a target qubit b, the first output is equal to
a. However, the second output depends on both the control line a and the target line b. We use the
notation aRx(θ)b to describe the second output. Furthermore, we write Rx(θ)b to unconditionally apply
a single-qubit Rx(θ) to the qubit b. The same notation holds is a = 1̂.

Definition 4.1 0̂ and all variables are in the rotation-based factored (factored in short) form. If h and
g are in the factored form, then Rx(θ)h and gRx(θ)h are in the factored form too.

a • p = a

b • q = b

c • r = c

d Rx(π) s = abc⊕ d

Figure 1: New definitions for CNOT (a) and Toffoli (b) using controlled rotation gates. Decomposition
of a Toffoli gate into 5 2-qubit controlled-rotation gates (c).
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(a)
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following example, it is shown that different permutations of ),...,2,1( k  may result in different 

number of gates while synthesizing the circuit.  

The examples in this paper demonstrate the power of the proposed synthesis approach. The q-

factor algorithm is not guaranteed to be optimal; however, these examples show that results of 

the q-factor match the optimal circuits (obtained by semi-exhaustive search techniques) reported 

by previous researchers. This fact bears out the effectiveness of the proposed automated 

synthesis approach.  

Example 1: In this part a four-

input Toffoli gate, depicted in 

Figure 12 (i), will be synthesized 

by using the q-factor algorithm. 

Figure 12 (ii) shows the QDD of 

the output s of the Toffoli gate. 

Throughout the synthesis 

process, we shall maintain the 

variable ordering a<b<c<d.  

Comparing the QDD of s with the general QDD structre in Figure 10, variable c corresponds to 

vk; Additionally, the degree of q-nonlinearity of c is 1. 01   and  2 , which result in 

2/  . (It would also be correct to set  1  and 02  . This will generate a different circuit 

but with the same functionality.) 

Consequently, function s can be bi-decomposed as: hRgs x )2/(1   where gcRg x )(1  . 

QDD’s for g and g1 are depicted in Figure 13 (i) and (ii). It is seen that function g1 is a 3-input 

Toffoli gate, which is synthesized as in Figure 3. As for function h, it can be written as 

sRgh x )2/(1  . The QDD for h is depicted in Figure 13 (iii). Subsequently, h can be bi-

(i) 

b

c

 q = b

 s = abc  d Rx()

 r = c 

d

a  p = a

Rx()

b

c

d

0̂

 s 

Rx()

a

(ii) 

Figure 12.  Four-input Toffoli gate and the QDD for 4th output, s.  

(b)

 

R
x
()

(i) 

b 

c 

 q = b 

 s = abc  d 

 r = c 

d 
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Rx()
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(ii) 

Figure 1.  Four-input Toffoli gate and the QDD for 4th 
output s

d

 

 

0̂

0̂

(c)

Fig. 8. 4-input Toffoli gate (a), the RbDD for the 4th output s in two cases: if a > b > c > d (b), and if

a > b > d > c (c).
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decomposed as 12 )4/( hRgh x   where baRg x )(2   and hRgh x )4/(21  . The resulting 

QDDs for g2 and h1 are depicted in Figure 13 (iv) and (v). Finally, the factored form for s 

becomes: ])4/([)2/( 121 hRgRgs xx   . 

  

Figure 13. QDD’s needed to synthesize the four-input Toffoli gate.  

Due to the chain structure of g2 and h1, they may be directly realized by using controlled-rotation 

operators. Notice that when realizing g1, we also implement g2. As a result, it is more efficient to 

construct s as: ])2/([)4/( 112 hRgRgs xx   . The resulting quantum circuit realization is 

depicted in Figure 14. 

 

Figure 14. Automatic synthesis solution for the four-input Toffoli gate obtained by the q-factor 
algorithm. 
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Fig. 9. RbDDs required to synthesize the 4-input Toffoli gate in Fig. 8.

Function s can be bi-decomposed as s = g1Rx(−π/2)h where g1 = cRx(π)g. RbDDs

for g and g1 are shown in Fig. 9(a) and Fig. 9(b), respectively.8 Note that g1 is a 3-input

Toffoli gate (see RbDD of r in Fig. 6(a)), which can be synthesized as in Fig. 2(c). As for

function h, it can be written as h = g1Rx(π/2)s. The RbDD for h (by the apply operator)

is shown in Fig. 9(c). Subsequently, h can be bi-decomposed as h = g2Rx(−π/4)h1 where

g2 = aRx(π)b (by algorithm 2) and h1 = g2Rx(π/4)h (by the apply operator). The resulting

RbDDs for g2 and h1 are shown in Fig. 9(d) and Fig. 9(e). Finally, the factored form for s

is s = g1Rx(−π/2)[g2Rx(−π/4)h1].

Due to the chain structure of g2 and h1, they may be directly realized by using controlled-

rotation operators. Note that when realizing g1, we also implement g2. The final circuit

8RbDD of g1 can be obtained by using Algorithm 2 and RbDD of s — no need to construct RbDD of g.
However, an interested reader can verify that an indirect approach to construct RbDD of g (and hence the
function of g) is to replace vk by 0̂ in RbDD of g1 which is constructed from applying Algorithm 2.
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is shown in Fig. 10. The first subcircuit generates output s whereas the remaining gates

generate outputs p, q and r.

As a direct extension of the above approach, consider a multiple-control Toffoli gate

on n + 1 qubits with controls i1, i2, ..., in and target j. Toffoli output can be written as

j = i1i2 · · · in ⊕ j. Assume i1 < i2 < · · · < in < j. It can be verified that vk (in Algorithm

1) is in and we have r-deg(in) = 1 with α1 = 0, α2 = π, and γ = π/2 (in Theorem 1).

Therefore, one can write j = g1Rx(−π/2)h. It results in g1 = i1i2 · · · in−1 ⊕ in and h =

[i1i2 · · · in−1]Rx(π/2)[inRx(π/2)j]. Now, g1 is an n-qubit Toffoli gate and can be decomposed

independently following the same approach. To decompose h, one can verify that vk = in−1

in Algorithm 1 with r-deg(in−1) = 1, α1 = 0, α2 = π/2, and γ = π/4. Accordingly, we can

write h = g2Rx(−π/4)h1. Applying Algorithm 2 reveals that g2 is an (n − 1)-qubit Toffoli

gate with in−1 as the target and i1, i2, · · · , in−2 as controls. By using the apply operator,

h1 = g2Rx(π/4)h which leaves vk = in−2. Altogether, we can write:

CnRx(π) = Cn−1Rx(π)Rx(−π/2)

[Cn−2Rx(π)Rx(−π/4)

[Cn−3Rx(π)Rx(−π/8)

[· · ·
[Cn−(n−1)Rx(π)Rx(−π/2n−1)

[i1Rx(π/2n−1)(i2Rx(π/2n−1)(i3Rx(π/2n−2)(· · · (inRx(π/2)j) · · · )))]
] · · · ]]]

To construct the circuit, for [i1Rx(π/2n−1)(i2Rx(π/2n−1)(· · · (inRx(π/2)j) · · · ))] one needs

to add n controlled-rotation gates with controls on i1, i2, · · · , in and targets on j. This

subcircuit should be followed by constructing a g1 = Cn−1Rx(π) gate which automatically

constructs all g2 = Cn−2Rx(π), g3 = Cn−3Rx(π), · · · , gn = CRx(π) gates too. Next, one

needs to use n− 1 controlled-rotation gates with controls on g2, g3, · · · , gn and targets on j.

Altogether, we need COST1,CnNOT = 2n − 1 + COST1,Cn−1NOT controlled-rotation gates to

implement a CnNOT gate. To restore i1, i2, · · · , in qubits to their original values, additional

cost should be applied which is COST2,CnNOT = COST1,Cn−1NOT, i.e., all gates excluding

gates with targets on j. Terminal conditions are COST1,C2NOT = 4 and COST2,C2NOT = 1

(see Fig. 2(c)). Total implementation cost is COSTCnNOT = COST1,CnNOT + COST2,CnNOT

which is polynomial, i.e., 2n2 − 2n + 1. Fig. 11 illustrates this construction for a 5-input

Toffoli gate. No ancilla is required in the proposed construction. Current construction for a

CnNOT gate uses an exponential number of 2-qubit gates, i.e., 2n+1 − 3 [13], if no ancilla is

available.

Quantum adder. Consider a full adder with inputs x1, x2, and x3 (x1 < x2 < x3) and

outputs s = x1⊕x2⊕x3 and c = x1x2 +x1x3 +x2x3. The RbDDs of s and c are shown in Fig.

12(a). The RbDD of s has a chain structure that corresponds to a cascade expression and can

be directly realized. On the other hand, the RbDD of c should be recursively decomposed by

using Algorithm 1. Using this algorithm, c is bi-decomposed as c = g1Rx(−π/2)h.
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a • • • • • p = a

b • • π •
g2

• • π • q = b

c • π/2 π/2 −π/2
g1

• π/2 −π/2 −π/2 r = c

d π/2 π/4 π/4
h1 −π/4 −π/2 s = abc⊕ d

Fig. 10. Automatic synthesis of a 4-input Toffoli gate obtained by the factor algorithm. Only rotation
angles are reported for Rx(θ) gates. The first subcircuit generates output s in Fig. 8 whereas the remaining

gates generate outputs p, q and r.

a • • • •

U−1

p = a

b • • • π •
g3

• • q = b

c • • π/2 π/2 −π/2
g2

• • r = c

d • π/2 π/4 π/4 −π/4 −π/2
g1

• s = d

e π/2 π/4 π/8 π/8 −π/8 −π/4 −π/2 t = abcd⊕ e

Fig. 11. Synthesized circuit for a 5-input Toffoli gate. Only rotation angles are reported for Rx(θ) gates.

The dashed subcircuit generates output for a 4-input Toffoli gate (see Fig. 10) and U−1 is the reverse of
this subcircuit.

To construct RbDD of g1 note that vk = x3. Applying Algorithm 2 leads to four internal

nodes as follows. Node n1 with the decision variable x1, w1 = w0 = I, and 1̂-child node n2,

and 0̂-child node n3. Node n2 with the decision variable x2, node weight Rx(π), w1 = Rx(π),

w0 = I, and node n4 as both 1̂-child and 0̂-child. Node n3 with the decision variable x2,

w1 = Rx(π), w0 = I, and node n4 as both 1̂-child and 0̂-child. Node n4 with decision

variable x3 connected to the terminal node 0̂ with w1 = Rx(π), and w0 = I. A careful

consideration reveals that this RbDD can be converted to the one constructed for s in Fig.

12(a). Therefore, g1 has a cascade expression and a realizable rotation-based implementation.

Finally, the RbDD for h = g1Rx(π/2)c is shown in Fig. 12(a). As can be seen, the RbDD of

h has a chain structure too. The resulting quantum circuit is depicted in Fig. 12(b).

Now consider a 2-qubit quantum adder with inputs a1, a0, b1, b0 for a0 < b0 < a1 < b1
and outputs c, s1, and s0 for s0 < s1 < c. It can be verified that s0 = b0 ⊕ a0, s1 =

a0b0⊕a1⊕ b1, c = a0b0a1⊕a0b0b1⊕a1b1. Applying the above approach leads to the following

equations:

s0 = a0Rx(π)b0



s1 = g1Rx(−π/2)h1

g1 = s0

h1 = a0Rx(π/2)(b0Rx(π/2)(a1Rx(π)b1))



c = g2Rx(−π/2)h2

g2 = s1

h2 = g3Rx(−π/2)h3

g3 = s0

h3 = a0Rx(π/4)(b0Rx(π/4)(a1Rx(π/2)(b1Rx(π)0̂)))

Therefore, s0, s1, and c can be implemented by one, four, and six 2-qubit gates (11 in

total), respectively. The circuit uses one ancilla for c; a0, a1 remain unchanged and s1 and s0
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are constructed on b1 and b0, respectively.

To generalize, consider an n-qubit quantum ripple adder with inputs ai and bi and

outputs si and c for 0 ≤ i ≤ n − 1 and a0 < b0 < a1 < b1 < · · · < an−1 < bn−1 and

s0 < s1 < · · · < sn−1 < c. We have:

s0 = a0Rx(π)b0
s1 = s0Rx(−π/2)(a0Rx(π/2)(b0Rx(π/2)(a1Rx(π)(b1Rx(π)0̂))))
· · ·

sn−1 = sn−2Rx(−π/2)(sn−3Rx(−π/2)(· · · (s0Rx(−π/2)

(a0Rx(π/2n−1)(b0Rx(π/2n−1)

(a1Rx(π/2n−2)(b1Rx(π/2n−2)

· · ·
(an−2Rx(π/2)(bn−2Rx(π/2))

(an−1Rx(π)(bn−1Rx(π)0̂))) · · · )
c = sn−1Rx(−π/2)(sn−2Rx(−π/2)(· · · (s0Rx(−π/2)

(a0Rx(π/2n)(b0Rx(π/2n)

(a1Rx(π/2n−1)(b1Rx(π/2n−1)

· · ·
(an−2Rx(π/4)(bn−2Rx(π/4))

(an−1Rx(π/2)(bn−1Rx(π)0̂))) · · · )

To count the number of 2-qubit gates, note that there are 2n gates on c, 2n− 1 gates on

bn−1, 2n− 3 gates on bn−2, · · · , 3 gates on b1 and 1 gate on b0 in the proposed construction.

This subcircuit should be followed by a 2-qubit gate conditioned on b0 with target on b1,

2 gates conditioned on b0 and b1 with targets on b2, 3 gates conditioned on b0, b1, b2 with

targets on b4, etc. Altogether, an n-qubit quantum ripple adder can be implemented with

1/2(3n2 + 5n) controlled-rotation gates. Fig. 13 illustrates the proposed construction for a 5-

qubit carry-ripple adder. This circuit is restructured in Fig. 14 with parallel gates. Compared

to the construction in [14, Figure 7] with depth 28, our circuit uses a wider varieties of rotation

angles to reduce the depth to 23. Circuit depth for n = 2, · · · , 15 is 9(10), 12(16), 19(22),

23(28), 27(34), 31(40), 39(46), 43(52), 48(58), 51(64), 57(70), 61(76), 66(82), 70(88) where

a(b) denotes a 2-qubit gates in the proposed construction and b 2-qubit gates in [14].9

Quantum multiplexer. Consider a 3-input multiplexer f = sx1 + s̄x2 with s < x1 <

x2. Following Theorem 1 leads to α1 = 0, α2 = π, γ = π/2 and f = g1Rx(π/2)h for vk = x2

with r-deg(x2) = 1. To construct g1 note that we use α1 = 0. It results in a chain structure

for g1 with the factored form g1 = sRx(π)x2.

9The construction in [14] generates a circuit with controlled-rotation gates with phase π/2 and total depth
6n − 2 for an n-qubit carry-ripple adder. We guess our circuit depth is 5n + O(1). The trend line for the
number of 2-qubit gates in the proposed construction for n = 2, · · · , 15 is 4.7868n− 0.9736.
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Figure 9: QDDs for a 3-qubit full adder and the synthesized circuit.

s • • s1 • • π • •

x1 • π • s2 • π • π • π •

x2 • π • x1 • π •

0̂ π/2 π/2 −π/2 π/2 f x2 • π •

x3 • π •

x4 • π •

0̂ π/2 π/2 π/2 π/2 π/2 −π/2 −π/2 −π/2 −π/2 f

(a) (b)

Figure 10: (a) Quantum 2-to-1 multiplexer, (b) quantum 4-to-1 multiplexer. Circuits are directly
obtained by the q-factor algorithm.

Example 5.3 For a 3-input multiplexer f = sx1+s̄x2 the q-factor algorithm results in the quantum
circuit in Figure 10-a. The 6-input multiplexer f = s1s2x1 + s1s̄2x2 + s̄1s2x3 + s̄1s̄2x4 can be built
by using 3 three-input multiplexers, which would require 3 extra ancillae. However, if the q-factor

algorithm is directly applied the resulting circuit, depicted in Figure 10-b, only uses one ancilla.

Example 5.4 Applying the proposed q-factor algorithm for synthesizing an n-input Toffoli gate auto-
matically generates the circuit structures presented in []. Details can be verified by the reader.

5.1 Extension for general quantum logic functions

We showed that the q-factor algorithm is able to synthesize functions with 0̂ and 1̂ inputs and outputs.
In this section, we show the q-factor algorithm can be applied to functions that for basis input vectors,
generate outputs of the form Rx(θ)0̂.

In the Bloch sphere representation [], all values of the form Rx(θ)0̂ are on a circle that is perpendicular
to the X axis with the origin as its center. The QDD structure and the q-factor algorithm can be
generalized to be applicable to functions whose output values for all possible basis input vectors are on
a single arbitrary circle C with the origin as its center. Each point on circle C can be represented as
RV (θ)0̂V where V is a vector passing through the origin and perpendicular to circle C. In addition,
RV (θ) is the θ-degree rotation operation around the vector V and can be set to any point on the circle
C (see Figure 11(a).) Such a function can be represented with a QDD where the terminal node is 0̂V
and the weights of edges and the root node are in the form of RV (θ). Note that the quantum circuit
synthesized by using the q-factor algorithm has the property that for the basis input vectors, the values
of all internal and output variables lie on some circle, C.

9

(a)

x1 • •

x2 • •

x3 • π π • s

0̂ π/2 π/2 π/2
h

−π/2 c

Figure 5: asd.
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Figure 7. Rules for implementing the q-apply operator on two QDD’s.  
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are modified as demonstrated in Figure 8 to.  
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Figure 8. Weight modification during q-apply
to maintain canonicity of the resulting QDD

 f Rx() [Rx(r)g0] 

(c)

Figure 6: (a) Operands for operation h = fRx(γ)g. (b) The result of apply operator which adds a
new node to the resulting RbDD h by using one of the three rules: if a < b (Rule 1), v = a, w1 =
[Rx(αr + α)f1]Rx(γ)g, w0 = [Rx(αr)f0]Rx(γ)g. If b < a (Rule 2), v = b, w1 = fRx(γ)[Rx(βr + β)g1],
w0 = fRx(γ)[Rx(βr)g0]. If a = b (Rule 3), v = a = b, w1 = [Rx(αr + α)f1]Rx(γ)[Rx(βr + β)g1],
w0 = [Rx(αr)f0]Rx(γ)[Rx(βr)g0]. (c) Weight modification for the apply operator to maintain canonicity
of the resulting RbDD.

4.2 Operations on RbDDs

Suppose that the RbDD for a function f is given. The RbDD for h = Rx(γ)f can be obtained by
multiplying the root weight of f by Rx(γ). To obtain h = fRx(γ)g for given RbDDs of f and g, we
use the apply operator.2 In this context, f and g are called RbDD operands of h. The apply operator
is implemented by a recursive traversal of the two RbDD operands. For each pair of nodes in f and g
visited during the traversal, an internal node is added to the resulting RbDD by utilizing the following
rules which depend on the selected variable ordering ≺ (also see Figure 6). We assume that f and g have
two general RbDDs shown in Figure 6(a). The apply operator is recursively called with the terminal
conditions 0̂Rx(θ)v = v and 1̂Rx(θ)v = Rx(θ)v.

• Rule 1 (a < b) The new node for h is a. The weights of 1̂-child and 0̂-child are [Rx(αr +
α)f1]Rx(γ)g, and [Rx(αr)f0]Rx(γ)g, respectively.

• Rule 2 (b < a) The new node for h is b. The weights of 1̂-child and 0̂-child are fRx(γ)[Rx(βr+
β)g1], and fRx(γ)[Rx(βr)g0], respectively.

• Rule 3 (a = b) The new node for h is a (or b). The weights of 1̂-child and 0̂-child are
[Rx(αr + α)f1]Rx(γ)[Rx(βr + β)g1], and [Rx(αr)f0]Rx(γ)[Rx(βr)g0], respectively.

After recursive computation of the 1̂-child and 0̂-child of h, to maintain the canonicity of the resulting
RbDD, isomorphic sub-graphs are merged and if the 0̂-child and the 1̂-child of a node are the same
and the weight of the 1̂-edge is Rx(0) = I, then that node will be eliminated. In addition, to make
RbDD of h canonical, the resulting weights for the 1̂-child and the 0̂-child of h should be modified by
the method illustrated in Figure 6(c). Figure 7(a) demonstrates the result of performing apply operator
on q1 and r1 in Figure 4(a) (redrawn in Figure 7(a)) to obtain r = q1Rx(−π/2)r1.3 To construct
RbDD for r, one needs to initially apply Rule 3 because both q1 and r1 use a as roots. Accordingly,

2In general, for a binary operation op and two BDDs of functions f and g, the apply operator computes a BDD for
f op g [14].

3Note that the commutative property of matrix multiplication for Rx(θ) matrices is critical for the apply operator.
Performing apply as described may not generate the correct result for decision diagrams with non-commutative weights.

5

(b)

Fig. 12. (a) RbDDs for a 3-qubit full adder and (b) the synthesized circuit. Only rotation angles are reported

for Rx(θ) gates.

To construct the RbDD of h = g1Rx(−π/2)f using the apply operator, note that both g1

and f use s. Accordingly, one needs to apply Rule 3 which results in w1 = [Rx(π)x2]Rx(−π/2)x1

and w0 = x2Rx(−π/2)x2 = x2Rx(π/2)0̂. Continuing this path results in h = g2Rx(−π/2)h1,

g2 = sRx(π)x1, and h1 = x1Rx(π/2)[x2Rx(π/2)0̂].

Altogether, f = [sRx(π)x2]Rx(−π/2)[[sRx(π)x1]Rx(−π/2)[x1Rx(π/2)[x2Rx(π/2)0̂]]]. The

resulting quantum circuit is shown in Fig. 15(a). Note that one 0̂-initialized qubit is added

to setup [x2Rx(π/2)0̂].

The 6-input multiplexer f = s1s2x1 + s1s̄2x2 + s̄1s2x3 + s̄1s̄2x4 can be constructed

by using three 3-input multiplexers, which would require 3 extra ancillae. However, if the

factor algorithm is directly applied, the resulting circuit only uses one ancilla as illustrated

in Fig. 15(b). For an n-qubit quantum multiplexer with dlog ne selects and n inputs, the

proposed approach leads to 2n 2-qubit gates and n CdlogneRx(π) gates with one ancilla. As the

cost of an n-qubit multiple-control Toffoli gate is 2n2−2n+1, the proposed approach leads to

O(n log2 n) gates, i.e., 2n+n(2dlog ne2−2dlog ne+1). We found no explicit construction for an

n-qubit quantum multiplexer in the literature. However, one can use n Cdlogne+1CNOT gates

in a circuit with one zero-initialized ancilla to implement an n-qubit multiplexer. Considering

linear-size cost for each gate [13] leads to O(n2) cost.10

Quantum Fourier Transform. The quantum Fourier transform (QFT) is used

in many quantum algorithms. QFT has an efficient quantum circuit implementation based

on Rz gates [1]. The result of applying QFT on inputs j1, j2, . . . , jn is |0〉 + e2πi0.jn |1〉,
|0〉 + e2πi0.j2···jn |1〉, · · · , |0〉 + e2πi0.j1j2···jn |1〉 where the common notation 0.j1j2 . . . jn =
j1
2 + j2

22 + · · ·+ jn
2n is used.

Following the discussion in Section 5, in the first step the output fn(j1, j2, . . . , jn) =

10For example, a 4-to-1 multiplexer can be implemented as T (s′0, s
′
1, x0, f), T (s′0, s1, x1, f), T (s0, s′1, x2, f),

T (s0, s′1, x3, f) for a circuit with selects s0, s1, inputs x0, x1, x2, x3 and output f , where f is a zero-initialized
ancilla. For each T (Toffoli) gate, the first three lines act as the control lines and the last line acts as the
target. In addition, e.g., T (s′0, s

′
1, x0, f) applies x0 on f when s0 = 0, s1 = 0. This can be implemented by

N(s0), N(s1), T (s0, s1, x0, f), N(s1), N(s0) where N denotes the NOT gate.
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Fig. 13. 5-bit ripple-carry adder synthesized by the proposed approach with 50 2-qubit rotation gates.
Different gates with the same control line are represented as one gate with several targets. For example, the

gate in the dashed box includes two rotation gates conditioned on a4 with targets on c (ancilla) and b4.

|0〉+ e2πi0.j1j2···jn |1〉 is described by fn(J) = eiδ(J)Rz(γ(J))Rx(θ(J)) |0〉 where J = j12n−1 +

j22n−2 + · · ·+ jn. For this function θ(J) = (π/2)j1, and g(J) = Rx(θ(J))0̂ = Rx(π/2)0̂.

The RbDD for Rz(γ(J)) is shown in Fig. 16(a) where the root node is weighted. This

RbDD corresponds to a cascade expression and there is no need to perform bi-decomposition.

The quantum circuit implementing fn(J) = eiδ(J)Rz(γ(J))Rx(θ(J)) |0〉 in shown in Fig.

16(b).

The single qubit operation Rz(−π/2) can be moved between Rx(π/2) and controlled Rz(π)

operations. Since j1 is used as the controlled qubit of only one controlled rotation operation,

the sub-circuit in Fig. 17(a) can be replaced by a single qubit operator shown in Fig. 17(b).

The 2 × 2 matrix describing U consists of two columns u0 and u1 such that U = [ u0 u1 ]

and can be obtained as follows:

u0 = Rz(−π/2)Rx(π/2) |0〉 =
e−iπ/4√

2

[
1
1

]

u1 = Rz(π)Rz(−π/2)Rx(π/2) |0〉 = Rz(π/2)Rx(π/2) |0〉 =
e−iπ/4√

2

[
1
−1

]

Hence, we have:

U =
e−iπ/4√

2

[
1 1
1 −1

]

This operator can be replaced by the Hadamard operator since the two operators differ

only in a global phase. Therefore, the quantum circuit for |0〉+e2πi0.j1j2···jn |1〉 can be realized

as shown in Fig. 17(c). The remaining outputs can be generated similarly. Accordingly, the

proposed method results in the same circuit structure in [1] with n(n+ 1)/2 total gates. This

can show the efficiency of the proposed automatic synthesis approach.
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Fig. 14. Circuit in Fig. 13 with depth 23. The notation
a
θ represents controlled-rotation gates where a is

the control line and θ is the rotation angle.
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Fig. 15. (a) Quantum 2-to-1 multiplexer, (b) quantum 4-to-1 multiplexer. Circuits are directly obtained by

the factor algorithm. Only rotation angles are reported for Rx(θ) gates.

7 Conclusions and Further Discussion

We mainly addressed reversible logic synthesis by quantum rotation-based gates. A new

canonical representation model was proposed based on binary decision diagrams. Focused

on it, we developed a synthesis framework to manipulate circuits and to synthesize functions

with binary variables. We also showed that the proposed approach can be extended to work

with functions that generate arbitrary outputs for binary inputs.

While almost all previous synthesis methods with favorable results [7] used CNOT, controlled-

V and controlled-V† gates (see Fig. 1) as primitive gates with unit cost, we used 2-qubit

controlled-rotation gates. This work can be particularly considered as a synthesis method

for Boolean reversible circuits that computes a given Boolean function outside the Boolean

domain with quantum gates [12]. We hope this new insight opens further analysis and inves-

tigation to efficiently address quantum and reversible logic synthesis possibly beyond current

achievements [7].

To realize a given quantum computation by fault-tolerant gates, one needs to use those
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Figure 16: Replacing a part of the QFT circuit (a) in Figure 14 with a single qubit operator shown in
(b) leads to the QFT circuit given in (c) for one output of QFT.
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(b)

Fig. 16. (a) The RbDD for Rz(γ(J)) in QFT. (b) Quantum circuit for |0〉+e2πi0.j1j2···jn |1〉 in the quantum

Fourier transform.

j1 • j1 U q jn •

0 Rx(π/2) Rz(−π/2) Rz(π) q
.
.
.

j2 • . . .

j1 H Rz(π/2) Rz(π/2n) |0〉+ e2πi0.j1···jn |1〉

(a) (b) (c)

Fig. 17. Replacing a part of the QFT circuit (a) in Fig. 16(b) with a single qubit operator shown in (b)

leads to the QFT circuit given in (c) for one output of QFT.

gates that have direct fault-tolerant implementations [1]. Such realizations are only available

for a few operations such as Clifford gates. To implement a wider set of gates such as the

ones we used in this paper, one must apply the set of fault-tolerant gates to accurately (by

approximation) implement other gates. This can be done by the Solovay-Kitaev algorithm

[1]. Given the point that the proposed approach uses controlled rotation gates with various

angles, fault-tolerant implementation of the proposed circuits can be costly. Future work

should address this issue. Additionally, further progress on this path may result in new

observations to restrict/ignore angles [32, 33] and to remove redundant gates.
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