
  

  

Abstract— In contrast to conventional internal combustion 
engine (ICE) propelled vehicles, hybrid electric vehicles (HEVs) 
can achieve both higher fuel economy and lower pollutant 
emissions. The HEV features a hybrid propulsion system 
consisting of one ICE and one or more electric motors (EMs). 
The use of both ICE and EM increases the complexity of HEV 
power management, and so advanced power management 
policy is required for achieving higher performance and lower 
fuel consumption. This work aims at minimizing the HEV fuel 
consumption over any driving cycles, about which no complete 
information is available to the HEV controller in advance. 
Therefore, this work proposes to model the HEV power 
management problem as a Markov decision process (MDP) and 
derives the optimal power management policy using the policy 
iteration technique. Simulation results over real-world and 
testing driving cycles demonstrate that the proposed optimal 
power management policy improves HEV fuel economy by 
23.9% on average compared to the rule-based policy. 

I. INTRODUCTION 

Automobiles have contributed to the development of 
modern society. However, large amounts of fuel 
consumption and pollutant emissions resulting from the 
increasing number of automobiles have drawn attention of 
researchers and developers towards more energy efficient 
and environmentally friendly automobiles. The hybrid 
electric vehicle (HEV) has provided a promising solution 
towards sustainable mobility. In contrast to conventional 
internal combustion engine (ICE) propelled vehicles, HEVs 
can achieve both higher fuel economy and lower pollutant 
emissions [1][2][3]. 

The HEV features a hybrid propulsion system consisting 
of an ICE and an electric motor (EM), both of which may be 
coupled directly to the drivetrain. The ICE consumes fuel to 
provide the primary propulsion, whereas the EM converts 
the stored electrical energy to the secondary propulsion 
when extra torque is needed. Besides assisting the ICE with 
extra torque, the EM also serves as a generator for 
recovering kinetic energy during braking (known as 
regenerative braking) and storing excess energy from the 
ICE during coasting. The introduction of the secondary 
propulsion by the EM allows for a smaller ICE design and 
makes HEVs more efficient than conventional ICE vehicles 
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in terms of acceleration, hill climbing, and braking energy 
utilization [4][5]. 

On the other hand, the use of both ICE and EM increases 
the complexity of HEV power management and advanced 
power management policy is required for achieving higher 
performance and lower fuel consumption. A power 
management policy for HEVs determines the power split 
between the ICE and EM to satisfy the speed and torque 
requirements and, meanwhile, to ensure safe and smooth 
operation of the involved power components (e.g., ICE, EM, 
and batteries). Furthermore, a “good” power management 
policy should result in reduced fuel consumption and lower 
pollutant emissions. Rule-based power management 
approaches have been designed based on heuristics, 
intuition, and human expertise [6][7]. Although rule-based 
approaches are effective for real-time supervisory control, 
they may be far from being optimal. Dynamic programming 
(DP) techniques have been applied to the power 
management of various types of HEVs [8][9][10]. DP 
techniques can derive a globally optimal solution that 
minimizes the total fuel consumption during a whole driving 
cycle, which is given as a vehicle speed versus time profile 
for a specific trip. Unfortunately, the DP techniques require 
a priori knowledge of the driving cycles, and therefore they 
are not applicable for real-time implementation. 

The equivalent consumption minimization strategy 
(ECMS) approach has been proposed to reduce the global 
optimization problem (as in DP techniques) to an 
instantaneous optimization problem [11]. However, the 
ECMS approach strongly depends on the equivalence 
factors, which convert the electrical energy consumption of 
EM into the equivalent fuel consumption of ICE. The 
equivalence factors are quite sensitive to the driving cycles. 
In other words, equivalence factors that are suitable for a 
driving cycle may lead to poor performance for other driving 
cycles. To overcome this challenge, the adaptive-ECMS (A-
ECMS) approach has been applied for HEV power 
management based on driving cycle prediction within a 
finite horizon [12]. Although the A-ECMS approach has 
good performance, the detailed driving cycle prediction 
method has been omitted. Gong et al. has provided a trip 
modeling method using a combination of geographical 
information systems (GISs), global positioning systems 
(GPSs), and intelligent transportation systems (ITSs) [13]. 
However, the driving cycle constructed by this trip modeling 
method is synthetic and not accurate enough to capture the 
real driving scenarios. 

Our work aims at minimizing the HEV fuel consumption 
over any driving cycles. Unlike some previous approaches, 
we do not assume the complete information about the 
driving cycles to be available to the HEV controller in 
advance. Therefore, this work proposes to model the HEV 
power management problem as a Markov decision process 
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(MDP) based on the Markov chain model of driving cycles 
and the MDP model of the battery pack, which capture the 
stochastic information in driving cycles, and the rate 
capacity and recovery effects of the battery pack, 
respectively. The optimal power management policy is 
derived using a policy iteration algorithm, which is a 
standard dynamic programming-based algorithm for 
deriving the optimal policy of an MDP. Simulation results 
over real-world and testing driving cycles demonstrate that 
the proposed optimal power management policy improves 
HEV fuel economy by 23.9% on average compared to the 
rule-based policy. 

II. SYSTEM MODELING 

By way of an example and without loss of generality, the 
proposed power management policy is designed exemplarily 
for (but not limited to) the parallel hybrid drivetrain 
configuration displayed in Fig. 1. In an HEV with the parallel 
hybrid drivetrain (i.e., a parallel HEV), the ICE and EM can 
deliver power in parallel to drive the wheels. There are five 
different operation modes in a parallel HEV, depending on 
the flow of energy: 1) wheels are driven by only the ICE; 2) 
wheels are driven by only the EM; 3) wheels are driven by 
both the ICE and EM; 4) battery charging mode: part of the 
ICE power drives the EM as a generator to charge the battery 
pack, while the other part of ICE power drives the wheels; 5) 
regenerative braking mode: the wheels drive the EM as a 
generator to charge the battery pack when vehicle is braking. 

A. Internal Combustion Engine (ICE) 
For the study of HEV power management, ICE dynamics 

is ignored based on the quasi-static assumption [15]. The fuel 
consumption rate 𝑚! (in g/s) of an ICE is a nonlinear 
function of the ICE speed 𝜔!"# (in rad s) and torque 𝑇!"# (in 
N ∙m). The fuel efficiency of an ICE is calculated by 
 𝜂!"# 𝜔!"# ,𝑇!"# = 𝑇!"# ∙ 𝜔!"#/(𝑚! ∙ 𝐷!),  (1) 
where 𝐷! is the fuel energy density (in J/g). 

Fig. 2 presents a contour map of the fuel efficiency of an 
ICE in the speed-torque plane. It is a 1.0L VTEC-E SI ICE 

modeled by the advanced vehicle simulator ADVISOR [14]. 
The ICE has a peak power of 50  kW and a peak efficiency of 
0.4. A “good” power management policy should avoid ICE 
operation point 𝜔!"# ,𝑇!"#  in the low efficiency region. 
Superimposed on the contour map is the maximum ICE 
torque 𝑇!"#!"#(𝜔!"#) (the dashed line). To ensure safe and 
smooth operation of an ICE, the following constraints should 
be satisfied: 
 𝜔!"#!"# ≤ 𝜔!"# ≤ 𝜔!"#!"#,  (2) 
 0 ≤ 𝑇!"# ≤ 𝑇!"#!"# 𝜔!"# .  (3) 

B. Electric Motor (EM) 
Fig. 3 presents a contour map of the efficiency of an EM 

also in the speed-torque plane. It is a permanent magnet EM 
modeled by ADVISOR. The EM has a peak power of 10  kW 
and a peak efficiency of 0.96. Let 𝜔!" and 𝑇!" respectively 
denote the speed and torque of the EM. When 𝑇!" ≥ 0, the 
EM operates as a motor; when 𝑇!" < 0, the EM operates as a 
generator. The efficiency of the EM is defined by 

 𝜂!" 𝜔!" ,𝑇!" =
𝑇!" ∙ 𝜔!"/𝑃!"##              for    𝑇!" ≥ 0
𝑃!"##/(𝑇!" ∙ 𝜔!")      for    𝑇!" < 0 (4) 

where 𝑃!"## is the output power of the battery pack. When 
𝑇!" ≥ 0, the battery pack is discharging and 𝑃!"## is a 
positive value; when 𝑇!" < 0, the battery pack is charging 
and 𝑃!"## is a negative value. Superimposed on the contour 
map are the maximum and minimum EM torques (the dashed 
lines) i.e., 𝑇!"!"#(𝜔!") and 𝑇!"!"#(𝜔!"), respectively. To 
ensure safe and smooth operation of an EM, the following 
constraints should be satisfied: 
 0 ≤ 𝜔!" ≤ 𝜔!"!"#, (5) 
 𝑇!"!"# 𝜔!" ≤ 𝑇!" ≤ 𝑇!"!"# 𝜔!" . (6) 

C. Drivetrain Mechanics 
The detailed ADVISOR drivetrain model is not suitable 

for dynamic optimization due to its high number of states. 
Thus, we adopt a simplified but sufficiently accurate 
drivetrain model as in [16][17]. The following equations 
describe the drivetrain mechanics, showing the mechanical 
coupling between different components and the vehicle. 
• Speed relation 
 𝜔!! =

!!"#
!(!)

= !!"
!(!)∙!!"#

  . (7) 

• Torque relation 
 𝑇!! = 𝑅 𝑘 ∙ 𝑇!"# + 𝜌!"# ∙ 𝑇!" ∙ (𝜂!"#)! ∙ (𝜂!")! . (8) 
𝜔!! and 𝑇!! are the wheel speed and torque, respectively. 
𝑅(𝑘) is the gear ratio of the 𝑘-th gear. 𝜌!"# is the reduction 
gear ratio. 𝜂!"# and 𝜂!" are the reduction gear efficiency and 
gear box efficiency, respectively. 𝛼 equals +1 if 𝑇!" ≥ 0, 

 
Figure 1. The parallel hybrid drivetrain configuration [14]. 

 
Figure 2. Fuel efficiency map of an ICE. 

 
Figure 3. Efficiency map of an EM. 



  

and −1 otherwise. 𝛽 equals +1 if 𝑇!"# + 𝜌!"# ∙ 𝑇!" ∙
(𝜂!"#)! ≥ 0, and −1 otherwise. 

D. Vehicle Dynamics 
The vehicle is considered as a rigid body with four 

wheels and the vehicle mass is assumed to be concentrated 
in a single point. The following force balance equation 
describes the vehicle dynamics: 
 𝑚 ∙ 𝑎 = 𝐹!" − 𝐹! − 𝐹! − 𝐹!" . (9) 
𝑚 is the vehicle mass, 𝑎 is the vehicle acceleration, and 𝐹!" 
is the total tractive force. The force due to road slope is 
given by 
 𝐹! = 𝑚 ∙ 𝑔 ∙ sin 𝜃, (10) 
where 𝜃 is road slope angle. The rolling friction force is 
given by 
 𝐹! = 𝑚 ∙ 𝑔 ∙ cos 𝜃 ∙ 𝐶! , (11) 
where 𝐶! is rolling friction coefficient. The air drag force is 
given by 
 𝐹!" = 0.5 ∙ 𝜌 ∙ 𝐶! ∙ 𝐴! ∙ 𝑣!, (12) 
where 𝜌 is air density, 𝐶! is air drag coefficient, 𝐴! is the 
vehicle frontal area, and 𝑣 is the vehicle speed. Given 𝑣, 𝑎 
and 𝜃, the total tractive force 𝐹!" can be derived using 
(9)~(12). Then, the wheel speed and torque are related to 
𝐹!", 𝑣, and wheel radius 𝑟!! by 
 𝜔!! = 𝑣 𝑟!! , (13) 
 𝑇!! = 𝐹!" ∙ 𝑟!! . (14) 

E. Backward-Looking Optimization 
In this work, the backward-looking optimization approach 

[13] is adopted, which implies that the HEV controller 
determines the operation of ICE and EM conforming to the 
mechanical relationships imposed by the drivetrain, so that 
the vehicle meets the target performance (i.e., target speed 
and acceleration.) Specifically, from the vehicle speed 𝑣, 
acceleration 𝑎 (inferred from vehicle speed change), and road 
slope angle 𝜃, the required wheel speed 𝜔!! and torque 𝑇!! 
can be derived by (9)~(14). Then, the five variables, i.e., the 
ICE speed 𝜔!"# and torque 𝑇!"#, the EM speed 𝜔!" and 
torque 𝑇!", and the gear ratio 𝑅(𝑘), should satisfy (7) and 
(8), which are essentially three equations. The HEV 
controller chooses two of the five variables, say, 𝑇!" and 
𝑅(𝑘), as the control variables. The rest of variables (i.e., 
𝜔!"#, 𝑇!"#, and 𝜔!") become dependent (associate) 
variables, the values of which are determined by 𝑇!" and 
𝑅(𝑘) accordingly. The results of the HEV power 
management policy are the fuel consumption rate of the ICE, 
and the battery pack output power (associated with the EM.) 

III. MARKOV DECISION PROCESS (MDP) MODELING 

Markov decision processes (MDPs) provide a powerful 
mathematical tool for sequential decision making in 
situations where outcomes are partly random and partly under 
the control of a decision maker [18]. MDPs have been widely 
applied to many areas including robotics, automated control, 
and dynamic power management for embedded systems [19]. 

A.  MDP Concepts and Definitions 
We focus on a discrete-time finite-state Markov decision 

process of a continual process-control task, which is best 
suited for modeling the HEV power management problem. 
The whole time horizon is discretized into a sequence of time 

steps, indexed by 𝑡 = 0, 1, 2, 3,…. There are a finite set 𝒮 of 
states and a finite set 𝒜 of actions. At each time step, the 
process is in some state 𝑠 ∈ 𝒮, and the decision maker may 
choose any action 𝑎 ∈ 𝒜!, where 𝒜!(⊆ 𝒜) is the set of 
actions available for state 𝑠. Matrix 𝑷! is the state transition 
probability matrix, where 𝑷!!!

!  denotes the probability that 
action 𝑎 in state 𝑠 at time step 𝑡 will lead to state 𝑠! at time 
step 𝑡 + 1. We have 𝑷!!!

!
!!∈𝒮 = 1. Matrix 𝑹! is the 

immediate reward matrix, where 𝑹!!!
!  denotes the (expected) 

immediate reward received after transition to state 𝑠! (at time 
step 𝑡 + 1) from state 𝑠 (at time step 𝑡) under action 𝑎. 
Matrices 𝑷! and 𝑹! (for all 𝑎 ∈ 𝒜) completely specify the 
most important aspects of the dynamics of an MDP. 

A policy, denoted by 𝜋, for the decision maker is a 
mapping from each state 𝑠 ∈ 𝒮 to an action 𝑎 ∈ 𝒜 that 
specifies the action 𝑎 = 𝜋(𝑠) that the decision maker will 
choose when the process is in state 𝑠. The MDP optimization 
problem targets at finding the optimal policy, such that 
 𝑉! 𝑠 = 𝐸 𝛾! ∙ 𝑟!!!!!!

!!! |𝑠! = 𝑠  (15) 
is maximized for each state 𝑠 ∈ 𝒮. The value function 𝑉! 𝑠  
is the expected return when the process starts in state 𝑠 at 
time step 𝑡 and follows policy 𝜋 thereafter. 𝛾 is a parameter, 
0 < 𝛾 < 1, called the discount rate that ensures the infinite 
sum (i.e., 𝛾! ∙ 𝑟!!!!!!

!!! ) converges to a finite value. 
𝑟!!!!! is the immediate reward received at time step 
𝑡 + 𝑘 + 1, the value of which can be obtained from indexing 
matrices 𝑹!!!

!  with 𝑠 = 𝑠!!!, 𝑠! = 𝑠!!!!!, and 𝑎 = 𝜋(𝑠!!!). 
For any policy 𝜋 and any state 𝑠 ∈ 𝒮, the following 

consistency condition holds between 𝑉! 𝑠  and 𝑉! 𝑠! , 
where 𝑠! is a possible successor state of 𝑠: 
 𝑉! 𝑠 = 𝑷!!!

! ∙ 𝑹!!!
! + 𝛾 ∙ 𝑉! 𝑠!!! , (16) 

where 𝑎 = 𝜋(𝑠). 

B.  Stochastic Driving Cycle Modeling 
A driving cycle is given as a vehicle speed versus time 

profile for a specific trip. The HEV controller aims at 
deriving a power management policy to minimize the fuel 
consumption during a whole driving cycle. If the HEV 
controller has a priori knowledge of a whole driving cycle at 
the beginning of a trip, the global optimal policy can be 
derived using dynamic programming (DP) techniques 
[8][9][10]. However, such dependency on a priori knowledge 
has become a major deterrent to utilizing the DP approach, 
i.e., the difficulty of implementation for the real-time control. 

We capture the stochastic information in driving cycles 
using a discrete-time Markov chain model, which predicts the 
probability distribution of states in the next time step given 
the state in the current time step. Similar to [20][21], we 
define the state space for the Markov chain model as a finite 
number of states, each represented by the power demand and 
vehicle speed levels: 
 𝒮! = 𝑠! = 𝑃!"#, 𝑣 !   𝑃!"# ∈ 𝒫!"#, 𝑣 ∈ 𝒱} (17) 
 = {𝑠!! , 𝑠!! ,… , 𝑠!!}, 
where 𝑃!"# = 𝑇!! ∙ 𝜔!! is the power demand for propelling 
an HEV, 𝒫!"# and 𝒱 are respectively the finite sets of power 
demand levels and vehicle speed levels (discretization is 
required because our MDP model is suitable for discrete-state 
spaces), and 𝑀 is the total number of states in 𝒮!. Then in 
the state transition probability matrix 𝑷! of the Markov 



  

chain, the element 𝑷!,!!  denotes the probability that the state in 
the next time step is 𝑠!! given that the current state is 𝑠!!: 
 𝑷!,!! = Pr 𝑠!!!! = 𝑠!!|𝑠!! = 𝑠!! . (18) 

To estimate these state transition probabilities, one needs 
observation data for both power demand and vehicle speed. 
We obtain these observations from real-world and testing 
driving cycle profiles. These profiles provide histories of 
vehicle speed versus time, and we use the vehicle dynamics 
to extract corresponding power demand histories as follows: 
 𝑃!"# = 𝐹!" ∙ 𝑣 (19) 
 = 𝑚 !"

!"
𝑣 +𝑚𝑔 sin 𝜃 𝑣 +𝑚𝑔 cos 𝜃 𝐶!𝑣 + 0.5𝜌𝐶!𝐴!𝑣!, 

which is derived based on Section II-D.  
In this work, we use real-world and testing drive cycles 

representing both highway and city driving, developed by 
different organizations and projects such as EPA (US 
Environmental Protection Agency), INRETS (French 
National Institute for Transport and Safety Research), and 
MODEM, to compute the observation data and then derive 
the state transition probability matrix 𝑷! using the maximum 
likelihood estimation method [22]. In reality, the state 
transition probability matrix can be updated, when new 
driving scenarios are observed by the controller. 

C.  Stochastic Battery Modeling 
Although the battery pack in an HEV does not couple 

with the drivetrain directly, it is an important and active 
power component for an HEV since it provides electrical 
energy to power the EM and also stores electrical energy 
generated from the EM (as a generator) during regenerative 
braking. A comprehensive understanding of the battery 
model is necessary for deriving power management policy. 

The state of a battery pack is represented by the amount 
of charge stored in the battery pack. The majority of literature 
on HEV power management adopts a simple battery model as 
follows [3]: 
 𝑄! = 𝑄!"! − 𝐼! ∙ ∆𝑇!

!!! , (20) 
where 𝑄! is the amount of charge stored in the battery pack at 
the end of time step 𝑡, 𝑄!"! is the amount of charge stored in 
the battery pack at the beginning of time step 0, 𝐼! is the 
discharging current of the battery pack at time step 𝑡 (𝐼! < 0 
means battery charging), and ∆𝑇 is the length of a time step. 
However, this battery model ignores the rate capacity effect, 
which causes the most significant power loss when the 
battery pack charging/discharging current is high [23]. We 
know that the battery pack charging/discharging current is 
high during deceleration and acceleration, and therefore the 
rate capacity effect should be considered. The rate capacity 
effect specifies that if the battery pack is discharging (𝐼 > 0), 
the actual charge decreasing rate inside the battery pack is 
higher than 𝐼; and if the battery pack is charging (𝐼 < 0), the 
actual charge increasing rate inside the battery pack is lower 
than |𝐼|. In addition, the battery model mentioned above also 
ignores the recovery effect, which specifies that the battery 
pack can partially recover charge loss in previous discharges 
if relaxation time is allowed in between discharges [23]. 

A stochastic battery model was proposed in [24]. Inspired 
by that model, we propose a Markov decision process model 
for the battery pack in an HEV that captures both the rate 
capacity effect and the recovery effect. We define the state 
space for the MDP battery model by discretizing the range of 

the stored charge of the battery pack i.e., 𝑄!"#,𝑄!"#  into a 
finite number of charge levels: 
 𝒮!" = {𝑠!!", 𝑠!!",… , 𝑠!!"}, (21) 
where 𝑄!"# = 𝑠!!" < 𝑠!!" < ⋯ < 𝑠!!" = 𝑄!"#. Usually, 
𝑄!"# and 𝑄!"# are 40% and 80% of the battery pack 
capacity, respectively, to ensure “healthy” operation of the 
battery pack [12]. An action 𝑎  (∈ 𝒜) taken by the decision 
maker is to discharge the battery pack with a current value of 
𝐼, where 𝐼 > 0 denotes discharging, 𝐼 < 0 denotes charging, 
and 𝐼 = 0 denotes idle. The battery charging/discharging 
current range −𝐼!"#, 𝐼!"#  is discretized into a finite 
number 𝐿 of values. Then the cardinality of 𝒜 equals 𝐿. 

Next, we need to derive the state transition probability 
matrix 𝑷𝒃!, where the element 𝑷𝒃!,!!  denotes the probability 
that action 𝑎 in state 𝑠!!" at time step 𝑡 will lead to state 𝑠!!" 
at time step 𝑡 + 1. Specifically, if action 𝑎 is to set the battery 
pack in idle  (𝐼 = 0), the battery pack has a probability to 
switch to a state with higher charge level due to the recovery 
effect; if action 𝑎 is to discharge the battery (𝐼 > 0), the 
battery pack will switch to some state(s) with lower charge 
level and the charge decrease is larger than 𝐼 ∙ ∆𝑇 due to the 
rate capacity effect; and if action 𝑎 is to charge the battery 
pack (𝐼 < 0), the battery pack will switch to some state(s) 
with higher charge level and the charge increase is smaller 
than |𝐼| ∙ ∆𝑇 due to the rate capacity effect. More details are 
omitted due to space limitation. 

D.  Markov Decision Process Modeling of HEV Power 
Management 
In this section, we propose to model the HEV power 

management problem as an MDP based on the Markov chain 
model of driving cycles and the MDP model of the battery 
pack derived in the previous sections. We define the state 
space for the MDP model of HEV power management as 
 𝒮 = 𝑠!,! = 𝑠!!;   𝑠!!"   𝑠!! ∈ 𝒮! , 𝑠!!" ∈ 𝒮!"}. (22) 
An action 𝑎  (∈ 𝒜) taken by the decision maker is to 
discharge the battery pack with a current value of 𝐼, where 
𝐼 > 0 denotes discharging, 𝐼 < 0 denotes charging, and 
𝐼 = 0 denotes idle. The battery charging/discharging current 
range −𝐼!"#, 𝐼!"#  is discretized into a finite number 𝐿 of 
values. Then the cardinality of 𝒜 equals 𝐿. 

a) State Transition Probability Matrix 
Now, we need to derive the state transition probability 

matrix 𝑷! for the MDP, where the element 𝑷 !,! , !!,!!
!  

denotes the probability that action 𝑎 in state 𝑠!,! at time step 𝑡 
will lead to state 𝑠!!,!! at time step 𝑡 + 1. The value of 
𝑷 !,! , !!,!!
!  can be derived by 

 𝑷 !,! , !!,!!
! = 𝑷!,!!

! ∙ 𝑷𝒃!,!!
! , (23) 

where 𝑷! and 𝑷𝒃! are the state transition probability 
matrices of the Markov chain model of driving cycles and the 
MDP model of the battery pack, respectively. Because these 
two models are independent from each other, 𝑷 !,! , !!,!!

!  can 
be derived by multiplying the corresponding matrix elements 
in 𝑷! and 𝑷𝒃! directly.   

b) Immediate Reward Matrix 
Next, we need to derive the immediate reward matrix 𝑹! 

for the MDP model of HEV power management, where the 
element 𝑹 !,! , !!,!!

!  denotes the immediate reward received 



  

after taking action 𝑎 in state 𝑠!,!. MDP optimization problems 
aim to maximize the discounted sum of the immediate 
rewards in the long run as shown in (15). We define the 
immediate reward as the negative of the fuel consumption in 
a time step, and therefore by solving the MDP optimization 
problem we can minimize the overall fuel consumption.  

The fuel consumption in a time step depends on state 𝑠!,! 
and action 𝑎 at the time step. Suppose in state 𝑠!,!, the power 
demand is 𝑃!"# and the vehicle speed is 𝑣; and action 𝑎 
specifies that the battery pack discharging current is 𝐼. Then, 
the wheel speed and torque are calculated by 
 𝜔!! = 𝑣 𝑟!! , (24) 
 𝑇!! = 𝑃!"# ∙ 𝑟!!/𝑣. (25) 
The battery output power is calculated by 
 𝑃!"## = 𝑉!" ∙ 𝐼 − 𝑅!"## ∙ 𝐼!, (26) 
where 𝑉!"  is the open-circuit voltage of the battery pack and 
𝑅!"## is the internal resistance of the battery pack. Please 
note that if 𝑃!"## < 0, the battery pack is being charged and 
its input power is |𝑃!"##|. In order to derive the fuel 
consumption in the time step, we need to solve the following 
fuel optimization (FO) problem: 

Given the values of 𝜔!!, 𝑇!!, and 𝑃!"##, find the EM 
torque 𝑇!" and gear ratio 𝑅(𝑘) to minimize the fuel 
consumption rate 𝑚! subject to (2)~(8). 

Usually, there are about five values that 𝑅(𝑘) can 
assume. For each of the possible 𝑅(𝑘) values, we first 
calculate 𝜔!"# and 𝜔!" using (7), next calculate 𝑇!" using 
(4) while satisfying (5)~(6), and then calculate 𝑇!"# using (8) 
while satisfying (2)~(3). With 𝜔!"# and 𝑇!"#, the fuel 
consumption rate 𝑚! is obtained based on the ICE model. 
We choose the 𝑅(𝑘) value that results in the minimum 𝑚! 
i.e., 𝑚!

!"#. We calculate 𝑹 !,! , !!,!!
!  as −𝑚!

!"# ∙ ∆𝑇. Please 
note that the immediate reward 𝑹 !,! , !!,!!

!  is independent of 
the successor state 𝑠!!,!!. Therefore, the four-dimensional 
matrix 𝑹 !,! , !!,!!

!  can be reduced to a two-dimensional 
matrix 𝑹 !,!

! . 

E.  MDP Optimal Policy Derivation 
In Section III-D, we have modeled the HEV power 

management problem as an MDP with the four essential 
tuples: the state set 𝒮, the action set 𝒜, the state transition 
probability matrix 𝑷!, and the immediate reward matrix 𝑹!. 
Now, we will derive the optimal policy 𝜋 to maximize the 
value function 𝑉! 𝑠!,!  for all states 𝑠!,! ∈ 𝒮. We adopt the 
policy iteration algorithm, which is a dynamic programming 
(DP)-based algorithm to derive the optimal policy for an 
MDP [18]. The policy iteration algorithm is based on the 
consistency condition given by (16), which we rewrite as 
 𝑉! 𝑠!,! = 𝑷 !,! , !!,!!

! ∙ 𝑹 !,!
! + 𝛾 ∙ 𝑉! 𝑠!!,!!!!,!! , (27) 

where 𝑠!!,!! is a possible successor state of 𝑠!,!.  
The policy iteration algorithm consists of two basic steps: 

policy evaluation and policy improvement. The policy 
evaluation step derives the value function for each state 
𝑠!,! ∈ 𝒮 with a given policy 𝜋(𝑠!,!) through iteration. The 
policy improvement step, for each state 𝑠!,! ∈ 𝒮, changes the 
action from the existing policy to a potentially new action 
that results in a larger value function. If no further 
improvement can be done, the policy improvement will 

terminate with the optimal policy; otherwise, the new policy 
will go through policy evaluation and improvement steps 
once more. 

In summary, the policy iteration is a DP-based algorithm 
to derive the optimal policy for an MDP. It will result in an 
optimal HEV power management policy that specifies the 
action 𝑎 to take for the HEV, when the HEV is in some state 
𝑠!,!. The action 𝑎 itself is represented as a 
discharging/charging current level of the battery pack, and 
the actual control variables i.e., the EM torque 𝑇!" and gear 
ratio 𝑅(𝑘), are obtained through solving the FO problem, for 
which the solution has been derived in Section III-D-b. The 
policy iteration algorithm is executed offline, and therefore 
the execution complexity is not a significant concern. 

IV. EXPERIMENTAL RESULTS 

The HEV model used for this study is based on Honda 
Insight Hybrid model developed in ADVISOR [14]. Key 
parameters are summarized in Table I. We compare our 
proposed optimal power management policy derived from the 
MDP model with the rule-based power management policy 
described in [7]. 

First, we compare the value functions as defined in (15) 
of the proposed policy 𝜋!"# and the rule-based policy 𝜋!". 
The value function 𝑉! 𝑠  of a policy 𝜋 demonstrates the 
negative of the expected discounted sum of fuel consumption 
in the long run, which is to be maximized by 𝜋!"# and 𝜋!". It 
is equivalent to minimizing the fuel consumption. We 
compare avg! 𝑉! 𝑠  value, which is the average value 
function over all states, of 𝜋!"# and 𝜋!". If a discount rate 
𝛾 = 0.9 in (15) is used, we obtain avg! 𝑉!

!"# 𝑠 = −3.41 
and avg! 𝑉!

!" 𝑠 = −5.53, which shows the proposed 

Policy Iteration Algorithm 
1. Initialization 
𝑉 𝑠!,! ∈ ℛ and 𝜋 𝑠!,! ∈ 𝒜!!,! arbitrarily for all 𝑠!,! ∈ 𝒮 

2. Policy Evaluation 
Repeat 

∆← 0  
For each 𝑠!,! ∈ 𝒮: 

𝑣 ← 𝑉 𝑠!,!    

𝑉 𝑠!,! ← 𝑷 !,! , !!,!!
! !!,! ∙ 𝑹 !,!

! !!,! + 𝛾 ∙!!,!!

𝑉 𝑠!!,!!     

∆← max ∆, |𝑣 − 𝑉 𝑠!,! |   
Until ∆< 𝜃 (a small positive number) 

3. Policy Improvement 
𝑝𝑜𝑙𝑖𝑐𝑦_𝑠𝑡𝑎𝑏𝑙𝑒 ← 𝑡𝑟𝑢𝑒  
For each 𝑠!,! ∈ 𝒮: 

𝑏 ← 𝜋 𝑠!,!   
𝜋 𝑠!,!
← arg  max

!
𝑷 !,! , !!,!!
! ∙ 𝑹 !,!

! + 𝛾 ∙ 𝑉 𝑠!!,!!
!!,!!

 

If 𝑏 ≠ 𝜋 𝑠!,! , then 𝑝𝑜𝑙𝑖𝑐𝑦_𝑠𝑡𝑎𝑏𝑙𝑒 ← 𝑓𝑎𝑙𝑠𝑒 
If 𝑝𝑜𝑙𝑖𝑐𝑦_𝑠𝑡𝑎𝑏𝑙𝑒, then stop; else go to 2 

 



  

policy achieves 38.3% reduction in fuel consumption. If a 
discount rate 𝛾 = 0.95 is used, we obtain avg! 𝑉!

!"# 𝑠 =
−6.63 and avg! 𝑉!

!" 𝑠 = −10.46, which shows the 
proposed policy achieves 36.6% reduction in fuel 
consumption. Overall, the proposed policy outperforms the 
rule-based policy in terms of value function. 

Next, we test the fuel consumption of the proposed policy 
and rule-based policy on real-world and testing driving 
cycles. The fuel consumptions over some driving cycles are 
summarized in Table II. We can observe that the proposed 
policy always results in lower fuel consumption and the 
maximum reduction in fuel consumption is as high as 
46.93%. We plot the ICE operation points over a driving 
cycle on the ICE fuel efficiency map in Fig. 4. The “x” points 
are from the rule-based policy and the “o” points are from our 
proposed policy. We can observe that the operation points 
from the proposed policy are more concentrated on the high 
efficiency region of the ICE. Furthermore, we compare the 
overall fuel economy of the proposed policy and the rule-
based policy over 17 real-world and testing driving cycles 
with a total driving time of five hours and both local and 
highway driving conditions. The rule-based policy achieves a 
MPG value of 46 and the proposed policy achieves a MPG 
value of 57, demonstrating the proposed policy improves the 
fuel economy by 23.9%. 

V. CONCLUSION 
In contrast to conventional internal combustion engine 

(ICE) propelled vehicles, hybrid electric vehicles (HEVs) 
can achieve both higher fuel economy and lower pollutant 
emissions. The HEV features a hybrid propulsion system 
consisting of one ICE and one or more electric motors 
(EMs). The use of both ICE and EM increases the 
complexity of HEV power management and advanced power 
management policy is required for achieving higher 
performance and lower fuel consumption. This work aims at 
minimizing the HEV fuel consumption over any driving 
cycles, the complete information of which is not available to 
the HEV controller in advance. This work proposes to model 
the HEV power management problem as a Markov decision 
process (MDP) and derives the optimal power management 
policy using the policy iteration technique.  
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TABLE I. HONDA INSIGHT HYBRID COMPONENT PARAMETERS. 
Vehicle 𝐶!  0.32 ICE Max. power (kW) 50 
Vehicle 𝐴!  (m2) 1.48 ICE Max. Torque (Nm) 89.5 
Vehicle 𝑟!!  (m) 0.3 EM Max. power (kW) 10 
Vehicle 𝑚 (kg) 1000 Battery capacity (Ah) 6.5 
Reduction gear ratio 𝜌!"# 1.4 Battery voltage (V) 144 
 

 
Figure 4. ICE operation points from proposed and rule-based policies. 

TABLE II. FUEL CONSUMPTION: PROPOSED AND RULE-BASED POLICIES. 
Driving Cycle Rule-based Policy Proposed Policy Reduction 

HWFET 339.94 g 313.57 g 7.75 % 
IM240 92.20 g 48.93 g 46.93 % 
LA92 585.26 g 353.17 g 39.66 % 

NEDC 319.71 g 202.49 g 36.66 % 
NYCC 86.06 g 50.94 g 40.81 % 
UDDS 363.95 g 204.86 g 43.71 % 

 


