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OPLE: A Heuristic Custom Instruction Selection Algorithm Based
on Partitioning and Local Exploration of Application Dataflow Graphs
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In this article, a heuristic custom instruction (CI) selection algorithm is presented. The proposed algorithm,
which is called OPLE for “Optimization based on Partitioning and Local Exploration,” uses a combination of
greedy and optimal optimization methods. It searches for the near-optimal solution by reducing the search
space based on partitioning the identified CI set. The partitioning of the identified set guarantees the success
of the algorithm independent of the size of the identified set. First, the algorithm finds the near-optimal CIs
from the candidate CIs for each part. Next, the suggested CIs from different parts are combined to determine
the final selected CI set. To improve the set of the selected CIs, the solution is evolved by calling the algorithm
iteratively. The efficacy of the algorithm is assessed by comparing its performance to those of optimal and
nonoptimal methods. A comparative study is performed for a number of benchmarks under different area
budgets and I/O constraints. The results reveal higher speedups for the OPLE algorithm, especially for
larger identified candidate sets and/or small area budgets compared to those of the nonoptimal solutions.
Compared to the nonoptimal techniques, the proposed algorithm provides 30% higher speedup improvement
on average. The maximum improvement is 117%. The results also demonstrate that in many cases OPLE is
able to find the optimal solution.
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1. INTRODUCTION

Embedded applications generally require high speed, low-power consumption, high
flexibility, and low cost systems. Extensible processors have emerged in the field of
embedded computing as a promising approach to remedy many shortcomings of ASICs
and general-purpose processors [Keutzer et al. 2002; Gonzalez 2000].

Application-specific instruction set extension is another effective strategy to enhance
the efficiency of embedded processors in terms of performance and energy consumption.
By creating application-specific extensions to the Instruction Set Architecture (ISA) of
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a base processor, the critical portions of an application Dataflow Graph (DFG) can be ac-
celerated. The extension includes Custom Functional Units (CFUs) that implement the
Custom Instructions (CIs). The approach provides more instruction level parallelism
for reducing the latency of the critical paths as well as the number of intermediate
results to be written in the register file [Pozzi et al. 2006; Galuzzi and Bertels 2011]. It
also enhances the energy efficiency by reducing the access to different components of
the base processor such as cache memories, register file, and ALU [Galuzzi and Bertels
2011; Biswas et al. 2007; Kamal et al. 2010]. In addition, the method could provide us
with the required flexibility.

In the case of the extensible processor approach, the success depends on providing a
highly automated design flow. There are two main steps in the design flow of customized
processors, which are identification and selection of CIs. These steps are costly and
time consuming. Many commercial and academic approaches have been introduced to
automate these phases (see, e.g., Galuzzi and Bertels [2011]). The tools identify and
select the set of CIs under different microarchitectural constraints such as power and
area budget.

The aim of the selection phase is to find the best CIs from the CI candidate set that
was generated in the identification phase. Hence, an optimization problem should be
solved in this phase. Due to the existence of possible conflicts between the CIs, the se-
lection optimization problem is NP-complete [Pozzi et al. 2006; Bonzini and Pozzi 2008].
Therefore, there are two general approaches for the CI selection: optimal and nonop-
timal (see, e.g., Galuzzi and Bertels [2011] and Bonzini and Pozzi [2008]). The former
is an exact method, which attempts to find the optimal CI set by searching the whole
search space. The method becomes intractable for many real applications. The remedy
is to prune the search space by removing the candidate solutions that are not feasible
[Lu et al. 2009; Clark et al. 2005], giving rise to nonoptimal approaches, which are
much faster than the optimal technique, but may not be able to find the optimal set.

In this article, we present a custom instruction selection algorithm for choosing
near-optimal CIs for a given application. First, the algorithm divides the search space
into small parts based on the DFG of the input application. Next, based on the nodes
inside a part, a Greedy technique suggests a candidate CI set for the part. Since
there are CIs for other parts that are similar to the CIs of this part (recurrent CIs),
members of the candidate set for each part are extended by using the recurrent CIs.
The optimal solution of the candidate set for the part is extracted quickly by using an
optimal algorithm. Next, solutions for different parts are collected to form the complete
candidate set for the application. As the last step in this iteration, an optimal algorithm
is used to find the best CI set from this integrated set. This flow is iteratively called
to improve the selected CI set. In the next iteration, it is guaranteed that some of the
best selected CIs in the current iteration are augmented to the candidate CI set of the
corresponding part.

The main advantage of the proposed method is that its efficacy is not a strong func-
tion of the size of the identified CI set. In addition, it supports realistic constraints
such as the maximum number of the selected CIs and the area constraint. Moreover,
to achieve higher speedup with smaller area usage, the recurrency of CIs is consid-
ered. The remainder of this article is organized as follows. In Section 2, the related
works are briefly reviewed, while the ISA extension flow is described in Section 3.
Section 4 explains the proposed selection algorithm. Experimental results are dis-
cussed in Section 5. Finally, Section 6 concludes the article.

2. RELATED WORKS

As mentioned previously, the ASIP design flow is divided into two CI identification and
selection phases. Since the focus of this work is in the area of the selection phase, first,
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some of the works in the area of the identification phase are reviewed, while most of
the relevant works in the field of selection phase are then covered.

2.1. Identification

There are many works in the field of CI identification (see, e.g., Pozzi et al. [2006],
Kamal et al. [2010], Atasu et al. [2012], Verma et al. [2007, 2010], and Pothineni et al.
[2008]). It should be noted that while these works include both the identification and
selection phases, their novelties are on the identification phase and they have either
borrowed the selection technique from other works or used a simple iterative approach.
In Atasu et al. [2012], two approaches to enumerate the maximum convex subgraphs of
an input Direct Acyclic Graph (DAG) were proposed. For the first approach, the Integer
Linear Programming (ILP) technique was used to formulate the enumeration, while
in the second approach, some techniques were proposed to increase the speed of the
CI enumeration. The techniques include the compaction of the graph representation
and building a search tree tat is pruned through applying constraint propagation. In
Verma et al. [2007] and Verma et al. [2010], a fast identification CI method has been
proposed that is based on the clique enumeration. The proposed method performs some
pruning before and after the clique enumeration to reduce the runtime.

An algorithm for identifying all the legal patterns under different microarchitectural
constraints was proposed in Pothineni et al. [2008]. The method reduced the runtime
of the identification by enumerating the patterns in the increasing order of sizes and
also by making a relation between the characteristics of a (k + 1)-node pattern with
the characteristics of its k-node subgraphs. The runtime complexity of different ap-
proaches for the CI identification has been studied in Reddington and Atasu [2012].
The study shows that the problem of the maximal convex subgraph enumeration has
an exponential time complexity in general, while by defining some constraints such as
an I/O constraint, the runtime of the enumeration becomes polynomial.

In Biswas et al. [2007], an architectural solution to mitigate the overhead of the
memory access of Application-specific Functional Unit (AFU) was proposed. Hence, in
the cases where this architectural technique is used, the memory access nodes will
be removed from the list of the forbidden nodes obtained in the identification phase.
The work described in Karuri et al. [2007] deals with proposing another architectural
solution to mitigate the I/O problem during the CI identification phase by relaxing the
I/O constraint. Obviously, the relaxation results in increasing the number of candidate
CIs.

2.2. Selection

A key part of the ISA extension is the selection phase where the best CIs are selected
from a pool of candidate CIs. The objective of the selection phase in most cases is to
select the CIs that provide the highest speedup. This selection may be performed with
or without considering a predefined area budget. Note that there are many works in the
field of CI identification (for a survey of these works, see Galuzzi and Bertels [2011]).
Because these works are out of the scope of this work, they are not reviewed in this
part.

Several research efforts have been devoted to the problem of the CI selection. In
Bonzini and Pozzi [2008] exact and approximate algorithms for solving the coverage and
recurrence problems of candidate extensions were presented. The authors described
an exact search technique that used a branch-and-bound algorithm in conjunction
with a Greedy (approximate) method. The use of the branch-and-bound technique,
which is an exhaustive approach, is not practical in real applications with large DFG
sizes. Hence, the authors also presented a method that uses branch-and-bound in
combination with a Greedy approach to speed up the process of finding the solution
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while not being trapped in a local optimum. However, the applicability of the proposed
near-optimal method depends on the specified maximum number of selected CIs. This
means that, by increasing this maximum number, the runtime of the algorithm is
increased exponentially.

In Clark et al. [2006], the design flow of the ISA extension starts by partitioning the
DFG of the application into several subgraphs where each is considered as a candidate
CI. Next, the set of candidate CIs is pruned through subgraph isomorphism check,
which reduces the CI selection search space. In the final phase, the CIs are selected
by solving a unate covering problem. The unate covering algorithm is, however, a
branch-and-bound technique that it is too expensive for real applications. To make the
branch-and-bound technique practical, the authors prune search space by using two
techniques. One technique is based on a predefined maximum number of selected CIs,
while the other one is based on the speedup achieved by the CIs (i.e., the CI speedup is
used as the merit function). It should be noted that the second pruning method is only
applicable in a design flow where the objective functions are based on the cycle saving.

In Lu et al. [2009], a technique for selecting CIs for multi-issue processors was
presented. The method, which relied on a branch-and-bound algorithm, made use
of a few pruning techniques to ensure that the proposed solution approach re-
mained tractable. The pruning methods are useful only for multi-issue processors. In
Scharwaechter et al. [2011], a complete design flow of the ISA extension was described.
In the selection phase, a quadric optimization problem was used to select the best CIs.
The authors mapped the CI selection problem to the Partitioned Boolean Quadratic
Problem (PBQP). The proposed method is not applicable in cases of large applications.

An automatic framework for designing a customized processor, which deals with the
instruction set identification and CI selection, is described in Clark et al. [2005]. In
this work, the CI selection is performed based on the dynamic programming. A CI
selection method for realizing on FPGA devices was presented in Lam et al. [2009].
The advantage of this approach was in fast and accurate estimation of the area and
cycle saving of the CIs. In Pan and Mitra [2004] the authors suggested ILP and Greedy
algorithms for the selection phase. As ILP is an exact technique; its usage becomes
inapplicable for large problems. Similar to Pan and Mitra [2004], an ISA extension
flow called CHIPS framework [Atasu et al. 2008] has used the ILP technique to select
the optimum CIs.

In Liao and Devadas [1997], a linear programming relaxation technique for solving
the binate covering was presented. The goal of this technique was to select the sub-
graphs that cover most parts of the input DFG. This method is not able to detect the
recurrence of any templates of CIs in the input DFGs. In the heuristic method proposed
in Li et al. [2009], the CIs are selected based on a merit function, which is a tuple of
two ratios. The ratios are the cycle saving to the area usage and the cycle saving to
the amount of conflicts with other CIs. The proposed method selects CIs with a higher
cycle saving, smaller area, and fewer conflicts. In Peymandoust et al. [2003] an alge-
braic technique to select the CIs has been proposed. For selecting a CI, the method uses
the Maple tool to do algebraic operations. The proposed selection method is an exact
method based on the branch-and-bound algorithm providing optimal solutions. This
approach may not be used for large problem sizes. To make the approach applicable
for larger problems, the authors reduce the search space by using a bounding function
that may yield nonoptimal solution. In Arora et al. [2010], a functional matching tech-
nique has been proposed that leads to finding more isomorphic CIs. In the technique
presented in Arora et al. [2010], the custom instruction selection is performed using
graph covering by finding a large set of equivalent pattern graphs. It means that, after
determining the largest set of matched (isomorphism) subgraphs, a subset of patterns
of this set that are mutually disjoint, is selected.
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In this article, we present a heuristic selection method that attempts to divide the
set of the identified CIs into smaller subsets. Next, an optimal approach is used to
select the optimal CIs from these subsets. Optimal CIs are subsequently combined to
form an integrated CI set. An optimal algorithm is used to find the best CI set for the
ISA extension from this integrated set. This process is repeated to improve the speedup
of the selected CIs. In contrast to optimal approaches, which cannot be used for large
problems, the proposed method can be applied to solve large problem instances. In ad-
dition, compared to Greedy (nonoptimal approaches), the proposed technique provides
solutions with higher cycle saving (with or without considering the area budget). The
features of our proposed Optimization based on Partitioning and Local Exploration
(OPLE) algorithm compared to the previous CI selection algorithms include

(1) scalability;
(2) closer solution to the optimal one leading to a higher speedup;
(3) considering recurrent CIs; and
(4) considering area constraint.

Also, it should be noted that the computational complexity of the CI identification
is also high, which is a barrier to reduce the total runtime of the ISA extension flow.
There have been some works proposing solutions to reduce the runtime of the CI
identification phase as well (e.g., see Kamal et al. [2010], Bonzini and Pozzi [2007],
and Xiao and Casseau [2011]). These techniques may be used in conjunction with the
selection method proposed in this article. Finally, the differences between the reviewed
works with those of our work are highlighted in Table I.

3. ISA EXTENSION DESIGN FLOW

Figure 1 shows the ISA extension design flow. The flow starts by the CI identification
phase. In this phase, all subgraphs of the input application DFG that meet the specified
constraints (e.g., I/O, propagation delay, convexity) are identified. Note that a subgraph
is architecturally feasible if its inputs are available at the time of executing that
operation, which is only possible if the subgraph is convex. (A subgraph S is called
convex when there does not exist any path from a node u ∈ S to another node v ∈ S
that includes a node w �∈ S.) Moreover, there are some node types (e.g., Load, Store) in
the DFG of the application that are excluded from the identified CIs. These nodes are
called forbidden nodes [Pozzi et al. 2006]. In this article, all other nodes in the DFG
of the application are called acceptable nodes. Note that the I/O constraint defines the
maximum input and output ports of the selected CIs.

Among the identified subgraphs (CIs), there may be similar subgraphs based on
the functional and structural isomorphism [Arora et al. 2010; Schmidt and Druffel
1976]. These CIs can be executed on one CFU, which results in less area overhead and
better area utilization. Such similar subgraphs are identified and placed into CI groups
[Bonzini and Pozzi 2008; Clark et al. 2006].

If a node of the DFG is included in two CIs, these two CIs are considered to have
overlap with one another. Because any node in the DFG of the input application must
be uniquely executed by one CI, all CIs that have overlaps with a selected CI are
subsequently removed from the list of the identified CIs in the selection phase. Based
on the overlap between the CIs, a conflict graph is constructed [Galuzzi and Bertels
2011]. The nodes in this graph denote the CIs, whereas an edge between two nodes
shows that these CIs have overlap. Removing conflicting CIs causes changes in the
members of CI groups, which consequently results in changes in the overall speedup
of each CI group.

Finally, in the selection phase, the best CIs are extracted from the candidate set.
The CIs are selected by considering an objective function specified by the designer.
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Table I. Comparison of the Features of the Previous Works with Those of the OPLE

Reference
Focuses

on∗ Scalability

Chance of
finding the

optimal solution
Support

Recurrent CIs
Area

Constraint
Pozzi et al. [2006] I ✗ Low ✗ �
Biswas et al. [2007] I ✗ Low ✗ �
Kamal et al. [2010] I � Low ✗ �
Atasu et al. [2012] I ✗ High ✗ �
Verma et al. [2007] I � Low ✗ ✗

Vermaet al. [2010] I � Low ✗ ✗

Pothineni et al.
[2008]

1 � Low ✗ ✗

Karuri et al. [2007] I − − − −
Bonzini and Pozzi
[2008] (Optimal)

S ✗ High � ✗

Bonzini and Pozzi
[2008] (Greedy)

S � Low � �

Clark et al. [2006] S ✗ High ✗ �
Lu et al. [2009] S ✗ High ✗ ✗

Scharwaechter
et al. [2011]

S ✗ High ✗ �

Clark et al. [2005] I/S � Low ✗ �
Siew-Kei et al.
[2009]

S � Low ✗ �

Pan and Mitra
[2004]

S ✗ Htgh � �

Liao and Devadas
[1997]

S ✗ High ✗ ✗

Atasu et al. [2008] S ✗ High � �
Peymandoust et al.
[2003]

S ✗ High ✗ ✗

Li et al. [2009] S � Low � �
Arora et al. [2010] M � Low � ✗

OPLE S � Medium � �
∗I: Identification phase. S: Selection phase. M: Matching (generating similar groups) phase.

Fig. 1. The ISA extension flow.
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Normally, Cycle Saving (CS) is the main objective in the ISA extension. The CS may
be computed as follows [Kamal et al. 2011]:

CSi = freq ×
(

#CIi.SW − CIi.IO Penalty −
⌈

CIi.CriticalPathDelay
Clock Period

⌉)
, (1)

where CS-i is the cycle saving of the ith CI (CIi), freq is the execution frequency of the
basic block to which CIi belongs, and #CIi.SW is the number of clock cycles of the base
processor that the CI needs in order to be executed. CIi.IO_Penalty denotes the number
of extra accesses for reading/writing data to/from the register file (when the number of
I/O ports of the CI is larger than the number of read/write ports of the register file) and
the last fractional term calculates the number of clock cycles needed to execute the CIi
on the CFU (note that CIs can have multicycle as well as single cycle operations). In the
fractional term, CIi.CriticalPathDelay denotes the propagation delay of the critical path
of the CI, whereas Clock Period is the desired clock period for the extended processor.

Finally, we formulate the instruction selection problem as

Maximize
|SelectedCIGroups|∑

i=1

CSCIGroupi , (2)

while

∀CIi, CIj ∈ {SelectedCI Groups} , CIi ∩ CIj = ∅ (3)

|Selected CI Groups|∑
i=1

AreaCI Groupi < AreaConstraint, (4)

where (3) captures the no-overlap constraint. Note that the area constraint is an op-
tional constraint, which may or may not be included in the problem. Also, we have
assumed that constraints such as I/O and convexity were considered during the iden-
tification phase.

4. PROPOSED SELECTION ALGORITHM

The method proposed in this work, which finds the near-optimal solution, is based
on the concept of divide and conquer. The problem is partitioned based on the input
DFG of the application. Each part covers some acceptable (unforbidden) nodes. We can
define some set of interest for each node. The set, which is called ParentCI set, contains
all of the identified CIs that have this node in common. Figure 2 shows an example of
a DFG with some corresponding identified CIs. For this example, the ParentCI set of
node A is {CI1, CI2, CI4}, while members of the ParentCI set of node B are CI2, CI4,
and CI5.

As the first step of generating the candidate set, the ParentCI sets for all acceptable
nodes are extracted. Next, for each part, a candidate CI set is generated from the
ParentCI sets of the part. From each ParentCI set, only one CI is considered to be
added to the candidate set. The reason is that due to the overlap between the CIs, only
one of them has the chance of being selected. Also, the recurrence count of the CIs is
considered to expand the candidate CI set. The details of generating the candidate CI
set along with an example will be provided in Section 4.3.

Now, the best set of CIs for each proposed candidate set is extracted by using the ILP
technique. Note that since, in our approach, we select the candidate set to be small,
any other exact technique may be invoked for this optimization problem. Then, the
optimal CIs obtained for all the parts are combined to form an integrated candidate
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Fig. 2. A DFG of some identified CIs from the DFG.

set. By using an optimal technique, the best CIs from all parts are extracted, con-
sidering the predefined area budget. At this point, a single iteration of the proposed
algorithm is completed. This process is repeated to improve the speed enhancement
of the extensible processor. For this purpose, in the second iteration, the candidate CI
set of all parts are updated based on the selected CIs from the integrated set of the
previous iteration (see Section 4.1). This iterative procedure will be terminated when
the improvement in the speedup does not increase after a given number of iterations.
We call this algorithm the OPLE CI Selection algorithm. In the following, the details
of the algorithm implementation are described.

4.1. OPLE Method

A Pseudocode and flowchart of the proposed algorithm are given in Figure 3. The input
arguments of the algorithm are the DFG of the input application, the maximum number
of acceptable nodes in each part (denoted by MaxPartSize), the maximum number of
CIs in the candidate set of each part (denoted by MaxCSSize), and the area budget
(denoted by Area). The algorithm starts by extracting the ParentCI sets by calling
ExtractParentCISets() (line 4). In this function, for each unforbidden node of a basic
block, a ParentCI set is formed. Each set is formed by including the CIs that have this
node as one of their nodes. The members of the ParentCI sets are sorted based on their
cycle saving values. Next, the input DFG is partitioned by calling DoPartitioning()
function (line 5), which divides the input DFG into parts with almost the same size.
The details of this function will be described in the next subsection.

After partitioning, the main loop of the proposed method (lines 9–29) starts. First, if
the area constraint is defined, the area budget will be determined for each part. Let us
denote the number of part by NumberOfParts. Initially, the area budget for each part
(denoted by PABudget) is set to Area/NumberOfParts (line 11). Since it is not known
a priori that the optimal CIs selected from the integrated set at the end of each iter-
ation belong to which part and how much of the area of that part is occupied, we can
increase the area budget to a value more than Area/NumberOfParts. While this could
have been done for initial iterations, to force the algorithm to select small CIs with
high speedups, the area budgets of the parts are increased gradually. This increase is
performed after a given number of cycles (denoted by PABudgetUpdateInterval) and
with a ratio of AreaIncrement. Our simulations show that an AreaIncrement value
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Fig. 3. (a) Pseudocode and (b) flowchart of the OPLE algorithm.

equal to 0.5 provides excellent results. This iterative procedure is continued until the
same maximum speedup is achieved for a prespecified number of consecutive iterations
(line 9). This is the termination condition of the algorithm. We denote this number by
IterCountSpeedupFixed. Note that the algorithm keeps the same PABudget for each
part for a number of iterations given by PABudgetUpdateInterval. If the condition of
having the same maximum speedup occurs at a large number of iterations, then the
increase in the PABudget may exceed the total area constraint (Area). To avoid this
situation, areas of the parts are clamped to Area (lines 14–16). Note that PABudgetUp-
dateInterval is defined as

PABudgetUpdateInterval = AreaIncrement × InterCountSpeedupFixed
NumberOfparts

(5)

This equation guarantees that under the case that the speedup of the selected CIs is
not changed during all the iterations, the area budget for each part does not exceed the
maximum area budget constraint.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 72, Publication date: September 2015.



72:10 M. Kamal et al.

Fig. 4. Pseudocode of the SelectOptimumCIs() function.

Fig. 5. Pseudocode of the UpdateCSOfPart() function.

For a given PABudget, the candidate set for each part is determined by calling
the function FindCSForPart() (see Section 4.3). The output of this function, which
is the candidate set of the part along with its PABudget, is sent to the function
SelectOptimumCIs() (line 20). In this function, by using an optimum algorithm,
the best CIs of the candidate set of the part are extracted. Figure 4 provides the
pseudocode of the SelectOptimumCIs() where ILP is used as the optimum selection
algorithm. Note that before calling the algorithm, overlaps among the CIs must be
determined. If the conflict graph of the identified CIs was extracted before the selection
phase, calling the function FindConflict() (line 3) would not be needed. It should be
noted that when the number of the identified CIs is large, storing the whole conflict
graph in the memory is not practical. Hence, we should call FindConflict() for each
candidate set in each iteration of the proposed algorithm.

After finding the best CIs of the candidate sets, the selected CIs are integrated into
another set, which is used to find the best CIs considering Area as the area budget
(when it is provided). In the last step, if a CI in the candidate CI set of a part is not
selected (i.e., it does not belong to SelectedCIs), it will be removed from the candidate
CI set of the corresponding part by calling UpdateCSOfPart() (see Figure 5).

4.2. Partitioning Method

The proposed selection method divides the problem into a number of subproblems.
Figure 6 provides the pseudocode of the proposed partitioning scheme where the par-
tition points (partitioning boundaries) are selected based on the basic blocks. Based on
MaxPartSize, we group the basic blocks into different parts. In the case of basic blocks
with a number of acceptable nodes higher than MaxPartSize, we use the Fiduccia-
Mattheyses (F-M) partitioning method [Fiduccia and Mattheyses 1982], which is a
well-known, linear time heuristic technique for solving the partitioning problem. In this
method, the input graph is divided into two parts such that the numbers of edges cross-
ing the parts is minimized. Minimizing the number of the adjacent nodes, which are
connected by an edge, reduces the probability of overlapping between the selected CIs.

Hence, our DFG partitioning algorithm inspects sizes of the basic blocks one by one.
If the number of the acceptable nodes of the basic block is more than the MaxPartSize,
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Fig. 6. Pseudocode of the DoPartitioning() function.

the F-M partitioning method is invoked (lines 4–7). In this case, the basic block is
partitioned into �log2( BB.NodeCount

MaxPartSize )	 partitions. Note that the F-M technique divides a
graph into two subgraphs and, if needed, continues to successively divide each of these
two subgraphs into smaller subgraphs. Therefore, the number of the parts must be a
value, which is a power of 2. Additionally, if the number of the acceptable nodes of the
basic block is smaller than the MaxPartSize and the current part has sufficient free
space for nodes of the current basic block, the basic block is added to the part (lines 8
and 9); otherwise, a new part is created to hold the basic block (line 11).

4.3. Generating Candidate Set for Parts

One of the important parts of the proposed selection algorithm is generating the can-
didate set for each part. The task is performed by function FindCSForPart(). For
each acceptable node of the part, this function determines a CI with the highest cycle
saving from the ParentCI set of the node. Note that a CI may be the member of more
than one ParentCI set. Hence, before adding a CI to the candidate set, the set must
be checked to ensure that the CI is not a member of the candidate set. Additionally, if
the CI corresponding to a node was selected as one of the best selected CIs from the
integrated set in the previous iteration, then it would be included in the candidate set
of this part. Moreover, we are not allowed to present a new candidate CI for this node.
In fact, this method provides us with a combination of the best selected CIs obtained at
the end of previous algorithm iteration plus some new CIs. This combination prevents
us from missing the best solution found so far (by keeping the previous best ones) while
not being trapped in local optimal solutions (by adding new CIs).

Also, considering the recurrent CIs in the selection phase leads to increasing the
speedup of the selected CFU under a predefined area budget. Therefore, in the last
part of this function, some additional CIs that are in the CI groups with the candidate
CI set are added to the final candidate set for the part.

The pseudocode and flowchart for the function FindCSForPart() are given in Fig-
ure 7 and Figure 8, respectively. The selection process starts (line 3 of Figure 7) by
generating the list of the CI groups of the CIs selected in the previous iteration (see
line 23 of Figure 3). This list is denoted by CIGIndex. Next, for each acceptable node of
the part, one CI is selected from the beginning of ParentCI set (lines 4–14 of Figure 7).
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Fig. 7. Pseudocode of the FindCSForPart() function.

Fig. 8. Flowchart of the FindCSForPart() function.
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As mentioned previously, before the iteration starts, the ParentCI set is sorted based on
the CI cycle savings. If a suggested CI exists in the candidate set, then this CI will be
moved to the end of the set and another CI from the head of the set will be considered
(line 7 of Figure 7). This changes the order in which the CIs are sorted in the ParentCI
set of this node. Additionally, we move the added CI to the end of the ParentCI set
to provide the opportunity for the other CIs to be selected in subsequent iterations.
This also reduces the chance of being trapped in a local optimum point. Finally, if a
suggested CI from a node in the previous round is selected as the final selected CI
list, then this node will not be allowed to suggest a CI from its ParentCI set (line 5 of
Figure 7).

Having added the CIs based on the ParentCI set of nodes, we also augment some
other CIs considering the CI groups in the candidate set (lines 15–19 of Figure 7). The
CI groups included in the CIGIndex set are considered one by one. From each CI group,
the best CI that is not a member of the candidate set and also has fewer conflicts with
the CIs in the candidate set is added to the candidate set (line 18 of Figure 7). For
this purpose, we select the CI that has higher value of CS/|Conflicts|. The process of
adding CIs from the CI groups continues until the candidate set becomes full. Since
we use an optimal selection algorithm to find the best CIs for each part, the size of the
candidate set must not be too large. The size of the candidate set is larger than the
number of the acceptable nodes of the part. The upper limit of the size is determined
based on the maximum number of CIs that we wish to include from the CI groups.

We illustrate the process of finding the candidate set for the part by using the example
given in Figure 9. We assume that the part has five acceptable nodes. The members of
the ParentCI sets are shown in the figure. The size of the candidate CI set is denoted
by MaxCSSize, which is equal to seven in this example. We assume that CI1 proposed
by node B has been selected as the final selected CI in a previous iteration, and hence,
no CI will be proposed for node B.

First, from each ParentCI set, a CI is suggested to be added to the candidate set and
the orders of the members in the ParentCI sets are updated. For example, in the case
of node A, CI2 is suggested to be added to the candidate set. Because the candidate set
does not have CI2 as a member, CI2 is added to the set, and the CI2 is moved to the
end of the ParentCI set for this node. For the case of node C, CI2 from the head of the
ParentCI set already exists in the candidate set. Hence, this CI is moved to the end of
the set for the node C. The next CI in this set is CI4, which is added to the candidate
set and is moved to the end of the ParentCI set. Note that the process of adding CIs is
done consecutively from node A to node E. After adding the CIs, members of the sets
for the selected CI groups (denoted by CIGIndex) are updated. Finally, the CIs with
higher cycle savings and fewer conflicts with the CIs in the candidate sets are added.
In this example, CI13 and CI19, which belong to CI groups 1 and 2, are suggested to
be added to the candidate set. Adding these two CIs to the set makes the candidate set
full, completing the process of adding CIs to the candidate set.

5. RESULTS AND DISCUSSION

To assess the efficacy of the proposed selection algorithm, we have chosen eight bench-
marks from mibench [Guthaus et al. 2001], MediaBench [Lee et al. 1997], Packetbench
[Ramaswamy and Wolf 2003], and SNU-RT [SNU 2015] benchmark suits. The size of
each benchmark and also the number of the identified CIs under three different I/O
constraints are reported in Table II. Each benchmark was profiled by running on the
instruction set simulator of an in-order MIPS processor, and the DFGs of these bench-
marks were generated based on the operators of this machine model. Note that the CIs
of each benchmark were enumerated by using the multicut identification algorithm
proposed in Pozzi et al. [2006], and the CI groups were extracted based on the method

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 4, Article 72, Publication date: September 2015.



72:14 M. Kamal et al.

Fig. 9. An example of FindCSForPart() function process.

Table II. Feature of the Benchmarks

∗N: Node counts of the application, UN: Acceptable Nodes count of the application, CI: Identified CIs,
CIG: CI Group, RA: Reference Area.

proposed in Clark et al. [2006]. To estimate the delay and area usage of each CI, we used
the delays and areas of its operations obtained by synthesizing their Register-Transfer
Level (RTL) implementation to the gate-level netlists in a 45nm technology [FreePDK
2010]. In Table III, we provide the details of the components considered as the basic
operators for the DFG of the benchmarks. The area of the CIs, which was normalized
to the size of a NAND2 in the 45nm technology, was considered as the summation of
the areas of their operations. The delays of the CIs were calculated based on the delay
of the operators in the critical path.
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Table III. The Delays and Areas of the Basic Operations

Primitive Name Area Delay (ns)
SUB 225 0.5
ADD 200 0.5

SHR/SHL 326 0.19
EQT/NEQ 87 0.16
GRT/LKS 115 0.21

AND 41 0.04
OR 42 0.05

XOR 64 0.05

The proposed OPLE selection algorithm has been implemented in C# while Gurobi
[Gurobi 2015] was used as the ILP solver. The performance of the algorithm is compared
to those of the Greedy selection method proposed in Bonzini and Pozzi [2008] (denoted
by Greedy), the heuristic method proposed in Li et al. [2009] (denoted by Heuristic),
and pure ILP technique. The Greedy and Heuristic methods were implemented using
C# language, and Gurobi was used for the pure ILP method. Note that the proposed
methods in Bonzini and Pozzi [2008] and Li et al. [2009] are applicable for large problem
sizes, which can support recurrent CI selection and area constraint.

The selection algorithms were run on a machine with the i7 Intel processor and the
clock speed of 2.66GHz. This processor was able to run eight threads simultaneously.
In the cases of the ILP and Heuristic method, before the selection, the conflict graph
had to be generated, which required a huge runtime. Hence, for the ILP, Heuristic, and
OPLE (for each part), the process of finding the conflict graphs was implemented by
a multithreaded programming method. Note that in the case of the Greedy method,
during the selection phase, the CIs that had overlaps with the selected CIs were iden-
tified and subsequently eliminated from the candidate set. Therefore, there was no
need to generate the conflict graph. Also, note that the Gurobi ILP solver made use of
the multithreading technique. In the OPLE selection algorithm, the function Select-
OptimumCIs() was also called by the multithreading approach.

A comparative study for the selection algorithms was performed under five different
area constraints. The area constraints were 10%, 20%, 30%, 40%, and 50% of a reference
area. The reference area was determined based on the area usage of the CFU when the
CIs were selected by using the Greedy method without considering any area budget.
In addition, we considered the case of no area constraint. The reference areas in units
of equivalent two-input NAND gates for different cases are reported in Table II. Note
that by decreasing the I/O constraint, the size of the identified CIs may be reduced,
which leads to reducing the opportunity for selecting large CIs. Hence, by decreasing
the I/O constraint, the area usage of the selected CFU may be reduced. On the other
hand, the chance of selecting large CIs is reduced. However, in some cases, the number
of the selected CIs that are small may increase due to less conflict between candidate
CIs. The increase in the number of selected CIs may lead to some area increase for
these cases.

Finally, notice that in the OPLE algorithm, we assumed the value of Iter-
CountSpeedupFixed to be 80 (recall that this parameter is used to determine the termi-
nation condition). The speedups of the extensible processors under different selection
algorithms when the I/O constraint was 4/4 for benchmarks are reported in Table IV.
Note that WNAB corresponds to the case of selecting CIs With No Area Budget. Also,
in the case of OPLE, the CIs were extracted under four tuples of (PS, CSS) where
PS stands for the Part Size and CSS stands for the Candidate Set Size. A comparison
between the speedup of the OPLE and Greedy shows that, in all cases, the proposed
method provides higher speedups. The maximum speedup improvement is ∼117%,
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which belongs to the case of the bitcounter benchmark under an area budget of 10%.
On average, the speedup improvement of OPLE compared to the Greedy is about 30%.

Compared to the Greedy case, the Heuristic method provides higher speedups for
small area budgets. The reason is that the area usage is considered in the merit func-
tion. Compared to OPLE, for small benchmarks under the smallest area budget (i.e.,
10%), the Heuristic method selects CIs with higher speedups. However, in most cases,
the OPLE outperforms the Heuristic method (by an average of 22% higher) in terms
of speedups. For small benchmarks (i.e., adpcm and lms), the OPLE selects CIs result-
ing in ∼2.2% (∼18.6%) higher speedups compared to those of the Heuristic (Greedy)
method. However, for large benchmarks (i.e., IPsec, bitcounter, and MD5) OPLE pro-
vides ∼34% (50%) higher speedup compared to the Heuristic (Greedy) method.

In the case of the ILP selection, for the three largest benchmarks (i.e., IPsec, bit-
counter, and MD5), the Gurobi solver was not able to solve the problem due to the
memory size explosion (indicated by NaN in the table). For the other benchmarks, the
results reveal that, in most cases, the speedups achieved through the proposed method
were the same as those of the optimal solution (i.e., ILP). In the worst case, the speedup
of the proposed algorithm was 2.35% less than that of the optimal solution. Also, on
average, the speedup of the ILP is about 0.28% higher than that of the OPLE method,
while the speedup of the ILP, on average, is ∼19% (∼17.2%) larger than that of the
Greedy (Heuristic) method.

It should be noted that the efficacies of the proposed method for small area budgets
(e.g., 10%) are higher compared to the cases of large area budgets (e.g., 50% or WNAB).
Also, compared to the Greedy and Heuristic methods, the effectiveness of the proposed
algorithm improves as the candidate set size increases. Additionally, increasing the
PS and/or the ratio of CSS/PS resulted in higher speedups for the proposed selection
method (efficiency improvement). As mentioned before, the CIs selected for a part
are determined based on the ParentCI set. The PS value sets the initial number of
the CIs selected for the part. Since these CIs are selected from neighboring nodes in
the part, the chance of conflict (overlap) is high. The use of the ILP technique enables
one to select the best nonconflicting CIs with the highest speedups in each subproblem
(part). Increasing the PS value enlarges the subproblem size, improving the chance of
selecting better CIs (at the expense of increasing the runtime). Also, the CCS/PS ratio
shows the number of recurrent CIs considered for each subproblem. When the ratio
increases, more recurrent CIs are included in the CI candidate set and considered in
the optimization. When there is a large number of recurrent CIs (e.g., large problems),
increasing the ratio helps select better CIs. Note that for small area budgets, the
selection of more recurrent CIs improves the speedup gain. Therefore, increasing the
size of CSS provides us with a lager exploration space for selecting these CIs. Note that
there are some cases in the reported results in Table IV that by increasing the area
budget the speedups of the inexact approaches are reduced. For the Greedy, Heuristic,
and OPLE techniques, by which finding the exact solution is not guaranteed, some
cases may occur that the techniques may be trapped in local optimum solutions. These
cases, however, occur less frequently.

Next, we compare the runtimes of OPLE and other selection methods as reported
in Table V. The runtimes are for three different problem sizes. In all the cases, the
runtime of the Greedy selection method was below 1s. For the case of the Heuristic
technique, the runtime is higher because of the time overhead of finding the conflict
graph. The runtime, however, is less than those of the OPLE and ILP. As observed from
the table, ILP is fast for small size problems, while its runtime scales exponentially
with the problem size. It should be noted that the problem size in the CI selection
problem is the number of the CIs. Note that the ILP solver was not able to solve the
MD5 benchmark problem. Results also reveal that the runtime complexity of the OPLE
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Table V. Runtimes of the Selection Methods in Seconds while the I/O Constraint was 4/4

Selection Method Area Constraint
Benchmark PS-CCS 10% 20% 30% 40% 50% WNAB

ad
pc

m O
P

L
E

25–100 5 6 7 7 7 4

25–200 6 7 7 7 7 4
50–200 3 7 5 8 6 4

50–400 3 7 5 8 6 2
Greedy <1 <1 <1 <1 <1 <1

Heuristic <1 <1 <1 <1 <1 <1
ILP <1 <1 <1 <1 <1 <1

sh
a O

P
L

E

25–100 22 33 32 30 36 18

25–200 69 87 85 79 87 63
50–200 51 78 78 78 86 28

50–400 59 98 97 101 114 63
Greedy <1 <1 <1 <1 <1 <1

Heuristic <1 <1 <1 <1 <1 <1
ILP 77 79 5564 658 31 2640

M
D

5 O
P

L
E

25–100 88 143 110 444 209 204

25–200 474 1709 1591 2299 2309 356
50–200 508 3094 4124 3235 2693 354

50–400 3945 5795 2195 4786 3589 782
Greedy <1 <1 <1 <1 <1 <1

Heuristic 98 98 98 100 99 98
ILP NaN NaN NaN NaN NaN NaN

selection algorithm is polynomial. Note that, as mentioned before, increasing the CSS
value and/or the ratio of CSS/PS makes the runtime of OPLE larger. Since ILP cannot
solve larger problems, OPLE may be used for these problems. In the worst case (i.e.,
MD5 benchmark under 20% area budget), the OPLE selection algorithm finds a CFU
that provides us 70% (36%) higher speedup than that of the Greedy (Heuristic) selection
method (with a runtime of 1h and 36min).

The ILP-based solution provides the optimal solution with the highest speedup. The
approach, which is computationally intensive (O(2n)), may not be invoked for large
optimization problem sizes. The OPLE algorithm, however, breaks down the problem
to k smaller ones to reduce the computational intensity of the problem (O(2m) where
m = n/k and k depends on PS and CCS). Therefore, in general, OPLE does not provide
higher speedup compared to that of the ILP. In other words, OPLE only reduces the
runtime of the selection algorithm. The amount of the reduction depends on n and k.
Since there are some overheads associated with the OPLE, the use of OPLE is not
justified for small problems (see Table IV). As the results show, for the candidate CI
set with the size of about 1000, the use of OPLE may be justified.

To study the effect of the problem size on the speedups achieved when these tech-
niques are used, Figure 10 shows the speedup of four benchmarks with the sizes of 42,
1,519, 19,927, and 48,676. For smallest size (adpcm), ILP, Heuristic, and OPLE lead to
about the same speedup, while the Greedy approach provides the lowest speedup. For
the second smallest size (sha), both the ILP and OLPE techniques give rise to the same
speedups, which are 30% higher than those of the Greedy and Heuristic. In the case of
the two larger problem sizes, the exact method of ILP cannot provide the optimal an-
swer using reasonable computer resources, while the Greedy and Heuristic techniques
yield 50% (51%) and 41% (44%) lower speedup for the IPsec (MD5) benchmark, respec-
tively. The results indicate the ability of the OPLE to provide close to optimal solutions
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Fig. 10. The trend of OPLE speedup compared to those of the other approaches versus the problem size.

Fig. 11. The trend of OPLE runtime compared to those of the other approaches versus the problem size.

at least for the benchmarks that we have found the optimal solutions. To compare the
computational complexities of these techniques, the runtimes of the techniques versus
the problem size have been plotted in Figure 11. Since the runtime complexities of the
Greedy and Heuristic methods are O(n), their runtimes increase linearly with the prob-
lem size. In the case of the OPLE, the complexity follows O(n3), which is much lower
than O(2n) in the case of the ILP method. It should be noted that, since the design is
performed once, the higher speedup obtained using OPLE through the higher runtime
is preferred over Greedy and Heuristic, which have smaller runtimes but provide lower
speedups.

As discussed previously, in seeking higher speedups, we increase the area budget
of the parts after a predetermined number of iterations in the OPLE algorithm. This
process along with the achieved speedup of the extensible processor for the benchmark
MD5 is shown in Figure 12. The area budget was defined to be 30%. The results indicate
that the speedup improvement has a strong dependence on the area increase only for
iteration counts below 100. We have observed the same behavior for other benchmarks
as well.
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Fig. 12. Speedup improvement and the area budget of the parts during the OPLE algorithm exploration for
the benchmark MD5 (Area = 30%).

Table VI. Speedup of the Extensible Processors under Different Area Budgets
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Finally, to study the effect of the I/O constraint on the speedup achievements of the
selection algorithms, we considered the constraints of 2/2 and 3/3 for all the techniques.
For this study, we considered our three largest benchmarks, namely, IPsec, bitcounter,
and MD5. The ILP solver was not able to solve these benchmarks under the I/O con-
straint of 3/3 on this computer system. The values of the PS and CCS parameters
for this study were assumed to be 25 and 200, respectively. Results are presented in
Table VI, which shows that in the case of 3/3 I/O constraint, OPLE selects CIs with
higher cycle savings compared to those of the Heuristic and Greedy methods. In the
best case (i.e., MD5 benchmark under an area constraint of 20%), the speedup of the
OPLE method is 61% (60%) higher than that of the Greedy (Heuristic) method. Also,
on average, for these benchmarks, OPLE selects CFU with 34% (35%) higher speed
gain compared to that of the Greedy (Heuristic). In the case of the I/O constraint of
2/2, OPLE outperforms Heuristic and Greedy. On average, for these benchmarks, the
OPLE technique selects CFU with 18% (16%) higher speedup compared to that of the
Greedy (Heuristic) approach. This hints that the speedup improvement is lower for
this I/O constraint compared to the previous constraint. By reducing the I/O size, the
problem size becomes smaller, lowering the difference between the speedup of OPLE
compared to those of Heuristic and Greedy. Finally, for this I/O constraint under all
area constraints, OPLE managed to find the optimum solutions for all benchmarks
(the same as those obtained by the ILP).

6. CONCLUSION

In this article, a heuristic custom instruction selection called OPLE was presented.
The algorithm made use of both Greedy and optimal optimization techniques. The
proposed algorithm searches for the near-optimal solution by using the divide and
conquer approach. First, the search space is divided into parts. Then, the near-optimal
candidate CIs from each part are found. During the generation of the candidate set
of the parts, the recurrences of the CIs are also considered. The suggested CIs from
different parts are combined to extract the final CI set. The final CI set is improved
by iteratively running the proposed selection method for increasing the speedup of
the extensible processor. To evaluate the efficacy of the proposed method, its speedups
were compared to those obtained from the optimal and nonoptimal approaches for some
benchmarks under different area budgets and I/O constraints. The results showed that
the proposed method outperformed the nonoptimal approaches especially for large
applications.
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