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a b s t r a c t

In this paper, we present techniques for mitigating the Negative Bias Temperature Instability (NBTI)
effect on extensible processors. Firstly, the effect of NBTI on the extended instruction set architecture and
the arithmetic logic unit of extensible processors is studied. The study includes modeling the circuit
delay increase due to the NBTI and analyzing its impact on the processor lifetime. The study shows that
in some cases, the lifetime is decreased while in other cases, it is increased compared to that of a baseline
processor. Next, to lower the impact of the NBTI on the extensible processor lifetimes, we present four
different techniques. The first technique is based on injecting proper input vectors during the idle time of
the custom instructions such that the NBTI effect is reduced. The lifetime improvement, however, is
limited by the delay increase reduction of the applied input vectors. In the second technique, the guard
band delay of extensible processor is extended. This is effective because the rate of lifetime increase due
to extending the guard band delay is much higher than the rate of speedup reduction. For the third
technique, we duplicate the critical custom instructions to increase the processor lifetime without losing
any speedup. The last technique estimates the delay increase of candidate custom instructions (CIs) and
selects those that do not reduce the lifetime. The efficacies of the aforesaid techniques are evaluated and
compared against each other by using benchmarks from different application domains.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In digital systems, speed and power consumption are two
critical design parameters [1],[2]. Although application specific
ICs (ASICs) offer high performance, they are expensive and lack
programmability. On the other hand, general purpose embedded
processors are fully flexible and cheaper compared to ASICs. They,
however, tend to fail to meet the required performance and power
consumption of embedded applications. Extensible processors
have emerged in the field of embedded computing as a promising
approach to remedy the shortcomings of ASICs and general-
purpose processors [1]. This approach exploits a simple general-
purpose processor and extends its instruction set architecture with
appropriate custom instructions (CIs) to provide flexibility and
high performance. Hence, the methodology to design this kind of
processors is called Application Specific Instruction set Processor
(ASIP) methodology.

In the ASIP design approach, the instruction set of a general
purpose processor is extended through ASIC design based on the
features of the given application. The augmented instructions are

determined such that the desired speed, power, and cost require-
ments are fulfilled. The main idea behind using an ASIP design
approach is to run the hotspot parts of an application using
custom instructions (CIs) and run the other parts of the application
on the processor Arithmetic Logic Unit (ALU). The CIs, which are
executed using a hardware block called Custom Functional Unit
(CFU), improve the processor speed (performance and computing
speed are used interchangeably in this paper) by increasing the
instruction level parallelism, and reducing the register file
accesses. Similarly, by decreasing the accesses to the cache and
register file, the CIs reduce the power consumption [3].

When realizing digital systems with transistors provided by a
state-of-the-art CMOS fabrication facility, designers encounter
some critical issues including reliability concerns such as soft
errors, hard errors, and process variations [4]. One type of hard
errors is caused by the Bias Temperature Instability (BTI) phenom-
enon, which is becoming more crucial by shrinking the technology
size. The phenomenon which is a transistor-aging effect is induced
for the PMOS (NMOS) transistor under negative (positive) bias,
and hence, is called Negative (Positive) BTI or NBTI (PBTI) [4]. The
phenomenon, which alters the threshold voltage of transistors,
affects both propagation delay and stability of the digital circuits. It
is a more pronounced effect for the PMOS transistors suffering
from extended periods of negative bias (recall that the main aging
effect for NMOS transistors is the hot electron effect) [5].
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The simplest and most common solution to BTI is to do extra
guard banding [4]. In this solution, one increases the clock period in
order to tackle the propagation delay increase caused by BTI and
raises the minimum voltage of storage elements to solve the
instability problem. The former degrades the performance while
the latter increases the power consumption of the digital circuits.
When other BTI mitigating techniques can be invoked, the amount
of the guard band may be reduced. It should be mentioned that the
CIs are generated by combining some basic primitives (e.g., ADD and
SUB) of the baseline processor. Hence, the CFU contains more
critical paths compared to those of the baseline processor ALU.
Therefore, the probability of the maximum delay violation due to
the aging effects in the CFU may become higher than that of the
ALU. On the other hand, the execution load is divided between the
CFU and the ALU. For a given application, the chip temperatures
may be different in the case of the extensible processor and baseline
processor [6]. Since BTI effect is a strong function of the tempera-
ture and load (stress), the lifetime change of the extensible
processor compared to a baseline processor should be studied.

In this paper, first, the impact of the NBTI effect on the lifetime
of the extensible processor by considering the processor tempera-
ture is studied. Then, we propose some techniques to increase the
lifetimes of extensible processors in the cases where their lifetimes
are shorter than that of the baseline processor. Some of these
techniques may have been proposed in the previous works to be
used in the general purpose processors. However, as the knowl-
edge of the authors goes, in this work, these techniques, for the
first time, are used in the extensible processors and their effec-
tiveness for these types of processors is studied. It should be noted
that in the case of ASIPs, the objective is to increase the speedup
by adding the CFU. Since the impact of the NBTI on the CFU may
lead to the lifetime reduction due to different temperatures and
critical paths compared to those of the baseline processor, the
different lifetime improvement techniques may have different
impacts on the speedup and lifetime of the ASIPs. Hence, one of
our contributions in this work is to study these impacts.

The rest of the paper is organized as follows. A brief review in
the field of the instruction set architecture (ISA) extension and also
NBTI effect on the processors is given in Section II. The impact of
the NBTI and its modeling are described in Section III. In Section
IV, the ISA extension design flow is explained. The proposed
methods to decrease the NBTI delay increase are described in
Section V while the results are discussed in Section VI. Finally,
Section VII concludes the paper.

2. Related works

Considering the effect of NBTI on the design of processors has
attracted a great deal of attention (see e.g., [4,7–9]). In these works,
several aging-resilient and NBTI mitigating methods for processors
have been proposed. In [4], a multi-level optimization approach for
reducing the impact of NBTI on the functional units (FUs) was
proposed. The technique combines methods at the circuit and
micro-architecture levels. In [7], a simple holistic scheme to balance
the utilization of devices in a processor is proposed. In this approach,
the duty cycle ratio of circuit internal nodes and the usage frequency
of devices were equalized. The impact of the NBTI on the SRAM-based
register-files was thoroughly investigated in [8]. The authors showed
that the periodic bit inversion was not a good solution. Instead they
proposed two micro-architecture techniques based on the register
rotation (RR) and bit level rotation (BR) to reduce the delay increase
due to the NBTI effect. In [9], the functional units of the out-of-order
processors were studied and some methods based on the power
gating and bit flipping were proposed to mitigate the delay impact of
the NBTI on the functional units.

In in-order processors, the execution unit determines the
maximum clock frequency of the processor. Hence, the BTI-
induced delay increase of this part leads to some performance
loss. This delay increase may also deteriorate the speedup of the
ASIPs based on in-order processors. In [10], an ISA extension
design flow in the presence of the process variation and aging
effects is proposed. The proposed design flow makes use of some
models for the process variation and the impact of NBTI on delays
of the CIs before the selection phase. The main problem with the
proposed method is that, for a proper modeling of NBTI, the duty
cycle of the identified CIs as well as the CFU temperature are
required. These parameters are determined after the runtime of
the application which depends on the speedup of the extensible
processor determined by the selected CIs.

In [11], the impact of the NBTI on the processor under different
task allocation policy has been studied. Also, a novel dynamic
instruction allocation strategy has been proposed. The efficacy of
the proposed method has been assessed under the process
variation and technology scaling. To partially recover the NBTI
effect, a method based on the NOP operation has been proposed in
[12]. In this work, by using the ILP technique, a method to find the
best NOP instruction is proposed. Using the NOP operation, proper
input vectors are applied to the execution unit. To apply this
method, the execution unit should be modified. Additionally, by
using the complex gates (e.g., AOI gates) and also, increasing the
number of the inputs of the gates, the number of the variables in
the ILP formulation increases, which results in increasing the
runtime of the ILP solver. In [13], a method based on the
instruction classification has been proposed. Based on their
worst-case delays, the instructions are classified into critical and
non-critical instructions. Hence, for each class of instructions, a
specific ALU is considered. Specific ALU for the critical instructions
leads to more idle time for this type of instructions, and hence,
smaller delay increases.

Finally, we briefly review the works in the field of ISA extension.
There are many works dealing with both the CI identification (see,
e.g., [1,2]) and selection (see, e.g., [1,14]). In all of the proposed
identification methods, increasing the speedup of the selected CIs
has been the goal while observing the I/O constraint and convexity
of the selected CI. Also, in the field of the ISA selection, the main
goal has been to select the best CIs in an acceptable time. The two
main objectives in the selection CIs are cycle saving and area
overhead. Additionally, to tackle the issues arising in nano-scales
technology, there are some works which consider the impact of the
process variation on the ASIP design. In [15,3], the impact of the
process variation on the ASIP design was studied and some design
time techniques were proposed to increase the yield and also the
speedup of the extensible processor.

In this paper, we present a study of the NBTI aging impact on the
extensible processor and propose four techniques for lowering the
impact of the NBTI effect on the extensible processors. Note that
among the four techniques, one of them is a new system-level
approach which is proposed in this work. In the cases of the other
three approaches, we should mention that, although, they have been
studied for the general purpose processors, their efficiencies for
improving the lifetimes and speedups of the extensible processors
have not been investigated. In short, the originalities of this work
include proposing a system-level technique as well as studying the
efficiencies of three conventional approaches (previously used in the
general purpose processors) for the extensible processors.

3. NBTI Effects and modeling

The BTI effect increases the absolute value of the thres-
hold voltage of transistors, thereby reducing the transistor ON
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currents, ION. This lower current results in an increase in the
propagation delay of the logic cells inside a VLSI circuit. This may
cause a violation of the maximum propagation delay bound of
the critical paths. Additionally, the noise margin may be reduced
due to the threshold voltage increase, and hence, malfunctioning
of digital circuits may occur. It should be noted that higher
temperatures and larger electrical fields make the NBTI effect
more pronounced.

The NBTI phenomenon is caused by interface states existing at
the Si and gate dielectric interface of PMOS transistors [4,6]. Under
negative gate bias conditions where the absolute value of the gate
to source voltage (Vgs) is equal to the supply voltage (Vdd), some
chemical reactions occur. The reactions, which are caused by
the holes in the channel, break the weak Si–H bonds generating
some traps near the gate oxide. These traps increase the threshold
voltage. When the negative bias is removed, some interface traps
are eliminated, which implies that the NBTI is a partially reversible
process, and hence some of the threshold voltage change may be
restored. Hence, we can distinguish two phases: a stress phase
where the delay is increased, and a recovery phase where the
delay is decreased (compared to the stress phase). Note that the
increase in the delay cannot be fully recovered in the recovery
phase. Hence, the delay of the gates gradually increases over time.
Beside physical parameters of the transistors, the variation of the
threshold voltage, Vth, depends on the stress and recovery times.

Based on the above discussion, the variation may be modeled
as [16]

ΔVth ¼ AYntn ð1Þ

where A is a technology dependent factor which is a function of
temperature, n is a constant which depends on the fabrication
process, and Y is the duty cycle (also called the stress parameter)
which is ratio of the stress time to the total time (t). To find the
value of the parameter Y for each gate, we use the signal
probability (SP) propagation method which has been proposed in
[17]. The SP parameter for each input signal shows the ratio of the
time that the signal is 1 to the total time (t). The duty cycle for
PMOS transistors is equal to 1�SP. Note that using the SP
parameters of the input signals of a circuit, one can calculate the
SP values of its internal gates [17]. Finally, note that the parameter
A depends on several factors including the temperature. The
relation between A and temperature (T) is expressed by [16]

Ap eð�Ea=kTÞ ð2Þ

where k is the Boltzmann constant and Ea is the activation energy
of hydrogen species.

4. ISA extension flow

The ISA extension starts by extracting the data flow graph
(DFG) of an application. The DFG shows the flow of the instruc-
tions which should be executed by the processor. Custom
(extended) instructions are subgraphs of this DFG that meet some
predefined constraints such as convexity, I/O ports, and propaga-
tion delay [1]. Among the identified sub-graphs (CIs), there may be
similar sub-graphs based on the functional and structural iso-
morphism. These CIs can be executed on one CFU, which results in
less area overhead and better area utilization. Such similar sub-
graphs are identified and placed into CI groups. If a DFG node is
included in two CIs, these two CIs are considered to have overlap
with each other. Because each node in the DFG should not be
executed by more than one CI, all the CIs that have an overlap with
a selected CI are removed from the list of the identified CIs in the
selection phase. Based on the overlap between the CIs, a conflict

graph is constructed. In the last phase (selection phase), the best CI
groups are selected among all identified CIs.

There are two general approaches for the CI selection which are
optimal and non-optimal approaches [1]. The former are exact
methods which finds the best (optimal) CIs set by searching all
the search space. This technique may become intractable for real
applications where the number of nodes in the DFG of the
application is too large. Hence, in this approach, we should prune
the search space to make this algorithm practical. Non-optimal
approaches are much faster than the optimal techniques. In the
selection phase, the candidates are selected based on their merit
value. Normally, cycle saving is the main objective in the ISA
extension. The cycle saving may be computed as [3]

CSi ¼ #Itr

� #CIi:SW�CIi:IOPenalty�ceil
CIi:CriticalPathDelay

Clock Period

� �� �

ð3Þ

where CSi is the cycle saving of the ith CI (CIi), #Itr is the execution
frequency of the basic block to which CIi belongs, and #CIi.SW is
the number of clocks that the CI needs to run by the base
processor. Also, CIi.IOPenalty is the number of extra accesses to
the register file for reading data from or writing data to (when the
number of CI I/O ports is more than the number of register file
read/write ports) and the fraction is the number of clocks for
executing CIi on the CFU (we assume that CIs can be multi-cycle or
single cycle.) In the fraction, CIi.CriticalPathDelay is the propagation
delay of the CI critical path and Clock Period is the desired clock
period for the extended processor [3]. Note that, in the selection
phase the CI groups are selected, hence, the merit value of a CI
group is

MeritCI Group ¼ ∑
jCI groupj

i ¼ 1
CSi ð4Þ

In the rest of the paper, we use the term ‘CI’ to refer to ‘CI group’.

5. Proposed liftetime improvement techniques

As mentioned in Section 3, the stress parameter (Y) is deter-
mined by the ratio of the stress time to total time. It is one of the
main parameters determining the NBTI effect. The CIs selected for
an extensible processor impacts both of these time durations (i.e.,
stress time and total time) in the cases of the CFU and the ALU.
Additionally, as mentioned before, the voltage threshold degrada-
tion is an exponential function of the temperature. The selected
CIs also affect the chip temperature profile, which in turn influ-
ences the impact of NBTI in different parts of the chip (see, e.g.,
[6]). Therefore, one should find an approach for estimating the
impact of NBTI on delays of the CFU and ALU.

The ISA extension design flow augmented with a part for
estimating the delay impact of NBTI (called Calc_BTI_Effect) is
shown in Fig. 1. In this design flow, after selecting the CIs in the
selection phase, they are synthesized by a gate-level synthesis tool.
The gate level model is used to propagate the signal probability
inside the CIs. In addition, temperatures of different parts of the
processor including the selected CIs are modeled based on the
application profile. Finally the impact of the BTI on the ALU and
CFU are calculated by considering these temperatures. Using this
information (temperature and signal probability), we calculate the
threshold voltage change due to the NBTI aging effect which may
be used to determine the delay increase over time. Based on this
information, one can estimate the processor lifetime. Next, we
present four techniques to increase the lifetime of the extensible
processors in the presence of the NBTI effect.
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5.1. Input vector control technique

In this technique, we apply proper input vectors to the idle
parts of the CFU and the ALU to counter the NBTI effect. This
selective application of the input vectors requires some modifica-
tions of the architectures. Next, we describe the method in detail.

5.1.1. Finding proper input vectors
To obtain the input vectors, any optimization method may be

utilized. In this work, we present a genetic algorithm (GA)-based
method to find the (near-optimal) input vector for each critical
custom instruction as well as the critical primitives of the ALU
(e.g., ADD and SUB). It should be mentioned that we use the term
critical for a path, primitive, or a CI whose delay can be degraded
by the NBTI effect to a value larger than the clock period of the
baseline (or extensible) processor. Note that the proposed optimi-
zation method may be applied to any digital circuits. The input
vector is generated for each critical custom instruction as well as
the critical primitives. Hence, each critical CI and each critical
primitive have their own input vectors which are injected only
during their idle times.

The proposed GA flow is depicted in Fig. 2. GA is a general-
purpose powerful search algorithm used to solve hard optimiza-
tion problems by simulating natural evolution over populations of
candidate solutions. While the algorithm does not guarantee
finding the optimal input vector, it is fast technique which can
find close to optimum solutions. The algorithm has been used in
many areas of the hardware design. For more details about this
algorithm, one can refer to [18]. To find the best input vector, we
use the binary representation for our genetic algorithm approach
where each chromosome is an input vector whose length is equal
to number of input bits of the circuit (see Fig. 3). In the initializa-
tion step, a binary random number is assigned to the each gene
(input bit) of the chromosomes. Next, each input vector (chromo-
some) is applied to the circuit. Based on this input vector, the
inputs to each gate of the circuit during the idle times is
determined. Also, the activity of critical CIs and primitives during
their active modes to determine the stress on their gates is
considered. Finding the activities of the critical CIs and primitives
helps finding the amount of the stress on the internal gates during
the active mode leading us to finding efficient input vectors for
minimizing the NBTI effect on both the active and idle modes.
Using this information, we determine the impact of the NBTI effect
in circuit delay increase (fitness value). The calculation is per-
formed by using a library of pre-calculated delay increase for each
standard cell after a predefined time (e.g., ten years in this work).
The standard cells delay increase library was generated by using
HSPICE simulation and (1). In this algorithm, in each iteration, first
the termination condition (which, in this work, is the maximum

iteration count) is checked. Next, a set of the parents are selected
by using the linear ranking method. Then, by utilizing one-point
crossover and multi-point mutation methods, new offspring is
generated. Next, the fitness values of the offspring are calculated.
Finally, the parents and offspring with the minimum fitness values
are selected as a new population which is used in the next
iteration. Note that the number of the chromosomes in the new
population is equal to the number of the chromosomes in the
initial step. This process is iteratively run till the termination
condition is satisfied.

5.1.2. Architecture modifications
In the baseline processor considered in this paper (in-order

MIPS architecture), one of the inputs of the ALU (input A) is
connected to three different data signals through a multiplexer.
Two of these inputs belong to the forwarding path (from execution
and memory stages), and the other one is from the decoder stage
(from the register file). The other input of the ALU (input B) is
connected to the four different data signals through a multiplexer.
Three of them are similar to those of the other input while the
forth data signal belongs to the immediate input data. Note that
this architecture is a common architecture for in-order processors
[19]. In the case of extensible processors, this input paths and the
corresponding multiplexer exist for each input of the ALU and CFU.
Also, in each cycle, only the proper output from either the CFU or
ALU is selected using a tri-state buffer (see Fig. 4(c)). We could use

Identification

Selection

CIs Gate-Level
Synthesis

Aging Modeling
(ALU & CIs)

DFGs of Application

Application
Runtime Profiling

V variation impact
on the delay of each

standard cell

Technology Library

Calc_BTI_Effect

Find CI Groups
& Generate
Conflict Graph

Temperature
Modeling

Fig. 1. The ISA extension design flow augmented with a part for estimating the
delay impact of NBTI (called Calc_BTI_Effect).

Circuit Gate-
Level Synthesis

Technology Library Initialize
Population

Fitness Function

Parent Selection

Termination
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Mutation

Crossover

Survival
Selection

Fitness Function

Genetic Algorithm

Delay Degradation of
Standard Cells due
to the NBTI Library

Fig. 2. The Genetic Algorithm Flow for extracting proper input vectors.

Fig. 3. An example of a circuit and its corresponding chromosome.
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multiplexers which have higher delays than the tri-state buffers
when the number of CIs is small.

In the case that the input vector control (IVC) method is used,
each ideal input vector should be stored in a register to be invoked
during the idle time. Hence, we should add another input to the
input multiplexers of the critical primitives in the ALU and CFU. As
shown in Fig. 4(a), the multiplexer of the input A has one free
input. Hence, we can add another input to it without any timing
overhead. On the other hand, the multiplexer of the input B has no
free input, and to add extra input, we should use a larger multi-
plexer which has a larger delay. To prevent enlarging the multi-
plexer, we added a 2-input multiplexer for selecting between
the immediate input data and the register file in the Instruction

Decoder (i.e., ID) stage (see Fig. 4(b)). This multiplexer increases
the delay of the ID stage while the maximum delay propagation of
the processor is not changed. This originates from the fact that the
delays of the critical paths in the execution unit are larger than
those in the instruction decoder stage even after adding this
multiplexer. Finally, Fig. 4(c) shows the modified architecture of
the execution unit where the registers of the proper input vectors
are added to the CFU and the ALU. Note that this method can be
used in the baseline processor to increase its lifetime.

Finally, we should mention that, in the processor architecture, a
pipelined multiplier has been used, and hence, it does not contain
any critical path. If the multiplier had some critical paths, the
proposed IVC method would be applicable.

Fig. 4. (a) The architecture of the conventional in-order processors. (b) The modified path of selecting the data input of the input B. (c) The internal architecture of the
execution unit of the extensible processor in the case of using ideal input vector. ADD and SUB are critical primitives and hence are separated from other primitives.
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5.2. Guard band extension

In the case of baseline processors, one can add a guard band of
GBBP to the clock cycle period (CP) to mitigate the lifetime
degradation due to the NBTI effect. Thus, we can use CPþGBBP as
the clock period where GBBP is the guard band for the baseline
processor. The increase, however, degrades the performance. The
same increase in the clock period does not necessarily provide the
same lifetime improvement in the case of extensible processors. To
obtain the same lifetime improvement, we can increase the guard
band to GBEP (guard band for the extensible processor). This extra
delay leads to a speedup reduction. The speedup is obtained from

SpeedupGGB ¼
ðCPþGBBPÞCCBP

ðCPþGBEPÞCCEP
¼ ðCPþGBBPÞ
ðCPþGBEPÞ

SpeedupEGB

where the SpeedupGGB (SpeedupEGB) is the speedup of the extensible
processor in the case of GBEP4GBBP (GBEP¼GBBP). Also, CCBP (CCEP)
shows the cycle counts of running the application on baseline
(extensible) processor. Now, we study the speedup reduction and
lifetime improvement versus GBEP. A 3D plot of SpeedupGGB/Speedu-
pEGB versus GBBP and the normalized guard band increase (ΔGBN¼
(GBEP�GBBP)/GBBP) is plotted in Fig. 5. As expected, for a given GBBP,
increasing ΔGBN decreases the speedup. The rate of decrease is
higher for greater GBBP which leads to larger GBEP. Also, Fig. 6
indicates the rate of lifetime change (the left vertical axis) versus
ΔGBN. The two rates shown in this plot differs in GBBP values. The
GBBP of the lower (upper) one corresponds to the lifetime increase of
three (ten) years (see the points at ΔGBN¼0). This figure shows that
increasing the guard band by 10%, the lifetime increases by about 4.5
(1.2) years when for the upper (lower) rate. In addition, this figure
shows the speedup reduction versus ΔGBN (the right vertical axis).
As is evident from the results, the lifetime increase rate is much
more than the speedup decrease rate. Depending on the relative

importance of these two parameters, the designer may decide on
using the proper value for ΔGBN.

5.3. Hardware duplication

In this subsection, we propose to duplicate the hardware of
critical CIs to increase the lifetime of the extensible processors. The
number of duplications is a function of the target lifetime. In this
method, the system starts with the first instance of the CI and
when its delay increase exceeds the maximum degradation con-
straint, this instance becomes deactivated and the next one
becomes activated. The activation and deactivation processes are
realized using the power gating technique. Therefore, in this
method, based on the lifetime of the ith critical CI (CIi:lif etime),
the number of its duplications (Ni) is determined from

Ni ¼
CIi:lif etime

Target Lif etime
ð5Þ

While this method guarantees achieving the target lifetime
without any speedup reduction, it imposes some area overhead.
This technique may be combined with the input vector control
method to reduce the number of required duplications. To use the
power gating technique, the extensible processor should be
equipped with a timer controlling the activation time of the next
instance. Note that the turn-on time of the next instance must be
prior to the turn-off time of the current instance. Fig. 7 shows the
duplication of the critical CIi while the IVC method is used too.
Each duplicated CI is turn on and off by a turn-on signal (TOS),
hence, each CI has different power domain. Also, only one set of
register is needed to store the proper input vector for all dupli-
cated CIs in a duplicated set.

5.4. NBTI aware CI selection

This technique is based on selecting CIs that are less vulnerable
to the NBTI effect. This requires modifying the design flow to
determine the critical CIs before the selection phase and estimate
the runtime delay increase of the CIs in the selection phase. Fig. 8
shows an overview of the proposed ISA extension design flow,
which is called NBTI-Aware ISA Extension (NAIE) design flow. In the
proposed design flow, after enumerating the CIs and indicating the
isomorphic CIs, the critical CIs are determined based on a rough
NBTI delay increase estimation in the NBTI aware pre-selection
phase. In this phase, firstly, the CIs which have the potential to
become critical CIs are predicted. To choose potentially critical CIs,
the delay increases of all the identified CIs are estimated based on
the delay increases of the basic primitives (e.g., ADD, SUB, and
SHR) of the CIs while the input stress parameter is set to 50%. The
delay increases of the basic primitives are generated before calling
the design flow.

Fig. 5. Impact of the increasing guard band on the speedup reduction.

Fig. 6. Impact of the increasing guard band on the lifetime improvement and
speedup reduction.

Fig. 7. Hardware structure of the critical CIi, while enhanced with the IVC and
duplication method.
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To estimate the delay increase of the primitives, firstly, they
were synthesized as gate-level netlists. Next, the probability of the
primary inputs to be 0 (or 1) was assumed to be 0.5. By
propagating this probability to the internal nodes, the probabilities
(and stresses) of the internal nodes are calculated [20]. Finally, by
using the stress values and a pre-assumed temperature (denoted
by Tpa), the delay increases of the primitives for a predefined
number of years (e.g., 10 years) were calculated. To estimate the
delay increase, the sum of the delay values of the primitives in
different paths from inputs to outputs is calculated. The delay of
the ith CI under the NBTI effect, which is denoted by CIi.Delay, is
considered as the maximum delay of the paths. The effect of
temperature difference between Tpa and estimated runtime tem-
perature on CIi.Delay is considered by multiplying it by the
coefficient ζ. Assuming a linear relation between the delay and
the voltage threshold change and considering (1) and (2), we can
obtain the coefficient ζ from

ξ¼ e� Ea=kTBPð Þ
e� Ea=kTpað Þ ð6Þ

where TBP is the average baseline processor temperature when
running the corresponding application. Next, the CIs, whose delays
after the degradation are higher than CPþαGBref, are chosen as
critical CIs in this stage. Here, GBref is the reference guard band.
Since the NBTI's delay impact is calculated based on the runtime
temperature and stress estimations which may have some errors,
we use a fudge factor of α which is between zero and one to
guarantee that all CIs that may violate the selected guard band
delay are considered as critical.

It should be noted that the CIs which have delays larger than
CPþGBref violate the timing constraints of the ASIP and may not be
selected. However, the delays were obtained based on the esti-
mated temperature and activity. When running the corresponding
application, the changes in the actual activity and temperature,
may lower the delay making these CIs eligible for being selected.
Hence, in the proposed approach, the impact of the NBTI effect on
these CIs is studied during the selection to determine if it can be
selected for the CFU. Also, in the case that the estimated delay was
smaller than CPþGBref while the actual delay may be larger than
CPþGBref, to prevent wrong pruning of the CI (not being selected
for the studying the impact of the NBTI effect), we propose to use
smaller delay constraint of CPþαGBref. Smaller values for α yield
more CIs for NBTI impact consideration and increase the running
time of the ISA extension design flow. Our experiments show that
the value of α should be about 0.5. In the last step of this phase,
the critical CIs are synthesized to gate-level netlist which will be
used to more accurately estimate the NBTI degradation of the
delay during the selection phase. As an option, the netlist may be
used to lower the delay increase of the critical CIs using the IVC
method.

In the next phase, we perform the CI selection phase based on
our proposed greedy selection method shown in Fig. 9. It is the
modified version of the greedy method proposed in [14]. The
selection is started by choosing the CI group with the highest cycle
saving. It is possible that the CIs in a CI group have overlap with
each other. Hence, before estimating the NBTI's delay impact, the
local conflicts between the CIs in the suggested CI group are
removed (Line 4). To remove the conflicts, the CIs with the lowest
CS and also large number of the local conflicts are eliminated from
the CI group using a merit value of CS/(Local Conflict #). This
process is continued until there is no overlap between any two CIs
in the CI group.

Next, the delay increase of the critical CIs due to the NBTI is
estimated by using the method which will be described later in
this part. If the delay increase of the selected CI group (in the case
where the CI is critical) is higher than the CPþGBref, then all CIs
from the group will be removed from the candidate set (Lines 6–9).
Otherwise, all the CIs in the group are marked as selected and
removed from the candidate set. In addition, all the CIs in the
candidate set which have overlaps with the selected CIs are
removed from the set (Line 11). The selection process is terminated
when the candidate CI set becomes empty.

Now, we explain how the delay increases of the critical CIs are
estimated. The ΔVth for each gate in the netlist of the CI is
calculated using (1) by using the gate activity and temperature.
It is obvious that during the design time these values are not
known a priori. To estimate the stress, we propagate the activities
of the primary inputs to estimate the stresses of the internal
nodes. To find the stress of a gate, we need to determine the
probability that each input signal is zero. The weighted mean that
a primary input signal is zero is obtained from

Y ¼ TIdle � YIdleþTEXE � YEXE

T
ð7Þ

where TIdle (TEXE) is the duration that the CI is in the idle time
(being executed) and YIdle (YEXE) is the zero probability of the signal

Fig. 8. NAIE ISA extension design flow.

1: 
2: 
3: CS
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 

12: 
13: 

Fig. 9. The pseudo-code of the proposed greedy selection method.
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in the idle time (during the execution). Note that the summation
of the TIdle and TEXE is equal to application runtime which is
denoted by T. For the primary inputs, if the input vector control
technique is used, we calculate YIdle based on the optimized input
vectors which should be applied when the CI is not utilize, else, it
is assumed to be 0.5. The variable TEXE is considered to be equal to
the number of times that the CI is called. This is calculated based
on the number of times that the basic blocks to which the CI
belongs are called. In this phase, YEXE is calculated based on the
application profile. The variables TIdle and T depend on the runtime
of the application on the extensible processor. Hence, the exact
values of these parameters depend on the speedup of the
extensible processor. Hence, we propose to use the speedup of
the extensible processor in the case where no techniques is used to
reduce the NBTI effect on the CFU (denoted by SpUNT). It means
that we need to run the design flow in Fig. 1 one time before
estimating the NBTI effect on the CIs. The reason for this sugges-
tion is that we do expect that SpUNT is about the same as the
speedup of the selected CFU when the NAIE method is exploited.
Hence, T and TIdle are obtained from

T ¼ SpUNT � ACC ð8Þ

TIdle ¼ SpUNT � ACC�TEXE ð9Þ
where the ACC is the total application cycle count. Also, for the
temperature, we use the value for the case where no NBTI effect
reduction technique is used (denoted by TempNT). Now, using (1),
estimated Y, and TempNT, one can calculateΔVth. Having found the
voltage threshold change, the delay increases of the gates are
modeled by making use of a library which contains the delay
variation of the standard cells as a function of Vth. This library is
generated by HSPICE simulation of all standard cells.

As shown in Fig. 8, there is a speedup verification process for
the selection phase. After we reach the end of the selection phase,
we compare the speedup of the selected CFU (SpU) with SpUNT. If
there is a non-negligible difference (more than 1–2%) between the
two speedups, we repeat the selection phase with SpU instead of
SpUNT. The process is repeated until the difference becomes
negligible. This process is important because the speedup impacts
the stress parameter, and hence, the delay of the CIs increases.
Similarly, the temperature may need to be corrected. The more
accurate temperature may be obtained using the Temperature
Modeling module (see Fig. 8). In this phase, firstly, the tempera-
ture of the extensible processor is extracted. If the temperature
difference is non-negligible (i.e., it is more than1–2 1C), then the
temperature will be updated and the selection phase will be
repeated. For the benchmarks studied in this work, the tempera-
ture and activity (speedup) errors were reduced as the iteration
number increased. This may be justified by noting that the critical
CIs formed about, on average, 25% of the total selected CIs in the
case of the NAIE technique. Since the fraction is small, its effect on
the temperature and speedup variations is not large. For the cases
that the errors do not reduce as the iteration number increases,
one may use the new temperature of the next iteration from the
relations

Tpa;iþ1 ¼ Tpa;iþγΔTpa ð10Þ

where Tpa,iþ1 is the temperature which should be used for the
(iþ1)th iteration, Tpa,i is the temperature was used in the ith
iteration, and γ is a number between 0 and 1 determined for the
benchmark. A similar approach may be used for the speedup. The
approach provides the convergence for the NAIE technique. Note
that the speedup convergence loop is nested inside the tempera-
ture convergence loop.

As mentioned before, the temperature of CFU may increase the
chip temperature and consequently the ALU temperature. This

temperature increase could enhance the NBTI's delay impact
reducing the lifetime. These cases happen when the temperature
effect is more than the ALU stress reduction due to the use of the
CFU. In our processor, the critical paths in the ALU belong to the
ADD and SUB primitives. We call these primitives as critical
primitives. To prevent these cases, we can reduce the ALU stress
by selecting CIs with more critical primitives. This may be
achieved by modifying the merit function in the selection phase.
In this work, instead of using merely CS as the merit function (the
conventional approach), we include the number of the critical
primitives in the merit function as follows

MeritCI Group ¼
jCriticalPrimitivesij

maxðf8 j AfCI Groupsg; jCriticalPrimitivesjjgÞ

� �

� ∑
jCI groupj

i ¼ 1
CSi ð11Þ

where the |CriticalPrimitivesi| shows the number of the critical
primitives in the ith CI group. In this function, we normalize the
critical primitive number to the maximum number of the critical
primitives in whole CI groups. While this merit function could
reduce the stress on the ALU critical paths, the speedup of the
selected CFU may also decrease. Therefore, the use of this merit
function is recommended when the reference guard band is
violated by the ALU delay increase.

6. Results and discussion

In this section, we evaluate the efficacies of the proposed
techniques using several benchmarks from different application
domains. The selected benchmarks included IPsec and MD5 from
PacketBench [21], lms from the SNU-RT benchmark suits [22],
rijndael, sha, bitcounter, and adpcm from MiBench [23], and G721
decoder/encoder from Mediabench [24].

6.1. Simulation setup

The proposed design flows and algorithms were implemented
in the C# language. Using GCC (GNU Complier Collection), DFGs
and hotspots of these applications were generated and fed to the
ISA extension design flow. In the identification phase of the ISA
extension, we used the exact method proposed in [2], and for the
selection phase we used the greedy selection method described in
[14]. The stress and activity time of the ALU were extracted by
profiling the running applications on the baseline (a 32-bit in-
order MIPS) processor. The applications were run on the simulator
model of the processor where the activity of the ALU was profiled.
By using the DFG of the application and the profiled data of the
baseline processor ALU, the activities of the ALU and CFU of the
extended processor were calculated. We used Synopsys design
compiler to extract the power consumption of the baseline
processor and the CIs. Also, the temperature of the processors
was modeled by employing the Hotspot tool [25]. Note that the
Hotspot tool considers the material boundary conditions.

All studies were performed using the nangate standard CMOS
45 nm technology [26]. To find the gate-level of the ALU and CFUs,
we used Synopsys Design Complier where the maximum propa-
gation delay constraint of 1 ns was assumed. Note that, in the
identification phase, also the delay constraint of 1 ns was con-
sidered where single cycle CIs were identified. To find the NBTI
impact, for each standard cell of the technology library, we
performed HSPICE simulations to obtain the delay as a function
of the threshold voltage. To find the delay degradation of each
component of the processor (i.e., CIs and ALU), first, we calculated
the voltage threshold increase of the gates of that component due
to the NBTI effect using (1) after Y years and found their
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corresponding delay degradations. Next, the delay degradation of
the component was extracted using the static timing analysis.

For the NBTI effect study, we supposed a lifetime of 10 years for
the baseline processor, and hence, the value of the guard band of
the processor was set accordingly for each application. Also, we set
GBref of the extensible processor equal to the guard band of the
processor. Hence, the aging effect was studied for each benchmark
separately. It should be noted that the proposed lifetime improve-
ment techniques were only applied to the benchmarks where the
extensible processor lifetime became smaller than that of the
baseline processor. Also, the target lifetime of 10 years is used as
one of optimization constraints in the proposed techniques.

6.2. NBTI's delay impact on extensible processors

To study the impact of NBTI on performance of the extensible
processors, first, we ran the proposed design flow shown in Fig. 1
for all the benchmarks. The speedup of the extensible processor in
each case is shown in Fig. 10. The maximum speedup belongs to
the IPsec (�4.28) and the minimum belongs to the rijndael (�1.3).
Table 1 shows the number of candidate CIs, number of CI groups,
number of selected CIs and finally the area usage of the selected
CIs for each benchmarks. Note that the area usage of the baseline
processor was 35,000 μm2 with the ALU area usage of 9400 μm2.

This baseline processor was used in the cases of the extensible
processors which had different CFUs.

The delay increases of the ALU of the baseline processor and
the ALU and CFU of the extensible processor after 10 years are
reported in Fig. 11. The results show in four cases, the delay
increases of the ALU and CFU of the extensible processor are
smaller than that of the baseline processor ALU. In the cases of
G721decode, G721encode, IPsec, MD5 and sha, the delay increase of
the extensible processor CFU is higher than the baseline processor
ALU delay increase. Therefore, it can be concluded that the
extended ISA can both reduce and enlarge the NBTI delay effect
and increase and decrease the processor lifetime. The lifetime of
the extensible processor for each application is shown in Fig. 12. As
mentioned before, the guard band for each application is con-
sidered equal to the delay increase of the corresponding baseline
processor after 10 years. The highest lifetime decrease with
respect to the baseline processor belongs to MD5 (�50%) while
the highest lifetime increase is for rijndael (þ45%). We attribute
these different behaviors for different benchmarks to different
selected CFUs for these benchmarks.

Also, as mentioned before, the NBTI effect is a strong function
of the temperature. In Table 2, we have reported the temperatures
of the ALU in the baseline processor, and ALU and CFU in the
extensible processor. The results show that the temperatures of
the CFU and ALU may be higher in the extensible processor
compared to that of the baseline processor ALU. This originates
from the fact that the power density of the CFU may be larger
yielding a higher temperature. Also, since the CFU and ALU placed
next to each other, the increase in the temperature of the CFU,
gives rise to the temperature increase of the ALU too.

6.3. Input vector control technique

As mentioned before, one solution to reduce the NBTI delay
increase is to apply proper input vector to the critical CIs and
critical primitives of the ALU during the idle time. As an example,
in Fig. 13, the delay increase of a CI after 10 years under different
input vector obtained in the different iterations of the proposed
genetic algorithm approach is shown. For this specific CI with the

Fig. 10. Speedup of the extensible processor.

Table 1
Number of the candidate CIs, CI Groups, and selected CIs along with area of the
Selected CIs.

benchmark |Candidate CIs| |CI Groups| |Selected CIs| Area (mm2)

lms 42 33 13 4151
adpcm 62 44 13 4358
G721encode 1042 686 36 14,400
G721decode 1077 609 32 14,390
sha 1519 777 21 10,680
IPsec 19,927 14,953 28 14,244
bitcounter 39,832 34,153 36 8480
MD5 48,676 29,366 35 17,835
rijndael 425,260 32,721 23 9212

Fig. 11. NBTI induced delay increase of the ALU and the CFU in the case of baseline (BP) and extensible (EP).

Fig. 12. Lifetime of the extensible processor.
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initial delay of 0.88 ns, the proposed approach finds an input
vector which is able to reduce the delay increase of the CI from
26.9% to 17%.

To study the efficacy of the IVC technique, we have applied the
technique to both CFU and ALU of the extensible processor. Note
that the CFU may have both critical and non-critical CIs. Firstly, let
us consider the case that we apply the technique to all the CIs. In
Fig. 14, we compare the delay increases with and without using
the techniques. The results show that for all the benchmarks, the
delay increases of the ALU and CFU are reduced when the IVC
method is used. The highest (lowest) reduction in the ALU delay
increase belongs to the IPsec (G721decode) benchmark with the
value of 35% (19%). In the case of the CFU, the largest (smallest)
reduction in the CFU delay increase belongs to the lms (MD5)
benchmark with the value of 27.7% (21.7%). The average values for
the ALU and CFU cases are about 25.2% and 25%, respectively.

These delay increase reductions resulted in lifetime improve-
ments which are demonstrated in Fig. 15 show the lifetime of the
extensible processor. The results show that in all the cases, except
for the MD5 benchmark, the lifetimes of the extensible processors
become larger than the baseline processor (more than 10 years).
For the four cases of the adpcm, lms, rijndael and bitcounter, the
lifetime improvements are larger than 200%. In the case of the
MD5 benchmark, the IVC technique improves the lifetime of the
extensible processor from 5 years to 9.5 years which is still shorter
than the target lifetime of 10 years. This indicates that the IVC
method may not able to provide us with the target lifetime for all
the benchmarks. The average lifetime for the benchmarks con-
sidered in this work is 25 years. While the technique does not have
any speedup reduction, it needs some registers to store proper
input vectors. The area overhead of these registers compared to
the area usage of the CFU is shown in Fig. 16. The worst (best) case
belongs to the adpcm (MD5) where the area overhead is 91% (57%).
The average overhead is about 69%.

Now, we consider the case where the IVC technique is applied
to the critical CIs only. This reduces the area overhead. For this
study, the extensible processors with lifetime of more than 10
years were excluded. We show the fraction of the critical CIs to the
total selected CIs in Fig. 17(a) where the worst (best) case belongs

Table 2
Temperature of the ALU in baseline processor, and ALU and CFU in the extensible
processor

Benchmark Temperature (1C)

Baseline processor ALU Extensible processor

ALU CFU

adpcm 69.37 68.27 67.85
G721decode 66.65 69.76 70.05
G721encode 66.6 69.68 69.98
IPsec 61.91 66.92 67.85
lms 75.85 73.85 72.85
MD5 61.12 77.44 79.33
rijndael 69.43 66.09 65.18
sha 73.99 72.66 71.97
bitcounter 75.56 75.2 75

Fig. 13. Propagation delay of a CI after 10 years. The initial delay for this CI was
0.88 ns. Different input vectors are obtained during the GA algorithm iterations.

Fig. 14. Delay increases of the ALU and CFU of the extensible processor with and without the IVC method.

Fig. 15. Lifetime improvement of the extensible processor enhanced with the IVC
method compared to the baseline processor.

Fig. 16. Area overhead of the IVC technique while it is used for all selected CIs.
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to the MD5 (sha) benchmark with a fraction of 74% (14%). On
average, 44% of the selected CIs were critical. The area overheads
in this case are shown Fig. 17(b). In the worst case, the area
overhead is about 42.2% which belongs to the MD5 benchmark.
The average overhead reduction is about 27%.

Fig. 17(c) shows the lifetime of the extensible processors in this
case. Note that most of the lifetimes are shorter than those of the
case where the IVC method is applied to all the CIs. This means
that the non-critical CIs whose delay increases are not mitigated
by the IVC technique determine the lifetime of the extensible
processor. In the case of the MD5 benchmark, the lifetime is
specified by the critical CIs. The average lifetime is about 47%
lower than that of the case of Fig. 15.

6.4. Guard band extension

As mentioned before, by using this approach, the performance
of the system is reduced. The performance loss rate versus the
lifetime improvement is considerably lower. As an example, we
have plotted the lifetime improvement and speedup reduction of
the IPsec benchmark versus the guard band increase in Fig. 18. For
this benchmark, by increasing the guard band about 14 ps, the
lifetime increases by about 35% while the speedup decreases
almost �1.4%.

Fig. 19 shows the speedup reduction of the five benchmarks
whose lifetimes were smaller than the 10 years when their guard
bands were equal to their corresponding GBBP. By increasing the
guard bands, we made their lifetimes equal to 10 years. The worst
case belongs to MD5 benchmark where the speedup reduction is
about –5.6%. The average of the speedup reduction for the bench-
marks is about –2.4% while, on average, the lifetimes are increased
about 26%.

6.5. Hardware duplication

In this subsection, the efficacy of the CI duplication method is
studied. Table 3 shows the number of the critical CIs for each
benchmark. Our study showed that we only need an additional
instance of the hardware for each critical CI to achieve the target
lifetime. The area overhead corresponding to these additional
instances are also listed in the table. The percentage of the area

overhead compared to that of the CFU area is also given in the
table. The average area overhead is about 48% of the CFU area
usage. The largest overhead corresponds to the case of the MD5
benchmark (about 73%) while the smallest belongs to the sha
benchmark (about 21%). Although this method does not suffer
from the speedup reduction or failure in reaching the target
lifetime, it suffers from a large area overhead.

It should be noted that this technique may help the IVC method
which was not able to provide the target lifetime for the MD5
benchmark. In this case, the CIs, which are remained critical after
the application of the IVC method, may be duplicated where in
this case the area overhead becomes 60%.

Fig. 17. (a) Fraction of the critical selected CIs, (b) the area overhead of the input vector control method and (c) the lifetime of the extensible processor when the IVC method
is applied to the critical CIs.

Fig. 18. Impact of increasing the Guard band on the speedup reduction and lifetime
improvement.

Fig. 19. Speedup reduction due to the using guard banding technique
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6.6. NBTI aware CI selection

In this subsection, the efficacy of the NAIE technique in
increasing the lifetime of the extensible processor is evaluated.
In this study, we only included the benchmarks whose delay
increases were more than the reference guard band. As shown in
Fig. 8, in the pre-selection phase, the potentially critical CIs are
determined. The fraction of these CIs to the total identified CIs are
drawn in Fig. 20. The results show that, in the worst case of the
MD5 benchmark, more than 95% of the CIs are potentially critical
while in the best case of the IPsec benchmark, only 57% of the
identified CIs are potentially critical. On average about 75% of the
identified CIs are critical.

Having found the potentially critical CIs, the last phase of the
NAIE ISA extension design flow was performed to select the better
CIs. In Table 4, we have reported the speedups and lifetimes of the
benchmarks obtained from the NAIE flow. Note that the results
were obtained using the conventional merit function. Except for
the IPsec benchmark, in all other benchmarks, the delay increase of
the CFU became smaller or equal to the GBref proving us with the
lifetime of equal or greater than 10 years. In the case of the IPsec
benchmark, the target lifetime was not achieved because of larger
delay increase of the ALU. While the stress on the ALU in the
extensible processor was smaller than that in the baseline pro-
cessor, the ALU temperature increase in the extensible processor
gave rise to a higher delay increase. In the case, we ran the NAIE

method again with the merit function proposed (PMF) given in
(11). This improved the lifetime to more than 10 years (see IPsec
(PMF) in Table 4) by forcing the selection of the CIs with more
critical primitives. This discriminative selection yields some
speedup reduction for the IPsec benchmark. As observed from
the results, the use of the NAIE ISA extension design flow reduces
the speedups in all the cases. The worst case is for G721decode
(25%) while the best case is for MD5 (2%). The use of the IVC
technique (optional in the NAIE flow), which enlarges the CI
exploration space, may improve the speedup (and lifetime) at
the expense of some area overhead. For example, in the cases of
G721decode and MD5, the speedup reductions decrease to 0% and
0.3%, respectively. In the former case, the application of the
technique makes all the potentially critical CIs to non-critical CIs.

6.7. Pros and cons comparison of the techniques

The area overhead of the increasing the guard band is zero
while it leads to some speedup reduction. On the other hand, the
area overhead of the IVC is small while the amount of its lifetime
improvement is limited. In other words, the IVC technique may
not improve the lifetime as much as is desired. In the case of the
duplicated method, the area overhead is large while one can
increase the lifetime to any target lifetime. In the cases of the
latter two, there is no speedup reduction. Finally, NAIE technique
does not impose any area overhead while its lifetime improvement
may not as much as is desired. It should be noted that all of these
techniques may be combined with each other. The designer should
invoke any of these techniques or a combination of them con-
sidering the target lifetime, speedup, and area overhead.

7. Conclusion

In this work, we investigated the impact of the NBTI effect on
CFU and ALU of the extensible processor. Based on the NBTI model,
the lifetimes of the extensible processors were estimated. The
results showed that in some cases the NBTI effect on the extensible
processor was smaller/larger than that of the baseline processor
increasing/decreasing the lifetime compared to that of the baseline
processor. To tackle the delay increase in extensible processors, we
proposed four different techniques. The first one was based on the
input vector control technique during the idle time of the CIs. The
results showed this technique improved the lifetimes of the
benchmarks. In the second approach, we proposed to increase
the delay guard band to increase the lifetime. We showed that the
rate of increasing the lifetime was much more than the rate of
decreasing the speedup. In the third technique, we proposed to
duplicate the critical CIs along with power gating to increase the
lifetime. This method was able to increase the lifetime without
decreasing the speedup at the expense of some area overhead.
Finally, an ISA extension design flow which selected CIs based on
the estimation of the delay increase of the CIs was proposed.
Finally, note that one may use a combination of these techniques
to further improve the efficiency.

Acknowledgment

This research was in part supported by a grant from IPM
(No. CS1392-4-27).

References

[1] C. Galluzi, K. Bertels, The instruction-set extension problem: a survey, ACM
Trans. Reconfig. Technol. Syst. 4 (2) (2011) 18-1–18-28.

Table 3
Number of critical CIs, and area overhead of the duplicated CIs for each benchmark

Benchmark No. of
Critical CIs

Area
overhead (μm2)

Area
overhead (%)

Lifetime
(years)

G721decode 16 8696 60 11.45
G721encode 16 6926 48 11.45
IPsec 9 5461 38 11.12
MD5 26 12,944 73 12.2
sha 3 2289 21 11

Fig. 20. Fraction of the identified CIs that recognized as critical in NBTI aware pre-
selection phase.

Table 4
The speedup, delay increase, and lifetime of the benchmarks while using the Naie
Isa extension design flow.

Benchmark Speedup Speedup
reductiona (%)

Delay increase Compared
to GBBP (%)

Lifetime
(year)

ALU CFU

G721decode 1.56 24.8 �0.37 �5.10 13.3
G721encode 1.53 25.0 �0.18 0.00 10
IPsec 3.78 11.8 0.11 �15.68 9.5
IPsec (PMF) 3.36 21.6 �6.7 �3.0 16.6
MD5 3.77 2.0 0.00 0.00 10
sha 1.52 2.5 �1 �1.2 11.8

a Speedup reduction compared to conventional ISA extension design flow.

M. Kamal et al. / INTEGRATION, the VLSI journal 49 (2015) 22–34 33

http://refhub.elsevier.com/S0167-9260(14)00087-X/sbref1
http://refhub.elsevier.com/S0167-9260(14)00087-X/sbref1


[2] L. Pozzi, K. Atasu, P. Ienne, Exact and approximate algorithms for the extension
of embedded processor instruction sets, IEEE Trans. Comput.-Aided Des. 25 (7)
(2006) 1209–1229.

[3] M. Kamal, A. Afzali-Kusha, S. Safari, M. Pedram, An architecture-level approach
for mitigating the impact of process variations on extensible processors, in:
Proceedings of the Design, Automation and Test in Europe (DATE), 2012,
pp. 467–472.

[4] T. Siddiqua, and S. Gurmurthi, A Multi-Level Approach to Reduce the Impact of
NBTI on Processor Functional Units, in: Proceedings of the 20th symposium on
Great lakes symposium on VLSI(GLVLSI), 2010, pp. 67–72.

[5] W. Wang, V. Reddy, A.T. Krishnan, R. Vattikonda, S. Krishnan, Y. Cao, Comapct
modeling and simulation of circuit reliability for 65-nm CMOS technology,
IEEE Trans. Device Mater. Reliab. 7 (2007) 509–517.

[6] H. Lin, et al., Thermal-aware design considerations for application-specific
instruction set processor, in: Proceedings of Symposium on Application
Specific Processors (SASP), 2008, pp. 63–68.

[7] E. Gunadi, A.A. Sinker, N.S. Kim, M.H. Lipasti, Combating aging with the colt
duty cycle equalizer, in: Proceedings of the 43rd Annual IEEE/ACM Internation
Symposium on Microarchitecture (MICRO), 2010, pp. 103–114.

[8] S. Kothawade, K. Chakraborty, S. Roy, Analysis and mitigation of the nbti aging
in register file: an end-to-end approach, in: Proceedings of the 12th Interna-
tion Symposium on Quality Electronic Design, 2011, pp. 1–7.

[9] L. Li, Y. Zhang, J. Yang, J. Zhao, Proactive NBTI mitigation for busy functional
units in out-of-order microprocessors, in: Proceedings of the Design, Auto-
mation and Test in Europe (DATE), 2010, pp. 411–416.

[10] Y. Hara-Azumi, F. Firouzi, S. Kiamehr, M. Tahoori, Instruction-set extension
under process variation and aging effects, in: Proceedings of the Design,
Automation and Test in Europe (DATE), 2013, pp. 182-187.

[11] S. Corbetta, and W. Fornaciari, NBTI mitigation in microprocessor designs, in:
Proceedings of Symposium on Great lakes symposium on VLSI(GLVLSI), 2012,
pp. 33–38.

[12] F. Firouzi, S. Kiamehr, and M.B. Tahoori, NBTI mitigation by optimized NOP
assignment and insertion, Proceedings of the Design, Automation and Test in
Europe (DATE), 2012, pp. 218–223.

[13] F. Oboril, F. Firouzi, S. Kiamehr, M.B. Tahoori, Reducing NBTI-induced processor
wearout by exploiting the timing slack of instructions, in: Proceedings of the
CODESþ ISSS, 2012, pp. 443–451.

[14] P. Bozini, L. Pozzi, Recurrence-aware instruction set selection for extensible
embedded processors, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 16
(2008) 1259–1267.

[15] M. Kamal, A. Afzali-Kusha, M. Pedram, Timing variation-aware custom
instruction extension technique, in: Proceedings of the Design, Automation
and Test in Europe (DATE), 2011, pp. 1517–1520.

[16] W. Wang, S. Yang, S. Bhardwaj, S. Vrudhula, F. Liu, Y. Cao, The impact of NBTI
effect on combinational circuit: modeling, simulation, and analysis, IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 18 (2) (2010) 173–183.

[17] S.V. Kumar, C.H. Kim, and S.S. Sapatnekar, NBTI-aware synthesis of digital
circuits, in: Proceedings of 44th Design Automation Conference (DAC), 2007,
pp. 370–375.

[18] J.M. Holland, Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor, MI, 1975.

[19] D.A. Patterson, J.L. Hennessy, Computer Organization and Design the Hard-
ware/Software Interface, Morgan Kufmann, Canada, 2011.

[20] M. Pedram, Power minimization in IC design: principles and applications,
ACM Trans. Des. Autom. Electron. Syst. 1 (1) (1996) 3–56.

[21] R. Ramaswamy, T. Wolf, PacketBench: a tool for workload characterization of
network processing, in: Proceedings of the IEEE International Workshop on
Workload Characterization, October 2003, pp. 42–50.

[22] SNU-RT Real Time Benchmarks. Available: 〈http://archi.snu.ac.kr/realtime/
benchmark/〉.

[23] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, R.B. Brown,
MiBench: a free, commercially representative embedded benchmark suite,
Proceedings of the International Workshop on Workload Characterization,
2001, pp. 3–14.

[24] C. Lee, M. Potkonjak, and W.H. Mangione-Smith,MediaBench: a tool for
evaluating and synthesizing multimedia and communications systems, in:
Proceedings of the 30th Annual ACM/IEEE International Symposium on
Microarchitecture, 1997, pp. 330–335.

[25] W. Huang, K. Sankaranarayanan, R.J. Ribando, M.R. Stan, K. Skadron, Accurate,
pre-RTL temperature-aware processor design sing a parameterized geometric
thermal model considerations, IEEE Trans. Comput. 57 (9) (2008) 1277–1288.

[26] FreePDK, AFree OpenAccess 45 nm PDK and Cell Library for University, 〈http://
www.eda.ncsu.edu〉.

Mehdi Kamal received his B.Sc., M.Sc. and Ph.D. in Computer Engineering from Iran
University of Science and Technology, Sharif University of Technology, and
University of Tehran in 2005, 2007, and 2013, respectively. Currently, Dr. Kamal is
a research associate of the Low-Power High-Performance Nanosystem Laboratory
at school of Electrical and Computer Engineering at the University of Tehran. His
research interests include Reliability in nano-scale design, ASIP design, HW/SW co-
design, and Low power design.

Ali Afzali-Kusha received his B.Sc., M.Sc., and Ph.D. degrees all in Electrical
Engineering from Sharif University of Technology, University of Pittsburgh, and
University of Michigan in 1988, 1991, and 1994, respectively. From 1994 to 1995, he
was a Post-Doctoral Fellow at The University of Michigan. Since 1995, he has joined
The University of Tehran, where he is currently a Professor of the School of
Electrical and Computer Engineering and the Director of Low-Power High-Perfor-
mance Nanosystems Laboratory. Also, on a research leave from the University of
Tehran, he has been a Research Fellow at University of Toronto and University of
Waterloo in 1998 and 1999, respectively. He is a senior member of IEEE, and his
current research interests include low-power high-performance design methodol-
ogies from the physical design level to the system level for nanoelectronics era.

Saeed Safari received his Ph.D. degree in Computer Architecture from Computer
Engineering Department, Sharif University of Technology, Tehran, IRAN, in 2005.
Since then, he has been a faculty member of Electrical & Computer Engineering
Department, University of Tehran, Tehran, Iran. From May 2009 to September 2010,
he collaborated with TeleRobotics and Applications (TERA) Lab., IIT, Genoa, Italy,
working on different aspects of low-power parallel implementation of machine
vision applications. His research interests are Fault Tolerant System Design, High
Performance Computing, Test and Design for Test, On-chip Interconnection Net-
works, and Computer Architecture.

Massoud Pedram, who is the Stephen and Etta Varra Professor in the Ming Hsieh
department of Electrical Engineering at University of Southern California, received
a Ph.D. in Electrical Engineering and Computer Sciences from the University of
California, Berkeley in 1991. He holds 10 U.S. patents and has published four books,
12 book chapters, and more than 140 archival and 350 conference papers. His
research ranges from low power electronics, energy-efficient processing, and cloud
computing to photovoltaic cell power generation, energy storage, and power
conversion, and from RT level optimization of VLSI circuits to synthesis and
physical design of quantum circuits. For this research, he and his students have
received six conference and two IEEE Transactions Best Paper Awards. Dr. Pedram is
a recipient of the 1996 Presidential Early Career Award for Scientists and Engineers,
a Fellow of the IEEE, an ACM Distinguished Scientist, and currently serves as the
Editor-in-Chief of the ACM Transactions on Design Automation of Electronic
Systems. He has also served on the technical program committee of a number of
premiere conferences in his field and was the founding Technical Program Co-chair
of the 1996 International Symposium on Low Power Electronics and Design and the
Technical Program Chair of the 2002 International Symposium on Physical Design.

M. Kamal et al. / INTEGRATION, the VLSI journal 49 (2015) 22–3434

http://refhub.elsevier.com/S0167-9260(14)00087-X/sbref2
http://refhub.elsevier.com/S0167-9260(14)00087-X/sbref2
http://refhub.elsevier.com/S0167-9260(14)00087-X/sbref2
http://refhub.elsevier.com/S0167-9260(14)00087-X/sbref3
http://refhub.elsevier.com/S0167-9260(14)00087-X/sbref3
http://refhub.elsevier.com/S0167-9260(14)00087-X/sbref3
http://refhub.elsevier.com/S0167-9260(14)00087-X/sbref4
http://refhub.elsevier.com/S0167-9260(14)00087-X/sbref4
http://refhub.elsevier.com/S0167-9260(14)00087-X/sbref4
http://refhub.elsevier.com/S0167-9260(14)00087-X/sbref5
http://refhub.elsevier.com/S0167-9260(14)00087-X/sbref5
http://refhub.elsevier.com/S0167-9260(14)00087-X/sbref5
http://refhub.elsevier.com/S0167-9260(14)00087-X/sbref6
http://refhub.elsevier.com/S0167-9260(14)00087-X/sbref6
http://refhub.elsevier.com/S0167-9260(14)00087-X/sbref7
http://refhub.elsevier.com/S0167-9260(14)00087-X/sbref7
http://refhub.elsevier.com/S0167-9260(14)00087-X/sbref8
http://refhub.elsevier.com/S0167-9260(14)00087-X/sbref8
http://archi.snu.ac.kr/realtime/benchmark/
http://archi.snu.ac.kr/realtime/benchmark/
http://refhub.elsevier.com/S0167-9260(14)00087-X/sbref9
http://refhub.elsevier.com/S0167-9260(14)00087-X/sbref9
http://refhub.elsevier.com/S0167-9260(14)00087-X/sbref9
http://www.eda.ncsu.edu
http://www.eda.ncsu.edu

	Design of NBTI-resilient extensible processors
	Introduction
	Related works
	NBTI Effects and modeling
	ISA extension flow
	Proposed liftetime improvement techniques
	Input vector control technique
	Finding proper input vectors
	Architecture modifications

	Guard band extension
	Hardware duplication
	NBTI aware CI selection

	Results and discussion
	Simulation setup
	NBTI's delay impact on extensible processors
	Input vector control technique
	Guard band extension
	Hardware duplication
	NBTI aware CI selection
	Pros and cons comparison of the techniques

	Conclusion
	Acknowledgment
	References




