
Networked Architecture for Hybrid Electrical Energy
Storage Systems ∗

Younghyun Kim, Sangyoung Park, and
Naehyuck Chang

Seoul National University, Seoul, Korea
{yhkim, sypark, naehyuck}

@elpl.snu.ac.kr

Qing Xie, Yanzhi Wang, and
Massoud Pedram

University of Southern California, Los Angeles,
CA, USA

{xqing, yanzhiwa, pedram}@usc.edu

ABSTRACT
A hybrid electrical energy storage (HEES) system that consists of
multiple, heterogeneous electrical energy storage (EES) elements
is a promising solution to achieve a cost-effective EES system be-
cause no storage element has ideal characteristics. The state-of-
the-art HEES systems are based on a shared-bus charge transfer
interconnect (CTI) architecture. Consequently, they are quite lim-
ited in scalability which is a function of the number of EES banks.
This paper is the first introduction of a HEES system based on a
networked CTI architecture, which is highly scalable and is capa-
ble of accommodating multiple, concurrent charge transfers. The
paper starts by presenting a router architecture for the networked
CTI and an effective on-line routing algorithm for multiple charge
transfers. In the proposed algorithm, negotiated congestion (NC)
routing for multiple charge transfers is performed and any lack
of routing resources is addressed by merging two or more charge
transfers while maximizing the overall energy efficiency by setting
the optimal voltage level for the shared CTI. Examples of the pro-
posed networked CTI are presented and the efficacy of the routing
algorithm is demonstrated on a mesh-grid networked CTI.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems

General Terms
Algorithms, Design

Keywords
Hybrid electrical energy storage, Charge transfer interconnect, Rout-
ing algorithm

∗This work was supported by the Brain Korea 21 Project and the
National Research Foundation of Korea (NRF) grant funded by the
Korea government (MEST) (No. 2011-0016480). The ICT at Seoul
National University provides research facilities for this study.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June 3–7, 2012, San Francisco, California, USA
Copyright 2012 ACM 978-1-4503-1199-1/12/06 ...$10.00.

Charge
transfer

interconnect

EES
bank 2

EES
bank 1

Power
source 2

Load
devices

EES
bank 3

Power
source 1

Figure 1: A hybrid electrical energy storage system with three
EES banks.

1. INTRODUCTION
Hybrid electrical energy storage (HEES) systems consist of mul-

tiple, heterogeneous electrical energy storage (EES) elements [1,
2]. They utilize the strengths of each EES element type while hid-
ing its disadvantages by performing appropriate charge manage-
ment processes, including charge replacement, charge allocation,
and charge migration [3, 4, 5]. HEES systems are one of the key
resources in a smart grid enabling energy management, peak shav-
ing, load balancing, and the like [6, 7]. They also improve the gen-
eration efficiency of renewable power sources such as solar cells
and windmills by enabling maximum power extraction from these
sources because of the ability to store the excess generated energy
for future use, and by decoupling the load demand variation from
the power generation [8].

Figure 1 shows a conceptual diagram of a HEES system com-
posed of three EES banks. The EES banks can freely exchange
energy among each other by transferring charge over the charge
transfer interconnect (CTI). Power sources and load devices are
also connected to the CTI. Previously reported HEES systems rely
on a simple CTI architecture e.g., a single shared-bus CTI. How-
ever, a shared-bus CTI has a major limitation in terms of the HEES
system scalability, that is, the number of EES banks is limited to a
rather small count because of the potential contention on the CTI
bus. Note that the CTI bus contention is different from contention
in computer network in that the objects to be routed (charges) can
be merged together into a single object. The contention of a CTI
bus is thus defined in terms of the overall charge transfer efficiency.
Each charge transfer task has its own optimal CTI voltage level to
achieve the maximum transfer efficiency [3, 4, 5]. Merging the
charge transfers is possible only at the expense of charge transfer
efficiency degradation since transfer tasks have to share a CTI bus
which can only have single (likely sub-optimal) CTI voltage. Se-
vere efficiency degradation may thus offset the benefits of merging
charge transfer tasks in the HEES system if the optimal CTI voltage
levels of candidate charge transfer tasks are manifestly different.

(a) Shared bus (b) Point-to-point (c) Customized

Batt. Load

Super
cap.

Batt. Load

Super
cap.

Batt. Load

Super
cap.

Power
converter

Figure 2: Various CTI architectures in view of the power path.

The solution to the above-mentioned problem is to use multi-
ple CTIs in a HEES system. Multiple CTIs would then enable
concurrent charge transfers with high energy efficiency by provid-
ing more routing resources and by relieving the single CTI voltage
constraint. This paper is the first to introduce a networked CTI ar-
chitecture for HEES systems to accommodate multiple EES banks
and multiple, concurrent charge transfers while ensuring scalabil-
ity. Since this is the first paper of a networked CTI for HEES sys-
tems, we consider the most basic mesh network topology.

This paper addresses the following important issues in charge
transfers in networked CTI HEES systems. The first issue is rout-
ing of charge transfer paths in mesh networks as in traditional field-
programmable gate array (FPGA) signal interconnects. We devise a
CTI routing algorithm exploiting the similarity between our routing
problem and the FPGA routing problem. We also discuss merg-
ing of charge transfer tasks and its impact on the charge transfer
energy efficiency. Although the CTI routing in a networked archi-
tecture has similarities with the on-chip signal interconnects rout-
ing for an FPGA, there is a fundamental difference such that the
charge transfers can share a routing path while on-chip signals can-
not. We perform merging of charge transfers considering energy
efficiency to eliminate routing failures due to lack of routing re-
sources. The efficiency of a charge transfer task depends on the
efficiency of converters, which are in turn affected by the CTI volt-
age and amount of charge to be transferred. We devise an algorithm
to select charge transfer tasks to be merged based on their optimal
CTI voltage values and congestions among tasks. We formulate the
CTI routing problem and devise a systematic method to effectively
perform energy-efficient charge transfers in networked CTI HEES
systems.

The contributions of this paper are summarized as follows: i) we
introduce a networked CTI architecture for HEES systems; ii) we
define and precisely formulate the CTI routing problem on a net-
worked CTI; and iii) we propose a computationally efficient online
algorithm for the problem with the objective of maximizing the
charge transfer efficiency. We demonstrate examples of the pro-
posed networked CTI architecture and show the efficacy of the de-
vised algorithm.

2. RELATED WORK

2.1 HEES CTI Architectures
Figure 2 shows three representative examples of the CTI archi-

tectures proposed in the previous HEES systems in view of the
power paths. Shared-bus CTI architectures (typically called DC
bus) are commonly used when the number of EES banks is lim-
ited. Recent works on the HEES system management methodolo-
gies [3, 4, 5, 9] assume a general shared-bus CTI architecture (Fig-
ure 2(a)). The shared-bus CTI is analogous to an on-chip shared
bus on a system-on-chip (SoC) and their advantages and disadvan-
tages are similar. Another architecture is a complete connection
among the nodes [7] (Figure 2(b)). This architecture is comparable

(a) Shared-bus CTI

Batt.

Load

Super
cap.

Power
source

(b) Networked CTI

Conflict Batt.

Load

Super
cap.

Power
source

CTI
router

Figure 3: Shared-bus CTI and networked CTI of four nodes.

to a point-to-point connection in an SoC. Both the shared-bus and
point-to-point connection architectures are feasible as long as the
number of EES banks is small, but they certainly lack scalability to
accommodate a large-scale HEES system. The other architecture is
a customized network architecture for a particular application and
operation policy. For example, a supercapacitor buffer efficiently
mitigates the rate-capacity effect of a Li-ion battery especially for
pulsed load demand [6] (Figure 2(c)). As the control policy is to
use the supercapacitor as a buffer of the battery, the path from the
battery bank to the load device is not necessary. This architecture
is similar to a network-on-chip (NoC) architecture with irregular
connectivity which is fully dependent on the application. In short,
none of the previously introduced CTI architectures can be used
to accommodate a large number of EES banks for general applica-
tions.

2.2 Conventional Routing Problems
The CTI routing problem in a networked CTI has similarity to

the conventional FPGA signal routing problem. In the problem of
CTI routing, each task competes for routing resources such as con-
verters and CTI links, whereas each signal competes for wires and
connection points in FPGA routing. The FPGA routing is a highly
complex combinatorial optimization problem, and thus it is usually
done by iterative rip-up and reroute of signals. The success of rout-
ing is dependent not just on the choice of which nets to reroute, but
also on the order in which rerouting is done as shown in traditional
rip-up and reroute methods [10, 11]. The negotiation-based FPGA
router successfully relieves the signal ordering problem and pro-
vides a systematic rip-up and reroute capability [12]. This routing
algorithm allows initial sharing of the routing resources among sig-
nals, but subsequently makes them negotiate for the shared resource
with other signals until no resource is shared. The negotiation-
based routing algorithm is further enhanced in terms of compila-
tion time by incorporating delay-driven routing [13]. More recent
works such as [14] focus on the new architecture or technology
scaling, but the core of the routing algorithm is still based on [12].

3. CHARGE TRANSFER INTERCONNECT

3.1 Charge Transfer Conflicts
The charge management of a HEES system is achieved by charge

allocation, replacement, and migration operations [1]. The opera-
tions are basically charge transfers among EES banks using the CTI
as charge transfer medium. The previous works on the charge man-
agement of HEES [3, 4, 5] assumed that the charge transfer path is
always available for a given charge transfer task. They focused on
maximizing the energy efficiency by setting a proper value for CTI
voltage of the charge transfers. However, it is not always true that
a charge transfer path is available whenever it is required. Two or
more charge transfer tasks can have a conflict by competing for
the shared-bus. Figure 3(a) demonstrates an example where the

EES
bank

CTI
routers

Power
converter

CTI links to
a neighboring router

Reconfigurable
interconnects

CTI link to
the associated bank

Figure 4: Architecture of a CTI router. An associated EES
bank is connected via a power converter. The arrows denote
the CTI links.

power supply charges the battery bank and the supercapacitor bank
supplies power to the load at the same time. Two charge transfer
tasks have different optimal CTI voltage values, which maximize
the charge transfer energy efficiency of each task, and there is only
one CTI link.

We define that two or more charge transfers conflict when they
try to occupy the same CTI link and have different optimal CTI
voltage values. Such a conflict enforces the charge transfer tasks
to use the same CTI voltage, and thus at least one of them has to
suffer possibly severe degradation in energy efficiency. Separating
the two charge transfers in time domain by scheduling may mitigate
the conflict, but we leave this as a future work.

3.2 Networked CTI Architecture
We introduce a networked CTI architecture as shown in Fig-

ure 3(b) to fundamentally solve the charge transfer conflict prob-
lem, which ensures scalability to a large number of EES banks.
Specifically, we use a mesh interconnect architecture to ensure flex-
ibility and scalability of networked CTI architecture. One impor-
tant component to realize the networked CTI architecture is the CTI
router. We propose a CTI router that connects CTI links, an asso-
ciated component (i.e., an EES bank, a power source, or a load
device), and a power converter. Figure 4 shows the detailed archi-
tecture of the CTI router. Each CTI router is connected with the
adjacent CTI routers through the CTI links. The CTI router con-
sists of reconfigurable interconnects which are denoted as dashed
lines in Figure 4. We dynamically connect or disconnect the re-
configurable interconnects inside the router to setup a path from
one CTI link to another. The reconfigurable interconnects form a
complete graph so that the signal can be routed in any direction.
The CTI router in Figure 4 has five CTI links, and thus it has ten
interconnects each of which is implemented as a pair of back-to-
back MOSFET switches. We adopt the switching power converter
efficiency model from [15] in this paper.

The networked CTI architecture is comparable to a general NoC
architecture. As the number of processing elements in an SoC in-
creases, the single-level on-chip bus architecture is no longer able
to handle increased data exchanges between the processing ele-
ments. Similar to the NoC which requires packet routing, a HEES
system with a networked CTI architecture requires routing of the
charge transfers. However, CTI routing on a networked CTI is
not the same as the conventional NoC packet routing, conventional
signal routing for FPGA, nor application-specific integrated cir-
cuit (ASIC). To efficiently describe the networked CTI architecture
routing problem, we compare it with the conventional signal rout-
ing problem as shown in Table 1.

Table 1: CTI routing and signal routing problem mapping.
Networked CTI routing Signal routing

Nodes EES banks, power Processing
sources, load devices elements

Links CTI links On-chip interconnects
Flows Charge flows Signal flows

Objective High efficiency Low latency

Output Charge routing trees Signal routing trees
w/ voltage and current w/ buffer size

Resource sharing Allowed Not allowed

Routability Guaranteed Not guaranteedw/ resource sharing

4. PROBLEM STATEMENT

4.1 Formal Definitions
We present a formal definition of the CTI routing problem in this

section. We first define a node as a combination of a CTI router and
either of an EES bank, a power source, or a load device associated
with it. A CTI network is a graph G = (V,E) where V is a set of
vertices that corresponds to nodes, and E is a set of edges that corre-
sponds to CTI links between two elements in V . It is an undirected
graph as the CTI links are bidirectional electrical conductors. The
link between the CTI router and the associated EES element (an
EES bank, a power source or a load device) is a dedicated resource,
and thus we do not consider this in the routing algorithm.

We define a set of charge transfer tasks such that τ= {T1,T2, . . . ,Tk},
where k is the number of tasks. Each charge transfer task is a two-
tuple such as Ti = (σi,δi), where σi is the set of source nodes and
δi is the set of destination nodes. The task describes the nodes that
should be connected by the routing algorithm. The deadline of the
transfer and the amount of charge provided by the source nodes or
received by destination nodes are defined separately because they
are not related to the routing process. They are used for charge
transfer optimization discussed in Section 4.3. We add a newly ar-
riving task to τ or remove a finished task from τ, update remaining
time until the deadline of the existing or remaining tasks, and per-
form routing again.

The CTI routing problem is to find routing paths for a given
transfer task set τ, that connects all the nodes in σi and δi for each
Ti ∈ τ. A node of Ti participates in only one charge transfer, and it
is either a source or a destination, not both. That is,⋃

Ti∈τ

(σi∩δi) =∅ and
⋂
Ti∈τ

(σi∪δi) =∅. (1)

As a result of the CTI routing, a disjoint subset of edges in E that
forms an acyclic routing tree is assigned to each Ti. We set each
CTI router configuration (make connections of the internal inter-
connects) according to the edges in the routing trees. An individual
routed charge transfer is equivalent to a charge transfer on an in-
dependent shared-bus CTI. Therefore, it enables us to apply any
previous HEES charge management methods that are based on a
shared-bus CTI to each routed charge transfer task.

4.2 Charge Transfer Interconnect Routing
The CTI routing problem resembles to the FPGA routing prob-

lem discussed in Section 2.2 in the aspect that the routing resources
are discrete and scarce. The routing process allocates limited re-
sources to the nets (the set of charge transfer tasks or signals), and
each net is allowed to use the resource for a designated period.

Routing charge transfer tasks requires iterative execution of two
steps; i) the CTI routing and ii) charge transfer optimization. The
CTI routing operation is to determine a routing path of the charge

T1 and T2

(b) Merging

T2 and T3

(d) Merging
T1 and T3

(c) Merging

Unrouted
task

(a) Before
 merging

CTI link
usage: 7/12

CTI link
usage: 8/12

CTI link
usage: 9/12

2

2

2

23

3

1 1

1

3

3

1,2 1,2

1,2

2

2

2

2

1,3 1,3

1,3

1,2

1,2

1,2

1,2

1,3

1,3

2,3

2,3

2,32,3

2,3

1 1

12,3

Figure 5: Example routing of three tasks after merging. T1 is
unrouted in (a), and routing after three possible merging com-
binations are presented in (b), (c), and (d).

transfer, and the charge transfer optimization operation is to deter-
mine the voltage level of the routing path and the amount of current
through the routing path. We discuss the routing and optimization
one after another in this section and in Section 4.3, respectively.

The CTI routing problem should tackle limitation in the routing
resources (the CTI links) like the conventional FPGA routing prob-
lems. Signal routing of FPGA fails if there are unrouted nets which
are not routable with remaining routing resources. The workaround
is either increasing the resource, i.e., using a larger device or opti-
mizing placement so that the congestion is reduced.

On the other hand, redoing placement is not an option for the
CTI routing problem because the nodes are at a fixed location in the
HEES system and cannot be moved. Instead, we perform merging
in order to mitigate the routing congestion. This is a unique feature
of the CTI routing for HEES systems. Merging is combining two
charge transfer tasks into one to produce a new task set. Two or
more migration tasks can be merged and share resources unlike
signal routing.

If one task has a longer deadline than the other, the combined
task uses the CTI links for whichever the shorter deadline. After
the deadline expires, the task with a shorter deadline releases the
CTI links and the task with a longer deadline solely occupies the
CTI links after rerouting. Merging Ti = (σi,δi) and Tj = (σ j,δ j)
results in a new task Ti, j = (σi ∪σ j,δi ∪ δ j). Then Ti and Tj are
removed from τ and Ti, j is added to τ. After Ti or Tj that has a
shorter deadline is finished, the remaining task is added back to τ

with the remaining deadline.
Figure 5 is an example of the merging to improve routability of

three tasks. In Figure 5(a), T2 and T3 are routed, but T1 is not routed.
There are three possible combinations to merge two tasks out of
three as shown in Figures 5(b), (c), and (d). The CTI link usage out
of 12 CTI links is different depending on the combinations. The
number of unused CTI links directly affects the routability of the
other charge transfer tasks.

Most importantly, merging is not free. A merged task suffers effi-
ciency degradation due to single CTI voltage constraint. Therefore,
we have to consider not only the routabiltiy but also the efficiency
at same time. We discuss this matter in the Section 4.3.

4.3 Charge Transfer Optimization
The energy efficiency of a charge transfer is defined as ratio be-

tween the sum of the energy in all the EES banks after and before
the transfer. Recent works on EES systems show that the energy ef-
ficiency of charge transfers is significantly affected by the CTI volt-
age and amount of transfer current from/to participating nodes [3,
4, 5]. The goal of charge transfer optimization is to mitigate the

energy loss of charge transfer tasks by finding the best-suited CTI
voltage and current. The optimization process considers the effi-
ciency variation of the power converters according to the CTI volt-
age as well as electrical characteristics of all the EES elements. The
input of the optimization process is a merged task, and the results
are the CTI voltage, current from/to the nodes in σ and δ, and the
overall energy efficiency.

When two or more tasks are merged into one, they have to share
the CTI links that has a single voltage level. In case a task had sub-
stantially different CTI voltage from the CTI voltage after merging,
the charge transfer efficiency would be greatly deteriorated. We
choose the best task pairs to merge based on the optimal CTI volt-
age level similarity to avoid severe transfer efficiency degradation.

The power converter efficiency model and electrical character-
istics of the EES elements are complex nonlinear functions that
make the optimization process difficult. We adopt the derivation of
the optimal CTI voltage and transfer current similar to the methods
in the previous work [3, 4, 5] such as fractional optimization for
efficiency and ternary search for the optimal CTI voltage. We do
not discuss the detailed implementation of the optimization process
because it is out of focus of this paper.

5. SOLUTION METHOD

5.1 CTI Link Cost Evaluation
We present the proposed networked CTI routing algorithm in Al-

gorithm 1. The input of Algorithm 1 is the CTI network G and a set
of charge transfer tasks τ. Algorithm 1 iteratively performs rip-up
and rerouting the charge transfer tasks until all the tasks are routed.
The kernel of the routing algorithm is based on the negotiated con-
gestion (NC) routing algorithm in [12]. The cost of resources (CTI
links) gradually increases over iterations, and each charge transfer
task competes with others to occupy the resource. Only one charge
transfer task that is willing to pay the cost occupies the resource,
and the other tasks detour via other less-costly resources.

We first define the cost of resources taking into account the dis-
tinctive characteristics of the CTI routing problem. An edge e =
(u,v) is associated with a congestion cost c[e] that is defined as

c[e] = (b[e]+h[e]) · p[e], (2)

where b[e] is the base cost of the edge e, h[e] is the congestion
history cost and p[e] is the penalty due to the congestion at the
current iteration. The base cost b[e] is related with the unit cost
of charge transfer from u to v, and we set the base cost to 1. The
penalty p[e] is defined as

p[e] = 1+ pgradient ·u[e], (3)

where pgradient is a constant, and u[e] is the number of charge trans-
fer tasks that share the edge e. The congestion history cost h[e] in-
creases gradually after each iteration to increase cost of congested
edge and make the conflicting nets to avoid it. That is,

h[e] =
{

h[e]′ if u[e] = 0
h[e]′+hgradient · (u[e]−1) if u[e]≥ 1 , (4)

where h[e]′ is h[e] of the previous iteration, hgradient is a constant,
and h[e] is initially 0.

Only the congestion history cost is dependent on the number of
iterations by (4), and it is a non-decreasing function of the number
of iterations. This is because the nets to be routed do not change
over iterations in the signal routing, and so the congested resources
are likely to be congested again in subsequent iterations. This is not
the case for the CTI routing problem because we merge conflicting
tasks into one, and then the shared resources are not congested any

more. The cost of the previously shared edges are overestimated
if we do not decrease h[e] after they are merged. This leads to
other charge transfers to avoid using the released edges and results
in non-optimal routing results. Therefore, we reduce h[e] of edges
that have been congested by the merged tasks.

5.2 Conflict Graph
We define a conflict graph as Gc = (V c,Ec). There are k = |τ|

nodes in V c = {vc
1,v

c
2, . . . ,v

c
k}, and each vc

i is mapped to Ti. A con-
flict graph Gc is a complete graph, and each edge ec = (vc

i ,v
c
j)∈ Ec

is assigned with d[ec] which is conflict count between tasks Ti and
Tj. Initially, d[ec] is set to zero, and we increase d[ec] by n if the
tasks Ti and Tj share n CTI links. We define the sum of the conflict
counts of all the edges in a conflict graph Gc to be a conflict degree
D[Gc] such that

D[Gc] =
∑

ec∈Ec

d[ec], (5)

which is the metric of routability of a given task set.
We also use this conflict graph to prune away the task pairs that

do not increase the routability after merging. This is important to
efficiently find task pairs to merge by avoiding a situation of trying
all the pairs in every iteration. We try merging a pair of tasks, and
accept it if it increases the routability. We define that the routability
is improved if the conflict degree is reduced after merging by the
conflict count between merged transfer tasks or more. That is, we
accept the merging of Ti and Tj if

D[Gc′]≤ D[Gc]−d[(vc
i ,v

c
j)], (6)

or reject it otherwise. We mark an edge of rejected task pair with
r[ec] = 1 to indicate the task pair is previously rejected, and r[ec] =
0 otherwise.

We merge a pair of tasks Ti and Tj that have the least differ-
ence in the optimal CTI voltage if they conflict (d[(vc

i ,v
c
j)] > 0)

and have not been rejected previously (r[(vc
i ,v

c
j)] = 0). Merging the

two tasks results in a new conflict graph because two tasks Ti and
Tj is removed and a new task Ti, j is added. The new task is marked
not-to-be-merged (r[ec] = 1) with existing tasks if both the merged
tasks were marked not-to-be-merged with the tasks. The conflict
count d[ec] is reset to zero after merging. (Refer to Appendix A.1
for an example of the conflict graph management.)

5.3 Algorithm Description
The algorithm starts from initialization of the cost of e∈ E based

on (2), (3), and (4) in Line 1. Initially, u[e] = 0 for all e. It also ini-
tializes the conflict graph Gc in Line 2. We try routing and merging
until all the CTI links are not shared by multiple charge transfer
tasks in the loop through Lines 3–15. The loop in Lines 4–6 at-
tempts to route the given task set with the NC-router. The NC-
router repeats rip-up and rerouting for all the charge transfer tasks
while updating the edge cost c[e] in Line 5. We update the conflict
graph after one trial for the rip-up and rerouting for all the charge
transfer tasks in Line 6. These procedures are repeated until the
current task set τ is fully routed. The algorithm is terminated and
returns the routing results after the charge transfer optimization for
each task in Line 7 if the routing is successful.

We perform merging through Lines 8–15 if the routing fails. We
judge that the task set is not routable if routing attempt fails for a
certain number of iterations or a certain amount of runtime. The
previous merging is rejected in Line 10 if it fails to improve the
routability. If the previous merging is rejected, we restore the pre-
vious states of τ, Gc, and edge costs of E. We mark rejected pairs of
tasks at the edges (r[ec] = 1) in Line 11 so that they are not explored
in the future attempts for merging.

Algorithm 1: Networked CTI routing algorithm
Input: CTI graph G, Charge transfer task set τ

Output: Routing tree for each task with the optimal voltage
1 Initialize cost c
2 Initialize conflict graph Gc

3 while shared resource exists do
4 while routing retry conditions hold do
5 NC-route τ on Gcti with cost c
6 Update conflict graph Gc

7 Solve the charge transfer optimization problem for each
task

8 if routing failed then
9 if previous merging is not successful then

10 Reject the previous merging and restore τ, Gc, and
costs of E

11 Mark rejected pair of tasks in Gc

12 Save the current τ, Gc, and costs of E
13 Merge the two tasks and update τ

14 Update conflict graph Gc

15 Update costs of E

Merging tasks begins with saving the current states of τ, Gc, and
edge costs of E so that we can restore them when the merging is
rejected in Line 12. We utilize the conflict graph Gc to find candi-
date tasks to be merged as described in Section 5.2. We update Gc

and reset the conflict count d[ec] to zero after merging in Line 14.
We also update the cost c of CTI links based on the new CTI link
utilization after merging in Line 15.

6. EXPERIMENTS

6.1 Experimental Setup
We demonstrate examples of the proposed networked CTI archi-

tecture and evaluate the proposed CTI routing algorithm compared
with the state-of-the-art shared-bus CTI architecture in this section.
The proposed CTI routing algorithm is not restricted to a specific
topology, but we assume a CTI network of a regular-shape mesh-
grid for the demonstration purpose. All the EES banks are superca-
pacitor banks, and thus the terminal voltage of each bank is linearly
proportional to the state of charge and is initially different to each
other. The initial terminal voltage of the EES banks is randomly
determined between 15 V and 200 V.

The performance metric to be evaluated is the energy efficiency
of charge transfer tasks. The baseline method is the shared-bus
CTI architecture. We first begin with the charge transfers tasks that
are single-source-single-destination (SSSD) (|σi| = 1 and |δi| = 1
for all Ti). The SSSD transfers become multiple-source-multiple-
destination (MSMD) transfers after merging. We do not lose any
generality by assuming SSSD transfer tasks because the proposed
algorithm can handle arbitrary number of nodes in σ and δ.

We assume the followings in charge transfers in the experiments.
i) An SSSD transfer task defines the amount of energy into the
destination node. The amount of charge transfer is defined from
the destination side in an SSSD transfer task. The amount of en-
ergy from the source node is determined accordingly by the power
converter efficiency. ii) The amount of energy into the destination
nodes is kept the same in an MSMD transfer task after merging.
We keep the ratio of the amount of energy to be discharged from
each source the same.

Table 2: Routing results and efficiency of charge transfers in
networked CTIs. All the tasks are initially SSSD transfers.

Number of Energy efficiency
No.

Network
participating

Number of
Networked Shared-busgrid size

nodes
tasks change

CTI archi. CTI archi.
1 3-by-3 4 out of 9 2→ 2 88.5% 76.1%
2 3-by-3 8 out of 9 4→ 2 79.2% 73.4%
3 5-by-5 12 out of 25 6→ 6 81.2% 74.2%
4 5-by-5 18 out of 25 9→ 6 57.7% 57.3%
5 7-by-7 18 out of 49 9→ 8 81.6% 74.8%
6 7-by-7 38 out of 49 19→ 15 75.9% 68.7%

6.2 Experimental Results
We use 3-by-3 to 7-by-7 mesh-grid CTI networks with differ-

ent number of initial charge transfer tasks as benchmarks. Table 2
shows the number of nodes that participate in the charge transfer,
total number of nodes, number of tasks in the initial and final output
task sets, and the energy efficiency improvement compared with the
shared-bus CTI architecture.

Figure 6 shows the input and output of the proposed algorithm
with the benchmark No. 4 having a 5-by-5 CTI network and an
initial task set of nine SSSD tasks. The CTI algorithm performs
five times of routing and four times of merging (the last routing is
not followed by merging). Three merges are accepted and one is
rejected, and so the initial nine tasks are merged into six tasks as a
result of the routing. Figure 6(b) shows that tasks T1, T6, and T9 in
Figure 6(a) are merged into T1, and tasks T4 and T5 are merged into
T4. (Refer to Appendix A.2 for the detailed steps of routing.)

The experimental results show that the proposed routing algo-
rithm successfully routes the charge transfer tasks even the number
of tasks is large and the routing resources are limited. For exam-
ple, there are initially 19 SSSD tasks in the benchmark No. 6, and
so 38 nodes out of total 49 nodes participate in the charge trans-
fers, which results in a very congested CTI network routing. The
proposed algorithm merges only 4 of 19 tasks into other tasks and
achieves a 7.2% higher energy efficiency compared with the charge
transfers on a shared-bus CTI architecture. The energy efficiency
improvement is up to 12.4% for the example benchmark set.

It is shown that the efficiency improvement diminishes as more
number of tasks are merged. Benchmarks No. 1 and 2 end up with
two tasks in the end, but efficiency improvement is less significant
in No. 2 because we merge more number of tasks. It is the same
for the benchmarks No. 3 and 4 that both end up with six tasks
after merging. This is because more participating nodes in the same
number of tasks imply that there are more nodes that do not have
the optimal CTI voltage.

The energy efficiency improvement is significant when we con-
sider the initial voltages of the EES banks are totally randomly gen-
erated. In fact, the energy efficiency improvement may be minor as
in the benchmark No. 4 if the initial SSSD transfer tasks have a
large voltage difference between the source and destination nodes.
However, the benefit of the networked CTI architecture is larger
when the voltage difference between the source and destination
nodes is small in the initial charge transfer tasks before merging.

7. CONCLUSIONS
This paper introduced a networked charge transfer interconnect

(CTI) architecture for hybrid electrical energy storage (HEES) sys-
tems. The networked CTI architecture is capable of accommodat-
ing an increased number of EES banks with an excellent scalability.
We also described a CTI router, which is the basic building block
of the proposed networked CTI architecture. Since HEES sys-
tems with networked CTI architecture require sophisticated control

(a) Input CTI network and task set (b) Output routing tree and task set

2

2

4

1 3

9 6

5

7

5

1 4

7

3 9 6

4

1 3 2

1 1

4

7

4

1 2 4

7

3 1 1

8

8

8

8

Figure 6: An example of routing result of nine tasks on a 5-by-5
regular-shaped mesh-grid CTI network.

mechanisms, we presented a novel CTI routing algorithm that guar-
antees routability (despite routing congestion due to limited routing
resources) by developing the charge transfer merging technique.
The proposed CTI routing algorithm finds the routing paths for
charge transfers, performing energy-efficient merging of tasks not
to significantly degrade the overall energy efficiency. We showed
that the proposed networked CTI architecture significantly improves
the energy efficiency of the charge transfers by enabling multiple,
concurrent transfers with optimal CTI voltages in comparison with
the state-of-the-art shared-bus CTI architecture that all the charge
transfers should be merged on the bus. The experimental results
show that the proposed networked CTI architecture achieves up to
12.4% of energy efficiency improvement.

8. REFERENCES
[1] M. Pedram, N. Chang, Y. Kim, and Y. Wang, “Hybrid electrical

energy storage systems,” in ISLPED, 2010, pp. 363–368.
[2] F. Koushanfar, “Hierarchical hybrid power supply networks,” in

DAC, 2010, pp. 629–630.
[3] Q. Xie, Y. Wang, Y. Kim, N. Chang, and M. Pedram, “Charge

allocation for hybrid electrical energy storage systems,” in
CODES+ISSS, 2011, pp. 277–284.

[4] Q. Xie, Y. Wang, M. Pedram, Y. Kim, D. Shin, and N. Chang,
“Charge replacement in hybrid electrical energy storage systems,” in
ASP-DAC, 2012, pp. 627–632.

[5] Y. Wang, Y. Kim, Q. Xie, N. Chang, and M. Pedram, “Charge
migration efficiency optimization in hybrid electrical energy storage
(HEES) systems,” in ISLPED, 2011, pp. 103–108.

[6] D. Shin, Y. Kim, J. Seo, N. Chang, Y. Wang, and M. Pedram,
“Battery-supercapacitor hybrid system for high-rate pulsed load
applications,” in DATE, 2011, pp. 875–878.

[7] A. Mirhoseini and F. Koushanfar, “HypoEnergy. hybrid
supercapacitor-battery power-supply optimization for energy
efficiency,” in DATE, 2011, pp. 887–890.

[8] Y. Kim, Y. Wang, N. Chang, and M. Pedram, “Maximum power
transfer tracking for a photovoltaic-supercapacitor energy system,” in
ISLPED, 2010, pp. 307–312.

[9] Y. Kim, S. Park, Y. Wang, Q. Xie, N. Chang, M. Poncino, and
M. Pedram, “General balanced reconfiguration architecture for
electrical energy storage banks,” in ICCAD, 2011, pp. 624–631.

[10] D. Hill, “A CAD system for the design of field programmable gate
arrays,” in DAC, 1991, pp. 187–192.

[11] Y.-W. Chang, S. Thakur, K. Zhu, and D. F. Wong, “A new global
routing algorithm for FPGAs,” in ICCAD, 1994, pp. 356–361.

[12] L. McMurchie and C. Ebeling, “PathFinder: a negotiation-based
performance-driven router for FPGAs,” in FPGA, 1995, pp. 111–117.

[13] J. S. Swartz, V. Betz, and J. Rose, “A fast routability-driven router for
FPGAs,” in FPGA, 1998, pp. 140–149.

[14] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. M. Fang, and
J. Rose, “VPR 5.0: FPGA cad and architecture exploration tools with
single-driver routing, heterogeneity and process scaling,” in FPGA,
2009, pp. 133–142.

[15] Y. Choi, N. Chang, and T. Kim, “DC–DC converter-aware power
management for low-power embedded systems,” IEEE T. on CAD,
pp. 1367–1381, 2007.

APPENDIX
A.1 Conflict Graph Management Example

We give an example of task selection of tasks to be merged us-
ing a conflict graph and conflict graph update discussed in Sec-
tion 5.3. Figure A1 shows an example of conflict graph update
with four tasks. Figure A1(a) is the initial conflict graph Gc, and
Figure A1(b) is the updated conflict graph Gc′ after merging. Each
node corresponds to a charge transfer task. The three-tuple on each
edge is (∆V cti

opt ,d[e
c],r[ec]), where ∆V cti

opt is the difference of the op-
timal CTI voltages of two tasks, d[ec] is the conflict count between
two tasks, and r[ec] is the marking whether if the corresponding
merging is rejected previously.

(10 V, 1, 0)

(1 V, 2, 0)

(10 V, 10, 1)

(15 V, 5, 1)

(1 V, 0, 0)

(3 V, 3, 1)

(?, 0, 0)

(?, 0, 1)

(10 V, 0, 0)
Merging T2 and T4

T1 T2

T3 T4

T2,4

T3

T1

(a) Gc before merging (b) Gc0 after merging

Figure A1: Example of a conflict graph (a) before and (b) after
merging tasks T2 and T4. Each edge is annotated with a three-
tuple (∆V cti

opt ,d[e
c],r[ec]).

We find a pair of tasks to merge from Gc as follows:

• We do not consider the task pairs for merging if they had been
rejected before (r[ec] = 1). This condition excludes the task
pairs (T1, T4), (T2, T3) and (T3, T4).

• We do not consider the task pairs for merging if they are not
conflicting (d[ec] = 0). This condition excludes the task pair
(T1, T2).

• Remaining task pairs are (T1, T3) and (T2, T4).

• We pick (T2, T4) for merging because the CTI voltage differ-
ence is 1 V, which is smaller than 10 V of (T1, T3).

We update the conflict graph to Gc′ after the merging as follows:

• T2 and T4 are removed and T2,4 is added.

• All the conflict count d[ec] is reset to zero.

• Task pair (T1, T3) is not affected by the merging, and so ∆V cti
opt =

10 V and r[(vc
1,v

c
3)] = 0 for this pair remain the same.

• We increase d[ec] during the routing in Line 5 in Algorithm 1.

• ∆V cti for (T1, T2,4) and (T3, T2,4) is set to unknown because
the optimal CTI voltage for of T2,4 is not calculated yet. It is
calculated in Line 7 in Algorithm 1 after routing.

• We mark T2,4 merge-able with T1, i.e., r[(vc
1,v

c
2,4)] = 0 be-

cause T2 was merge-able before merging. On the other hand,
we mark T2,4 not-to-be-merged with T3, i.e., r[(vc

3,v
c
2,4)] =

1 because neither T2 nor T4 was merge-able with T3 before
merging.

Since D[Gc] = 21 and d[(vc
2,v

c
4)] = 2, merging T2 and T4 is ac-

cepted if D[Gc′]≤ 21−2 = 19 by (6), and the new conflict graph in
Figure A1(b) is used in the next iteration. Otherwise (if rejected),
we restore Gc, mark r[(vc

2,v
c
4)] to 1, and try merging the last re-

maining pair (T1, T3).

A.2 Routing Example
We show the detailed steps of CTI routing of Figure 6. The initial

charge transfer task set has nine SSSD tasks. The steps illustrated
in Figure A2 explain the iterations of the loop through Lines 3–15
of Algorithm 1 until the routing finishes. Figure A2(a) is the initial
state, and it goes through five iterations as shown in Figures A2(b)–
(f). The first merge is rejected and the following three merges are
accepted, resulting in six tasks.

Merge T4 and T5
into T4

(accepted)

2

2

4

1 3

9 6

5

7

5

1 4

7

3 9 6

8

8

2

2

4

1 3

9 6

5

7

5

1 4

7

3 9 6

8

8

2

2

4

1 3

9 6

2

7

1 4

7

3 9 6

8

8

2

2

4

1 3

4

7

1

7

3 9 68

9

8

4

2 4

6

2

4

1 3

4

7

1

7

3 1 68

8

4

2 4

61

2

4

1 3

4

7

1

7

3 18

2 4

1 41

1

8

1
2

3

4
9

6

5

7

8

1

2

3

4

9
6

5

7

8
20

1
8

7
9

1

18

14
1

1511

5
6

22

1 2

3
4

9

67

8
13

20 7

6

2

2

9

2

75 24
4

3
26 11

D[Gc] = 132

D[Gc] = 141

1

2

3

4

9

6

7 8

17
1 7

2

1
14 14

6

5

6
1

D[Gc] = 74

1

2

34

6

7

8

17

4

5

8
2

38

D[Gc] = 47

1 2

3

47

8

12

Merge T2 and T5
into T2

(rejected)

Merge T1 and T9
into T1

(accepted)

Merge T1 and T6
into T1

(accepted)

D[Gc] = 0

CTI network Conflict graph

(a)

(b)

(c)

(d)

(e)

(f)

Figure A2: Detailed steps of the CTI routing of Figure 6.

