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Abstract—Improving circuit realization of known quantum
algorithms by CAD techniques has benefits for quantum experi-
mentalists. In this paper, we address the problem of synthesizing
a given k-input, m-output lookup table (LUT) by a reversible
circuit. This problem has interesting applications in the Shor’s
number-factoring algorithm and in quantum walk on sparse
graphs. For LUT synthesis, our approach targets the number of
control lines in multiple-control Toffoli gates to reduce synthesis
cost. To achieve this, we propose a multi-level optimization
technique for reversible circuits to benefit from shared cofactors.
To reuse output qubits and/or zero-initialized ancillae, we un-
compute intermediate cofactors. Our simulations reveal that the
proposed LUT synthesis has a significant impact on reducing
the size of modular exponentiation circuits for Shor’s quantum
factoring algorithm, oracle circuits in quantum walk on sparse
graphs, and the well-known MCNC benchmarks.

Keywords-Lookup tables; Logic synthesis; Reversible circuits;
Shor’s quantum number-factoring algorithm; Binary welded tree.

I. INTRODUCTION

Quantum information processing has captivated atomic
and optical physicists as well as theoretical computer sci-
entists by promising a model of computation that can im-
prove the complexity class of several challenging problems
[1]. A key example is Shor’s quantum number-factoring
algorithm which factors a semiprime M with complexity
O((logM)3) on a quantum computer. The best-known clas-
sical factoring algorithm, the general number field sieve,
needs O(e(logM)1/3(log logM)2/3) time complexity. Other quan-
tum algorithms with superpolynomial speedup on a quantum
computer include quantum algorithms for discrete-log, Pell’s
equation, and walk on a binary welded tree [2].

Improving circuit realization of known quantum algorithms
— the focus of this work — is of a particular interest for
lab experiments. In 2000, researchers implemented Shor’s
number-factoring algorithm to factor the number 15 [3]. In
March 2012, physicists published the first quantum algorithm
that can factor a three-digit integer, 143 [4]. CAD algorithms
and tools are required to help with physical circuit realization
even for a few number of qubits and gates. For example,
a previous method in [5] required at least 14 qubits to
factor the number 143. This exceeds the limitation of current
quantum computation technology. Accordingly, [4] introduced
an optimization approach to reduce the number of total qubits.

In this paper, we propose an automatic technique to synthe-
size a specific type of quantum circuits that has applications in,
at least, quantum circuits for number factoring and quantum
walk [6]. In particular, we aim to synthesize a given lookup
table (LUT) by reversible gates. Following [7], a (k,m)-
lookup table takes k read-only inputs and m > log2 k zero-
initialized ancillae (outputs). For each 2k input combination,
a (k,m)-LUT produces a pre-determined m-bit value. In
[7], Markov and Saeedi showed LUT synthesis can improve
modular exponentiation circuits for Shor’s algorithm. In this
paper, we will show LUT synthesis can also improve practical
implementation of a quantum walk on graphs. Additionally,
we will discuss how LUT synthesis can improve the costs of
irreversible benchmarks. The rest of the paper is organized as
follows. In Section II, basic concepts are introduced. Section
III presents different applications for LUT synthesis. Related
works are discussed in Section IV. We propose LUT synthesis
approach in Section V. Experimental results are given in
Section VI, and finally Section VII concludes the paper.

II. BASIC CONCEPT

Boolean Logic. The set of n variables of a Boolean function
is denoted as x0, x1, · · · , xn−1. For a variable x, x and x̄
are literals. A Boolean product, cube, is a conjunction of
literals where x and x̄ do not appear at the same time. A
minterm is a cube in which each of the n variables appear
once, in either its complemented or un-complemented form.
A sum term in which each of the n variables appears once is
called a maxterm. A sum-of-product (SOP) Boolean expression
is a disjunction (OR) of a set of cubes. A product-of-sum
(POS) expression is a conjunction (AND) of maxterms. An
exclusive-or-sum-of-product (ESOP) representation is an XOR
(modulo-2 addition) of a set of cubes. For a given function, the
subfunction which results from replacing a variable by 1 (for
sum-of-product) or 0 (for product-of-sum) is called a cofactor.
For a finite set A, a one-to-one and onto (bijective) function
f : A → A is a permutation, which is called a reversible
function. Among

∑n
i=1 (2i)

2n ' 2n2
n

irreversible multiple-
output (from 1 to n) functions, 2n! distinct reversible functions
exist. To convert an irreversible specification to a reversible
function, input/output should be added.

Quantum Bit and Register. A quantum bit, qubit, can be
treated as a mathematical object that represents a quantum
state with two basic states |0〉 and |1〉. It can also carry a
linear combination |ψ〉 = α|0〉 + β|1〉 of its basic states,978-3-9815370-0-0/DATE13/ c©2013 EDAA



called a superposition, where α and β are complex numbers
and |α|2+|β|2=1. Although a qubit can carry any norm-
preserving linear combination of its basic states, when a qubit
is measured, its state collapses into either |0〉 or |1〉 with
probabilities |α|2 and |β|2, respectively. A quantum register
of size n is an ordered collection of n qubits. Apart from the
measurements that are commonly delayed until the end of a
computation, all quantum computations are reversible.

Quantum Gates and Circuits. A matrix U is unitary
if UU† = I where U† is the conjugate transpose of U
and I is the identity matrix. An n-qubit quantum gate is a
device which performs a 2n × 2n unitary operation U on
n qubits in a specific period of time. For a gate g with a
unitary matrix Ug , its inverse gate g−1 implements the unitary
matrix U−1g . A reversible gate/operation is a 0-1 unitary, and
reversible circuits are those composed with reversible gates.
A reversible gate realizes a reversible function. A multiple-
control Toffoli gate CnNOT (x1, x2, · · · , xn+1) passes the first
n qubits unchanged. These qubits are referred to as controls.
This gate flips the value of (n+ 1)st qubit if and only if the
control lines are all one (positive controls). Therefore, action
of the multiple-control Toffoli gate may be defined as follows:
xi(out) = xi(i < n + 1), xn+1(out) = x1x2 · · ·xn ⊕ xn+1.
Negative controls may be applied similarly. For n = 0, n = 1,
and n = 2 the gates are called NOT, CNOT, and Toffoli,
respectively. The lines which are added to make an irreversible
specification, reversible are named ancillae which normally
start with 0. The zero-initialized ancillae may be modified
inside a given subcircuit, but should be returned to zero at
the end of computation to be reused.

Cost Model. Quantum cost (QC) is the number of NOT,
CNOT, and controlled square-root-of-NOT gates required for
implementing a given reversible function. QC of a circuit
is calculated by a summation over the QCs of its gates. In
addition to the QC model, a single-number cost based on the
number of two-qubit operations required to simulate a given
gate was proposed in [8]. This model captures the complexity
of physical implementation of a given gate based on the Hamil-
tonian describing the underlying quantum physical system. In
particular, it estimates the cost of a CnNOT (and n ≥ 2) as
2n− 5 3-qubit Toffoli gates (and 10n− 15 2-qubit gates).

III. POSSIBLE APPLICATIONS OF LUT SYNTHESIS

Specific reversible circuits must be motivated by applica-
tions [9]. In the following, we introduce several applications
of LUT synthesis in quantum computation.

A. Quantum Algorithm for Number Factoring

Shor’s quantum number factoring uses quantum circuit for
modular exponentiation bx%M (% is modulo operation) for
a semiprime M = pq for primes p and q and a randomly
selected number b. Modular exponentiation is performed
by n conditional modular multiplications Cx%M where C
and M are coprime. Precisely, for the binary expansion
x = xn2n + xn−12n−1 + . . . + x0 (and xi is 0 or 1),
bx%M = bxn2

n × bxn−12
n−1 × . . . × bx0%M . Hence, one

needs to implement multiplication by b2
n

%M conditioned on

xn, multiplication by b2
n−1

%M conditioned on xn−1, . . . , and
multiplication by b%M conditioned on x0, in sequence. In
[7, Section 7.2], the authors introduced one (k,m)-LUT (for
k = 4) to implement the (four) most expensive conditional
modular multiplications that appear in modular exponentiation
to reduce total cost. For example [7, Figure 15], implemented
conditional modular multiplications by 4, 16, 82, and 25 in
modular exponentiation for b = 2, M = 87 = 3 × 29 by
a systematic method. The related outputs of this (4,7)-LUT
are 1, 4, 16, 64, 82, 67, 7, 28, 25, 13, 52, 34, 49, 22, 1,
and 4 which results from considering different combinations
(by multiplication) of 4, 16, 82, and 25 %87. Except for the
four most expensive modular multiplications, other modular
multiplications are implemented directly in [7]. In this work,
we propose an automatic LUT synthesis method that can
further improve modular exponentiation circuits.

B. Quantum Walk for Sparse Graphs

In [10, Thereom 1], the authors proposed a polynomial-size
circuit for quantum walk on a sparse graph with 2n nodes and
with adjacency matrix P . A graph is sparse if each node has
at most d transitions (or edges) to other nodes. To propose
the circuit, the authors assumed (1) there is a polynomial-
size reversible circuit returning the list of (at most d) n-
bit neighbors of the node x according to P (2) there is a
polynomial-size reversible circuit returning the list of (at most
d) t-bit precision transition probabilities. Our LUT synthesis
can be used to construct circuits for (1) and (2).

C. Quantum Walk on Binary Welded Tree

As a special case of quantum walk on sparse graphs, one can
consider a binary welded tree. A binary welded tree (BWT)
is a graph which consists of two binary trees that are welded
together with a random function between the leaves. Fig 1-
a shows a sample BWT. In a BWT every node has degree
three except the root of each tree (which has degree two).
A BWT has 2(2n+1 − 1) nodes for a binary tree of height n.
Therefore, strings of m > dlog2 2(2n+1−1)e bits are required
to represent each node uniquely (minimum m is n + 2). All
edges of a node in a BWT are uniquely colored and each color
is denoted by c. The number of colors used in a BWT is at
least 3 and at most 4 (by Vizing’s theorem for graph coloring).

In [6], Childs et al. proposed an oracle-based quantum walk
algorithm on BWT that is exponentially faster, with O(n)
oracle queries, on a quantum computer than on a classical
computer. The best-known classical algorithm needs O(2n)
oracle queries. The oracle function vc(a) takes as input the
node label a and an edge color c, and returns the label
vc(a) of a node that is connected to node a. As an example
for the BWT in Fig. 1-a and c=black, we have (Fig. 1-b)
vc(7) = 16, vc(8) = 17, vc(9) = 15, vc(11) = 19, vc(12) =

22, vc(13) = 18, vc(14) = 20 (and vice versa, e.g., vc(16) = 7).1

If there is no connection to a with color c, the oracle returns
the unique label invalid. In [6], this unique value is all

1Permutations in BWT include 2-cycles. For a synthesis algorithm that
extensively works with cycles see [11].
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2-cycles for black edges:

(7,16), (8,17), (9,15), (11,19),
(12,22), (13,18), (14,20).

(a) (b)

a0 • • • • • • • a0

a1 • • • • • • • a1

a2 • • • • • • • a2

a3 • • • • • • • a3

a4 • • • • • • a4

|0〉 y0

|0〉 y1

|0〉 y2

|0〉 y3

|0〉 y4

(c)

Fig. 1: (a) A sample binary welded tree. (b) Lookup table of the
oracle for black edges. A 2-cycle (a, b) is a permutation which
exchanges two elements and keeps all others fixed. (c) An oracle
implementation. In general, one needs l CkNOT gates to implement
each minterm where l is the number of bits with value 1 in the binary
representation of the minterm. For example, the first gate implements
16 (i.e., “10000” in binary) for 7 (i.e., “00111” in control lines — two
negative and three positive controls). The second gate implements 7
(i.e., “00111” which needs three target lines) for 16 (i.e., “10000” in
control lines). Other gates can be constructed similarly.

ones. Outputs should be constructed on a septate register
so that input register remains unchanged for future queries.
Note that in a physical implementation, besides the number of
queries to the oracle, the computation performed by the oracle
also affects runtime. Accordingly, we use LUT synthesis to
improve the physical implementation of a given oracle circuit.

IV. RELATED WORK

A trivial approach for LUT synthesis is to implement each
input combination of a (k,m)-LUT with at most m CkNOT
gates. For example, reconsider the BWT in Fig. 1-a where
the circuit in Fig. 1-c constructs the oracle. To handle the
INVALID label, initialize outputs to all ones and flip target
locations in Fig. 1-c. However, large number of Toffoli gates
with many controls are expensive for physical implementation.

ESOP-based approaches [12], [13] are fast and are able to
handle large sizes of both reversible and irreversible functions.
The basic idea is to write each output as an ESOP represen-
tation and implement each term by a multiple-control Toffoli
gate [12]. In the recent years, several improved ESOP-based
approaches, e.g., [13], have been proposed which use shared
product terms (cubes) to reduce the number of Toffoli gates.
However, these approaches usually lead to expensive multiple-
control Toffoli gates with many controls.

Reversible logic synthesis methods [9] can also be used to
synthesize a given (m,m)-LUT. To this end, input register
should be copied (by m CNOT gates) into output register so
that inputs remain unchanged. However, these approaches are
general and may not exploit LUT structures for cost reduction.

Other approaches are based on Davio decompositions2 which
include the method in [7] for (4,m)-LUT synthesis and the
method in [14]. Method in [7] uses cofactors for multi-level
optimization in logic synthesis but it is limited to (4,m)-LUT
implementation. By assuming that the factors have already
been computed on dedicated ancillae, [14] implements the
Davio decompositions. It leads to numerous ancillae.

V. THE PROPOSED SYNTHESIS ALGORITHM

Multi-level logic synthesis for irreversible functions has a
rich history. However, conventional logic-synthesis approaches
cannot be immediately used for cofactor extraction and multi-
level circuit realization in reversible circuits. Basically, in a
multi-level implementation of a set of functions, it is allowed
to use an unlimited number of intermediate signals. This is due
to the fact that intermediate signals in classical circuits can
be realized with low cost. However, in quantum circuits each
intermediate signal should be constructed on one qubit3 and
the number of qubits in current quantum technologies is very
limited. In this section, we proposed some techniques to reduce
the number of ancillae required in a multi-level optimization.

Un-computation. A common approach to exploit cofactors
in circuit realization for reversible circuits is to construct
an intermediate signal on a zero-initialized ancilla and use
it to optimize different outputs. This process should be fol-
lowed by un-computing the constructed cofactor to recover
the zero-initialized ancilla for future use. The reason for un-
computation is twofold. (1) Without un-computation, each co-
factor needs a new ancilla (qubit) and the number of available
qubits is very restricted in current quantum technologies. (2)
Constructing a zero state from an unknown quantum state
generally needs an exponential number of gates [15].

Cube sharing. As done in [13], common cubes among dif-
ferent functions may be shared to avoid multiple constructions
of the same cube. It can be performed by constructing the
shared cube once and copying the result by several CNOTs.
For a reversible function with several outputs, each cube
appears at least once in one output. So, it is possible to
construct this cube on the related output line. Cube sharing can
reduce the number of Toffoli gates, but it leaves the number of
controls as is. The recent ESOP-based optimization methods
for reversible circuits, e.g., [13], restrict circuit optimization
to use only the cubes which exist in ESOP representation of
a given function. However, their performance can be limited.
For example, consider y0 = ab and y1 = abc. Note that each
cube appears once. Therefore, no cube can be shared. Fig. 2-a
shows a circuit with one C2NOT and one C3NOT.

Cofactorization. Relaxing the constraint of sharing avail-
able cubes promises a significant cost reduction. As an exam-
ple for the circuit shown in Fig. 2-a, it is possible to reuse
the cofactor ab twice. This can be done by constructing the
cofactor ab on y0 (Fig. 2-b), and reusing it to construct abc
on y1. For a given function, the number of possible cofactors

2Positive Davio and negative Davio decompositions are defined by f =
fxi=0⊕xi.fxi=2 and f = fxi=1⊕x̄i.fxi=2 for fxi=2 = fxi=0⊕fxi=1.

3Recall that reversible functions are unitary transformation. As a result,
explicit fanouts and loops/feedback are prohibited.
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|0〉 y0 |0〉 • y0

|0〉 y1 |0〉 y1

(a) (b)

Fig. 2: Circuits for y0 = ab, y1 = abc, (a) without cofactor sharing,
(b) with cofactor sharing.

a • • a a • • a a • • a

b • • b b • • b b • • b

c • c c • c c • • c

d • d d • d d • • d

|0〉 y0 |0〉 y0 |0〉 y0

|0〉 y1 |0〉 y1 |0〉 y1

|0〉 |0〉 |0〉 • • |0〉 c1 • • • • c1

(a) (b) (c)

Fig. 3: Circuits for function y0 = abc, y1 = abd. (a) Initial circuit. (b)
An equivalent circuit constructed by reusing ab as a shared cofactor.
(c) Circuit in (a) when no zero-initialized extra qubit exists. Gates in
dashed box are used to un-compute the cofactor ab.

can be very large. Accordingly, finding the most appropriate
set of cofactors is a challenging problem.4

Copying. A shared cofactor can be constructed on a zero-
initialized ancilla by a subcircuit C. To reuse the ancilla, one
needs to un-compute the constructed cofactor by applying C−1

(the inverse5 of C). As an example, consider y0 = abc, y1 =
abd. Fig. 3-a shows the circuit. As done in Fig. 3-b, one
can temporarily construct the cofactor ab on a zero-initialized
ancilla (the first gate), and use it to construct dependent cubes
(gates #2 & #3). The constructed cofactor is un-computed
finally. Generally, following this path leads to an optimized
circuit but it adds an ancilla. To overcome, we use output
lines with any arbitrary Boolean value to construct cofactors by
adding one extra gate. Consider Fig. 4-a with two qubits with
initial values c1 and |0〉. Assume that f and g are two cofactors
(their actual circuits are not shown) and the goal is to construct
c1 ⊕ fg on the first qubit. Fig. 4-a illustrates the circuit by
constructing the cofactor f . Now, assume that the value in the
second qubit is any arbitrary Boolean value c2. To remove
the effect of c2, we add one extra gate before constructing
the cofactor f . See Fig. 4-b for detail. Un-computation can
be done by reapplying the circuit for f . Fig. 3-c shows an
example for the circuits in Fig. 3-a and Fig. 3-b. Clearly, for
g = 1 (which leads to applying CNOT for gates which use
g), circuits in Fig. 4 copy f from the second qubit to the
first qubit. For other nontrivial cases, this circuit may be a
generalized copying circuit.

Cofactor list. For a (k,m)-LUT with input variables xi
and output variables yj (0 ≤ i < k, 0 ≤ j < m), we use a
row vector [α0, . . . , αk−1, β0, . . . , βm−1] to represent a cube

4Constructing cofactors may need un-computation. This problem is more
challenging in reversible logic as compared to its conventional counterpart.

5To implement C−1 for C with only multiple-control Toffoli gates, one
needs to apply gates in the reverse order.

f g g f g

c1 c1 ⊕ fg c1 c1 ⊕ fg
|0〉 • f c2 • • c2 ⊕ f

(a) (b)

Fig. 4: Copying a cofactor by at most two gates, (a) with a zero-
initialized ancilla, (b) without a zero-initialized ancilla.

TABLE I: cube_list for the (3,6)-LUT given in Example 5.1.

Cube C α0 α1 α2 β0 β1 β2 β3 β4 β5
x′0x
′
1x
′
2 0 0 0 1 0 0 0 0 0

x′0x1x2 0 1 1 1 1 1 1 0 0
x0x′1x2 1 0 1 1 0 0 0 0 0
x0x′1x

′
2 1 0 0 0 1 0 1 0 0

x′0x1x
′
2 0 1 0 0 0 1 0 0 1

x0x1x2 1 1 1 0 0 1 0 0 1
x′0x2 0 2 1 0 0 0 0 1 0
x0x′2 1 2 0 0 0 0 0 1 0

TABLE II: shared_cofactor_list for Example 5.1.

Shared cofactor Frequency Dependent cubes
x′1x
′
2 3 x′0x

′
1x
′
2, x0x

′
1x
′
2

x′0x
′
2 3 x′0x

′
1x
′
2, x
′
0x1x

′
2

x′0x1 6 x′0x1x2, x
′
0x1x

′
2

x1x2 6 x′0x
′
1x
′
2, x0x

′
1x
′
2

x′0x2 5 x′0x1x2, x
′
0x2

x0x′1 3 x0x′1x2, x0x
′
1x
′
2

x0x2 3 x0x′1x2, x0x1x2
x0x′2 3 x0x′1x

′
2, x0x

′
2

C [16, Section 2.3]. In this notation, αi = 0 if xi appears as
complemented, αi = 1 if xi appears as un-complemented, and
αi = 2 if xi does not exist in C. Additionally, βj = 0 if C is
not available in yj , and βj = 1 if C is available in yj . We use
a tabular format, cube_list, to store all cubes. For n cubes,
the maximal shared cofactors between all cubes can be found
by at most n2 comparisons. Shared cofactors are stored by
another tabular format, called shared_cofactor_list,
which keeps the frequency of each shared cofactor and its
dependent cubes.

Example 5.1: Consider a 3-input, 6-output LUT with equa-
tions y0 = x′0x

′
1x
′
2+x′0x1x2+x0x

′
1x2, y1 = x′0x1x2+x0x

′
1x
′
2,

y2 = x′0x1x
′
2 + x′0x1x2 + x0x1x2, y3 = x′0x1x2 + x0x

′
1x
′
2,

y4 = x′0x2 + x0x
′
2, and y5 = x′0x1x

′
2 + x0x1x2. It

can be verified that this LUT has eight unique cubes with
the cube_list shown in Table I. Table II illustrates the
shared_cofactor_list.

Synthesis. To synthesize a (k,m)-LUT, we pick a shared
cofactor from shared_cofactor_list. If the shared co-
factor is also a cube in one of the outputs, it will be constructed
on the respective output directly. Otherwise, a temporary
output line that is not used at this step will be selected.
However, if a cube should be constructed on all outputs, no
temporary output is left for construction. In this case, an
ancilla line is required. After constructing a shared cofactor
on one output, all dependent cubes are constructed which
leads to a one-time construction of the selected cofactor. Next,
the dependent cubes and shared cofactors are removed from
cube_list and shared_cofactor_list, respectively.
This process is continued until no shared cofactor exists. Next,
remaining cubes are constructed on respective outputs. To
construct a shared cofactor, we always prefer to use one output
with value 0 (Fig 4-a). However, we may not be able to find



such an empty line after applying several gates. In those cases,
the idea of Fig. 4-b will be applied.

Lookahead. The order in which shared cofactors are pro-
cessed affects the final circuit. To handle both the search space
complexity and the quality of results, we use a lookahead-
based approach with depth d. Accordingly, we start from a
given function at level i and try all possible shared cofactors.
This process is repeated for all resulting functions at level i,
i + 1, ..., i + d. Therefore, the algorithm explores at most
Nd shared cofactors, if at most N shared cofactors exist at
each level. Based on the achieved results at level i + d, the
algorithm selects the best possible cofactor and backtracks to
level i. Then, the algorithm applies the selected cofactor and
repeats the same approach at level i+ 1.

The proposed LUT synthesis approach is shown in Al-
gorithm 1. Lines 1-2 construct the required lists, lines 8-11
discuss synthesis, and lines 5-7 are related to lookahead.

Algorithm 1 LUT Synthesis

Input: A (k,m)-LUT with lookahead depth d.
Output: A quantum circuit that generates the LUT.

1: cube_list.construct();
2: shared_cofactor_list.construct();
3: cost = 0;
4: while ( !shared_cofactor_list.empty() ) do
5: tree=construct search tree();
6: min cost path=tree.exhaustive search(d);
7: cofactor f = min cost path.extract first node();
8: f .implement circuit();
9: cost = cost + f .cost;

10: cube list.update(f );
11: shared cofactor list.update(f );
12: end while
13: rCost = construct remaining cubes();
14: cost = cost + rCost;

VI. EXPERIMENTAL RESULTS

We implemented the proposed LUT synthesis method in
C++. To evaluate, we applied three different experiments.
• We compared our synthesis results with the systematic

method in [7, Section 7.2] for those LUTs that appear
in Shor’s algorithm. These LUTs are the four costliest
modular multiplications for semiprime M values with 9
bits or less in [7, Table 8]. The single-number cost model
is used in both methods for comparison.

• We used the MCNC benchmarks from [17] and compared
our results with the method in [13], which is one the
most recent ESOP-based synthesis methods. Since the
method in [13] reported quantum cost for their results,
we included the quantum cost of our synthesized results
for the MCNC benchmarks.

• Since we could not find relevant synthesized results for
the binary welded tree in the literature, we synthesized
oracle functions in Fig. 1 for black, red, green, and blue
colors and applied the method in [14] implemented in
[18] for the purpose of comparison.

We used EXORCISM-4 [17] to initially construct an ESOP
representation for a given LUT and used it for synthesis.
Furthermore, at most one ancilla is used in all circuits with a
3-level lookahead (i.e. d = 3). To control runtime, we limited
the number of visited shared cofactors (i.e. N ) at each level
of lookahead. All experiments were done on an Intel Core
i7-2600 machine with 8GB memory.

Table III shows the results of synthesizing LUTs for modu-
lar multiplications in Shor’s algorithm. Besides the semiprime
value M , for each method a triplet (T , C,cost) is reported,
where T and C are the number of C2NOT (Toffoli) and
CNOT gates, respectively. The value cost is reported based
on the single-number cost model [8]. On average, our proposed
algorithm reduces the total cost by 52%. The synthesized
circuit for M = 65 is shown in Figure 5. As shown, a post-
synthesis optimization method may further improve the results.

To evaluate the proposed method in synthesizing irreversible
functions, we used the MCNC benchmarks from [17] and
compared our results with the results of [13]. Since in [13],
quantum cost was used to calculate the synthesis cost, we
used the same cost model. Synthesized results for the MCNC
benchmarks are reported in Table IV. On average, our exper-
iments show 28% improvement for the MCNC benchmarks.

We also examined the proposed approach in synthesizing the
oracle functions of the binary welded tree in Fig. 1. Synthesis
results for different oracle functions are reported in Table V.
Quantum cost and the number of ancillae are compared. As
can be seen, our method leads to more compact circuits with
only one ancilla as compared to the method in [14].

VII. CONCLUSION

We addressed the problem of synthesizing a given LUT by
reversible gates. Our algorithm is based on sharing possible
cofactors and it tries different cofactors at each step with a
lookahead to reduce cost. To construct cofactors on a limited
number of qubits, the algorithm uses cofactor construction
with un-computation. Our experiments showed the proposed
method can significantly (52% on average) improve the syn-
thesis cost of a recent method for those LUTs that appear
in Shor’s factoring algorithm. The results of applying the
proposed method on the MCNC benchmarks show a consid-
erable improvement in cost (28% on average) as compared
with a recent ESOP-based method. We also showed that LUT
synthesis can improve oracle of a binary welded tree.
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Fig. 5: The result of applying the proposed synthesis algorithm to synthesize the (4, 7)-LUT in Shor’s algorithm for M = 65. The ESOP
expansion for outputs can be represented as y0 = 0, y1 = ab′c′⊕a′bd, y2 = ab′⊕a′bc′⊕acd⊕b′cd, y3 = ab′d⊕ab′c′⊕c, y4 = ab′⊕a′bcd′,
y5 = ab′d⊕ a′bcd′ ⊕ acd⊕ b′cd⊕ a′bd⊕ c′d, y6 = d′ ⊕ a′bc′ ⊕ a′bcd′ ⊕ acd⊕ b′cd⊕ c′d. Shared cofactors are highlighted with dotted
boxes. As shown in the dashed box, a post-synthesis optimization can further improve the circuit.

TABLE IV: Synthesis results for the MCNC Benchmarks. On average, the results of [13] are improved by 28%. Runtime results vary from
a few seconds for small functions to about 5 minutes for large functions. Our method uses at most one ancilla.

Circuit [13] Our Imp. Circuit [13] Our Imp. Circuit [13] Our Imp. Circuit [13] Our Imp. Circuit [13] Our Imp.
Method (%) Method (%) Method (%) Method (%) Method (%)

5xp1 786 576 27 9symml 10943 3068 72 alu4 41127 33191 19 apex4 35840 28313 21 apex5 33830 20935 38
apla 1683 1026 39 bw 637 616 3 cordic 187620 90100 52 C7552 399 253 37 clip 3824 2657 31
cm42a 161 120 25 cu 781 365 53 dc1 127 109 14 dc2 1084 736 32 decod 399 253 37
dist 3700 2412 35 dk17 1014 623 39 ex1010 52788 43543 18 ex5p 3547 2566 28 f2 112 84 25
f51m 28382 23212 18 frg2 112008 97837 13 ham7 67 65 3 hwb8 8195 6108 25 in0 7949 6885 13
inc 892 624 30 misex1 332 218 34 misex3c 49720 42349 15 misex3 49076 40470 18 mlp4 2496 1784 29
pdc 30962 27098 12 root 1811 1210 33 sao2 3767 1484 61 seq 33991 23034 32 sqr6 583 494 15
urf3 53157 45014 15 wim 139 97 30 z4ml 489 402 18

[2] D. Bacon and W. van Dam, “Recent progress in quantum algorithms,”
Commun. ACM, vol. 53, pp. 84–93, Feb. 2010.

[3] L. M. K. Vandersypen et al., “Experimental realization of an order-
finding algorithm with an NMR quantum computer,” Phys. Rev. Lett.,
vol. 85, pp. 5452–5455, Dec. 2000.

[4] N. Xu et al., “Quantum factorization of 143 on a dipolar-coupling
nuclear magnetic resonance system,” Phys. Rev. Lett., vol. 108, p.
130501, Mar. 2012.
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