USC

CAD

An Interleaved Dual-Battery Power Supply for Battery-Operated Electronics

Qing Wu, Qinru Qiu and Massoud Pedram

Department of Electrical Engineering-Systems University of Southern California Los Angeles, California 90089, USA

Massoud Pedram

Introduction

- Background
- Analysis of Optimal Supply Voltage
- Design of Interleaved Dual-Battery Power Supply
- Conclusions

Batteries in Mobile/Portable Electronics

Extending the battery service life for mobile electronics is a major motivation for low power design

Battery Power Supply System

In reality, the battery discharge rate is super-linearly related to the average power consumption in the VLSI circuit

Low Power Design Metrics

Energy-delay (E-D) product [M. Horowitz, et al, 1994]

- Measures circuit speed for energy dissipation per operation
- Does not consider the characteristics of the battery power supply system
- Battery discharge-delay (BD-D) product [M. Pedram, et al, 1999]
 - Measures circuit speed for battery discharge per operation
 - Only considers the current-capacity characteristics of the battery

In This Paper

Further analysis of the BD-D product

- Considers the current-voltage characteristics of the battery, in addition to its current-capacity characteristics
- Design of an Interleaved Dual-Battery (IDB) power supply system
 - Uses two batteries of different current-capacity characteristics
 - Calculates the optimal combination of the two battery types
 - Increases the battery life time

Battery Characteristics

Current-capacity

Current-voltage

An Analytical Model

Actual battery energy discharge

Efficiency factor (current-capacity relation)

 $\mu = 1 - \beta \cdot I_0$

Output voltage function (current-voltage relation) $V_0 = V^{OC} - \gamma \cdot I_0$

 $E^{act} = \frac{V_0 \cdot I_0 \cdot T}{\mu}, \quad 0 \le \mu \le 1$

Conversion efficiency equation (DC/DC converter)

 $\eta \cdot V_0 \cdot I_0 = V_{dd} \cdot I_{dd}$

Battery Discharge (BD)

Definition

 $BD = \frac{E^{act}}{CAP_0} = \frac{V_0(I_0) \cdot I_0 \cdot T}{CAP_0 \cdot \mu(I_0)}$

Energy dissipation of the VLSI circuit

$$V_{dd} \cdot I_{dd} \cdot T = \frac{1}{2}C_{sw} \cdot V_{dd}^2$$

BD as a function of V_{dd} and I_0 $BD = \frac{C_{SW}}{2 \cdot \eta \cdot CAP_0} \cdot \frac{V_{dd}^2}{1 - \beta \cdot I_0}$

Calculating the Battery Discharge Current

Relation between V_{dd} and I_0

$$\eta \cdot (V^{OC} - \gamma \cdot I_0) \cdot I_0 \cdot T = \frac{1}{2} C_{sw} \cdot V_{dd}^2$$

I_0 as a function of V_{dd}

$$I_{0} = \frac{\eta \cdot V^{OC} - \sqrt{\eta^{2} \cdot (V^{OC})^{2} - 2 \cdot \eta \cdot \gamma \cdot C_{sw} \cdot V_{dd}^{2} / T}}{2 \cdot \eta \cdot \gamma}$$

BD-Delay (BD-D) Product

Delay of CMOS circuits

$$t_d = m \frac{V_{dd}}{(V_{dd} - V_{th})^{\alpha}}, \qquad 1 <$$

 $\alpha \leq 2$

BD-D product

$$BD-D = \frac{m \cdot C_{sw}}{2 \cdot \eta \cdot CAP_0} \cdot \frac{V_{dd}^3}{(1 - \beta \cdot I_0) \cdot (V_{dd} - V_{th})^{\alpha}}$$

Determining the Cycle Time

Assuming clock cycle time is proportional to circuit delay

$$T \propto t_d \Rightarrow T = m' \frac{V_{dd}}{(V_{dd} - V_{th})^{\alpha}}, \qquad 1 < \alpha \le 2$$

Complete expression for battery discharge current

$$I_{0} = \frac{\eta \cdot V^{OC} - \sqrt{\eta^{2} \cdot (V^{OC})^{2} - 2 \cdot \eta \cdot \gamma \cdot C_{sw} \cdot V_{dd} \cdot (V_{dd} - V_{th})^{\alpha} / m'}{2 \cdot \eta \cdot \gamma}$$

By substituting I_0 in the expression for BD-D, we can obtain a complicated expression for BD-D in which V_{dd} is the only variable.

An Example

Assume a VLSI circuit consumes 13.5W power at supply voltage of 1.5V

Parameter	Value	Comment
V ₀	4V	Typical lithium battery
η	0.9	Typical DC/DC converter
C _{sw} /m'	21	Calculated
α	1.5	Typical CMOS technology
V _{th}	0.6	Typical CMOS technology
т.С _{sw} 2.η.САР _о	1	Normalized

 $\beta = \{0, 0.05, 0.1, 0.15\}$ $\gamma = \{0, 0.15, 0.3\}$

BD-D Curves

BD-D product

 $\beta = 0.1, \gamma = 0.3$ $\beta = 0.1, \gamma = 0.15$ $\beta = 0.1, \gamma = 0$ $\beta = 0.05, \gamma = 0.3$

 $\beta = 0.15, \gamma = 0.3$

 $\beta=0, \gamma=0$ (ideal case)

 $V_{dd}(\mathbf{V})$

Batteries with Different Characteristics

bobbin cell

spiral cell

Block Diagram for the IDB Power Supply System

Design Problem Statement

Given:

- Two batteries with different current-capacity characteristics
- Current dissipation profile of the VLSI circuit
- A volume (or weight) limit (normalized to 1) for the power supply
- Divide the total battery volume (or weight) between these two battery types such that the service life of the IDB power supply system is maximized

Analysis Setup

Battery Service Life (BSL) RSI = 1/I

 $BSL = 1 / I_{ave}^{act}$

Single Battery Power Supply

Using Battery A only

 $BSL = 2w/(1-(1-w)y^2)$

Using Battery B only

BSL = 2x

IDB Power Supply

Optimal threshold current

 $I_{th} = y \implies \begin{cases} \text{use Battery A} & \text{if } I_0 < y \\ \text{use Battery B} & \text{if } I_0 \ge y \end{cases}$

Optimal weight/volume distribution of the power supply $z^* = (xy^2)/(1-y^2+xy^2), \quad 0 \le z^* \le 1$

> Battery A occupies a portion of *z** Battery B occupies a portion of (1-*z**)

BSL as a Function of x, y and z

Conclusions

It is important to consider the current-voltage characteristic of the battery in addition to its current-capacity characteristic.

Sy appropriately combining batteries with different current-capacity characteristics (w.r.t. optimal portion of each battery type), the IDB power supply can significantly extend the battery service life.