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Abstract -- In this work, a hierarchical, service level 

agreement (SLA) based resource management solution for 

cloud datacenters is presented, which considers the energy 

non-proportionality of existing servers, peak power 

constraints, and cooling power consumption. The goal of 

this resource manager is to minimize the operational cost 

of the data center. The hierarchical structure of the 

proposed solution makes the resource management 

scalable. The proposed resource management solution 

simultaneously considers server and cooling power 

consumption, guarantee-based SLA and complexity of the 

decision making in the resource management of the cloud 

computing systems. Considering SLA and state of the 

datacenter in determining the amount of resource that 

needs to be allocated to applications results in significant 

reduction of the operational cost in datacenter. The 

effectiveness of the proposed management scheme 

compared to previous work is demonstrated using a 

comprehensive cloud computing simulation tool. The 

proposed resource management algorithms reduce the 

operational cost of a datacenter by about 40% while 

satisfying SLA constraints and decrease the run-time of 

the management algorithms by up to 86% with respect to 

the state of the art centralized management solution.  

I. INTRODUCTION 

Demand for computing power has been increasing and 

datacenters are now faced with a major impediment of power 

consumption. Some reports such as [1] and [2] estimate the 

datacenter electricity demand in 2012 was around 31 GW 

globally which is equivalent to the electricity demand of 

around 23 million homes. These reports also predict fast 

growth rate for electrical energy consumption in datacenters. 

Resource over-provisioning and energy non-proportional 

behavior of today’s servers [3] are two of the most important 

reasons for high energy consumption of datacenters. In 

addition to these factors, limited capacity of the power 

delivery network (PDN) in the datacenter facility and 

inefficiency and power dissipation of the power backup and 

distribution subsystem and the computer room air conditioning 

(CRAC) subsystem makes the problem of power management 

in datacenter challenging.  

The IT infrastructure provided by the datacenter 

owners/operators must meet various SLAs established with the 

clients. SLAs include constraints on provided performance 

level or physical resources such as compute power, storage 

space, network bandwidth, availability and security, etc. 

Infrastructure providers often end up over-provisioning their 

resources in order to meet the clients’ SLAs. Such over-

provisioning may increase the cost incurred on the datacenters 

in terms of the electrical energy bill. Therefore optimal 

provisioning of the resources is imperative in order to reduce 

the cost incurred on the datacenter operators.  

There are a number of different resource managers in the 

datacenter. A VM manager (VMM) performs VM assignment 

and migration. A power manager (PM) manages the power 

and performance state of servers whereas a cooling manager 

(CM) manages the cooling and air conditioning units. In order 

to achieve the minimum operational cost, coordination 

between these managers is necessary.  

The resource management policy in the cloud system is the 

key to determine the operational cost, client admission policy, 

and quality of service. Considering a given set of clients 

having signed appropriate SLAs with the cloud service 

provider, the resource management problem in the cloud 

system can be described as the problem of optimizing any of 

the aforesaid objective functions subject to the given SLAs. 

The resource management decisions include assigning VMs to 

servers, allocating resource to each VM and migrating them 

between servers to address SLA violations, peak power 

constraints or thermal emergencies. 

To manage resources in a cloud system, a central manager 

(commissioned by the cloud service provider) can cause 

reliability (single point of failure) and face scalability issues. 

Regarding the latter point, the number of servers and VMs in a 

cloud system can be in the order of tens of thousands to 

hundreds of thousands. This underlines scalability as one of 

the key conditions that any resource management solution for 

the cloud system should satisfy. In addition to the large scale 

of the problem, the number of performance counters and 

power and temperature measurement signals from different 

parts of the datacenter that should be monitored to make 

timely decisions (for example decision about VM migration 

made at the millisecond rate) is huge and aggregating and 

analyzing this amount of data in a centralized manager may 

result in low performance and large energy overhead.  

In this work, we propose a hierarchical and decentralized 

decision making architecture for VM management in cloud 

datacenters. The proposed solution employs a set of 

decentralized decision makers (managers) who are trying to 

solve a complex, large-scale, constrained, optimization 

problem with cooperation. This cooperation involves making 

hierarchical decisions and exchanging requests for VM 

assignment/migration among different managers by 

coordination with hierarchical power and cooling managers.  

Even though different aspects of the resource management 

in cloud computing systems are well studied, the proposed 

VM management solution is the first work that simultaneously 
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considers server and cooling power consumption, guarantee-

based SLA and complexity of the decision making in VMM of 

the cloud computing systems. Due to the hierarchical structure 

of the proposed solution, the complexity of the solution is very 

low considering multiple-criteria decision making to increase 

the energy-efficiency in delivering the promised SLA. 

Moreover, the proposed solution considers the energy-

proportionality of the servers, cooling power consumption and 

peak power limitation in making the resource assignment 

decisions. As shown in our previous work [4], considering 

SLA and state of the datacenter in determining VM 

assignment and resource allocation results in significant 

reduction of the operational cost of the datacenter (around 

18%) compared to solving the resource assignment solution 

for fixed size VMs based on SLA requirements.  

To show the effectiveness of the proposed management 

scheme, a cloud system simulation software tool has been 

developed. The simulator can model and do performance 

evaluation of both centralized and decentralized resource 

management architectures. Simulation results demonstrate that  

the decentralized resource management algorithm reduces the 

operational cost of a datacenter by about 40% and decreases 

the run-time of the algorithms up to 7 times with respect to a 

centralized management structure proposed in previous work. 

This paper is organized as follows. The relevant prior work 

is reviewed in section II. The cloud system configuration and 

cost/performance metrics are presented in section III. The 

resource management problem is described in section IV. The 

periodic optimization strategy, a local search strategy to 

improve the objective function, and algorithms to handle 

emergency cases are presented in sections V, VI and VII 

respectively. Simulation framework and results are presented 

in section VIII whereas the paper is concluded at the last 

section. 

II. RELATED WORK 

Resource management in datacenters and cloud systems 

has attracted a lot of attention in recent years. In best of our 

knowledge, this paper is the first research work that aims at 

minimizing the total energy cost of the datacenter that includes 

the server, IT, and, cooling infrastructure energy cost while 

considering the key parameters that are important in VMM 

including SLA and performance requirement of VMs, 

scalability of the solution, and peak power limitations in 

datacenters. Different works in the literature have attempted to 

solve a part of this complicated problem or propose methods 

to minimize the power consumption or energy cost by 

focusing on one or two of the mentioned aspects in this 

problem. In this section, a review of the most relevant work in 

the literature focusing on different parts of this problem is 

presented. 

Power and performance modeling: There are different 

works in the literature that focus on modeling performance or 

power consumption of servers and in general VM 

consolidation in datacenter in order to be used in resource 

management solution. Power consumption of servers with 

different set of VMs assigned to them and migration latency 

based on the size of the VM is experimentally analyzed in [5]. 

Effect of uneven resource utilization and a way to improve 

energy efficiency by increasing the resource utilization on 

different resource dimensions are studied at [6]. An approach 

to resolve the interference between VMs placed on the same 

physical machine is presented at [7]. Reference [8] and [9] are 

examples of theoretical performance modeling in the 

literature.  

SLA: Having clients with SLA contracts add the challenge 

of VM sizing to the resource management problem. Many 

researchers in different fields have addressed the problem of 

SLA-driven resource assignment. Some of the previous works 

consider probabilistic SLA constraints with violation penalty, 

e.g. [10, 4]. Some other work consider utility function based 

SLA [11, 12] to determine the resource allocation solution that 

minimizes the operational cost of the datacenter. For dynamic 

resource allocation solutions based on SLA, prediction of the 

workload is the most important step [13]. For example, 

reference [14] presents a resource management solution that 

minimizes SLA violation and energy consumption based on 

workload prediction in different time granularities.  

Cooling power consumption: Some of the previous work 

(e.g. [15, 16]) consider minimizing cooling power 

consumption by distributing the workload in order to keep the 

supply cold air temperature as high as possible and avoid 

super-linear increase in cooling power consumption. The idea 

of minimizing heat recirculation using temperature-aware task 

scheduling (application placement) is proposed in [17]. The 

task scheduling policy in this work focuses on making the 

inlet temperature as even as possible to decrease the cooling 

system power consumption. Cooling-aware task scheduling in 

geographically distributed datacenters is presented in [18]. 

The authors considered batch job scheduling problem to 

minimize the IT plus cooling power consumption minus a 

fairness metric which is related to the queueing time of the 

tasks. 

Peak power: A number of dynamic power provisioning 

policies have been proposed in the literature to avoid peak 

power emergencies, including [19, 20, 21, 22]. Fan et al. [20] 

present the aggregate power usage characteristics of a large 

datacenter over a long period. The results show a big 

difference between theoretical and practical peak power 

consumption of server clusters. This difference grows by 

increasing the size of the cluster. Based on the provided 

measurements and results, the authors outline a dynamic 

power provisioning policy in datacenters to increase the 

possibility of over-subscription of available power and protect 

the power distribution hierarchy against overdraw. Exploring 

the best way of distributing a total power budget among 

different servers in a server farm in order to reach the highest 

performance level is studied in reference [23]. Moreover, an 

approach to reduce the peak power consumption of servers by 

dynamic power allocation using workload and performance 

feedbacks is presented in reference [24].  

Scalable VMM: Some of the previous work (e.g. [25, 26, 

27]), aim to make the VMM decisions more scalable. A 

hierarchical resource allocation solution to minimize the 

server energy consumption and maximize SLA utility function 

is presented in [25]. The proposed hierarchical solution breaks 

the big problem of resource scheduling in one day to multiple 

smaller problems (smaller server and application set) to reduce 
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the complexity of the problem and increase the parallelism. A 

decentralized VM assignment and migration is presented in 

[27] that targets to make the resource management solution 

scalable. The decision regarding accepting new VMs is 

decided by servers (based on a probabilistic approach) inside 

datacenter based on their current utilization. Even though the 

VM acceptance process is distributed, the process of asking 

from servers is centralized which can cause the performance 

bottleneck. Moreover, many parameters that affect the 

resource assignment solution such as peak power limitation 

and cooling system power consumption cannot be considered 

if only server-level resource managers are involved in make 

the resource management decisions. 

Average power reduction: Many of the previous works 

are focused on minimizing the average power consumption in 

datacenter. Many of the work in this area are focused on 

getting a near energy proportional behavior from datacenter 

and equipment that are not designed to deliver that behavior 

[28]. A good example of considering server power 

consumption and migration cost in the resource assignment 

problem is reference [5]. The authors propose to use a power 

efficiency metric to rank the servers to find the optimal VM 

placement, because creating a model for all mixes of all 

applications on all servers is infeasible. A migration-aware 

heuristic based on first-fit decreasing algorithm is presented to 

place the applications on servers based on the introduced 

ranking metric.  

Power manager structure: There is a strong relation 

between VMM and PM in datacenters. These two managers 

act based on the feedback from each other and both try to 

minimize the operational cost of the datacenter. A good 

example of power management structure in datacenter is 

presented in [19]. In that work, a hierarchical structure for 

power provisioning and optimization is proposed. These 

managers minimize the average power consumption, keep the 

average power consumption below temperature related power 

capacity and keep the peak power consumption of each 

component below its allowable peak power consumption 

determined by PDN. In some of the previous work [29, 30, 31] 

control theory has been applied to satisfy performance (SLA) 

or peak power constraints in datacenters.  

III. CLOUD DATACENTER AND KEY PARAMETERS 

In the following paragraphs, the assumed architecture of 

the cloud datacenter is described. Next some key observations 

and assertions about where the system’s performance 

bottlenecks are provided. Finally, we explain how to account 

for the operational cost associated with a client’s VM running 

in the system. To increase readability, Table I presents key 

symbols used in this chapter along with their definitions. 

A) Cloud datacenter 

In this paper, container-based (as opposed to the older 

raised-floor) cloud datacenters [32] are assumed. This type of 

datacenter relies on containment, close-coupled cooling, and 

modularity to improve the datacenter’s energy efficiency. An 

example of container-based datacenter structure is shown in 

Figure 1.  

Containers act as separate rooms for servers. Each 

container includes a number of racks. Inside each rack, a 

number of chassis exist and each chassis comprises of a 

number of blade servers. d denotes the cloud datacenter. Each 

container, rack, chassis and blade server is identified by 

unique id throughout cloud datacenter, denoted by c, r, q and s 

respectively. The set of containers inside datacenter, set of 

racks inside container c, set of chassis inside rack r, and set of 

servers inside chassis q are denoted by 𝐶𝑑 , 𝑅𝑐 , 𝑄𝑟  and 𝑆𝑞  

respectively. We use notation |∗| to denote the cardinality of 

each set. 

We assume that containers may be different from each 

other in terms of their rack configurations or type of blade 

servers deployed. However, each container is internally 

homogenous i.e., it employs the same blade server throughout. 

Servers deployed in the datacenter are chosen from a set of 

known and well-characterized server types. In particular, 

servers of a given type are modeled by their processing 

capacity or CPU cycles per second ( 𝐶𝑠
𝑝

) and memory 

bandwidth (𝐶𝑠
𝑚) as well as their average power consumption 

as a function of their utilization factor. We assume that local 

(or networked) secondary storage (disc) is not a system 

 
Figure 1 – An example of structure of container-based datacenter 

TABLE I. NOTATION AND DEFINITIONS 

Symbol  Definition 

𝐶𝑑, 𝑅𝑐, 
𝑄𝑟, 𝑆𝑞 

Set of containers, racks, chassis and servers insider 

datacenter, container, rack and chassis, respectively 

𝐶𝑠
𝑝
, 𝐶𝑠

𝑚 Total processing  and memory capacities of server s 

𝑃𝑠
0, 𝑃𝑠

𝑝
 

Fixed and dynamic (as a function of the  utilization ratio) 

power consumptions of server s 

𝑃𝑞
0, 𝑃𝑟

0 Fixed power consumptions of chassis 𝑞 and rack 𝑟 

𝜏 Duration of the epoch in seconds 

Ψ Electrical energy price 

𝑃∗
𝑃𝐷𝑁 Peak power capacity of PDN at a location in the datacenter 

𝑃𝑑
𝑚𝑎𝑥 Peak power limitation of datacenter 𝑑 

𝑃𝐴𝑅 Peak to average power consumption ratio 

𝑇𝑞
𝑜𝑢𝑡, 𝑇𝑞

𝑖𝑛 Outlet and inlet temperature of chassis 𝑞 

𝑇𝑐𝑟𝑖𝑡 Critical temperature in datacenter 

𝐶𝑂𝑃 Coefficient-of-performance 

𝑚𝑖 Required amount of memory bandwidth for VM 𝑖 

𝑚𝑐𝑖
∗ 

Migration cost of VM 𝑖 in different levels (∗ can be chassis, 
rack, container or datacenter) 

𝑅𝑖
𝑡,𝑓𝑖 

Contract target response time and penalty values for each 
request in the SLA contract 

ℎ𝑖 
Hard constraint on the possible percentage of violation of the 

response time constraint in the SLA contract 

𝜆𝑖 Predicted average request rate of VM i 

𝜇𝑖𝑠 average service rate of the VM i on server 𝑠  

𝜙𝑖𝑠
𝑝

 , 𝜙𝑖𝑠
𝑚 

Portion of processing resources or memory bandwidth of 

server s that is allocated to VM i 

𝑥𝑠, 𝑥𝑞, 𝑥𝑟 
A Boolean variable to determine if a server, chassis, or rack 
is ON (1) or OF (0) 

𝑦𝑖∗ 
A Boolean variable to determine if VM is assigned to a 

server, chassis, or rack (1) or not (0) 

𝑧𝑖
∗ 

A Boolean variable to  determine if VM i is migrated in 
chassis level, rack level or container level (1) or not (0) 

𝑇𝑐
𝑠 Supply cold air temperature in container 𝑐 
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bottleneck (although our model can easily be modified to 

consider this resource). The power consumption of a server is 

modeled as a fixed power consumption term (𝑃𝑠
0) plus another 

variable power consumption term, which is linearly related to 

the utilization of the server (with slope of 𝑃𝑠
𝑝

). Similar to 

servers, each chassis and each rack consume a fixed power if 

they are active. These power consumptions are denoted by 𝑃𝑞
0 

(accounting for the fans and power regulators inside each 

chassis) and 𝑃𝑟
0  (accounting for fan, power regulators and 

networking gears inside rack).  

A network of high-efficiency uninterruptable power supply 

(UPS) units is used to connect the power supplies (from utility 

companies or generated in datacenter’s site) to the datacenter’s 

PDN. Electric power is fed to the datacenter using a PDN, 

which is structured in a hierarchy similar to the one used to 

organize servers in the datacenter. As a result, each chassis, 

each rack, and each container have specified peak power 

capacities (cap). Ψ denotes the electrical energy price for the 

datacenter. 

There are two different sources for power unavailability at 

some location in the datacenter: 1) PDN bottleneck and 2) 

limitation on the total provided power to the datacenter. The 

first problem is much more serious than the second one [20]. 

The peak power capacity of PDN at a location in the 

datacenter is shown by 𝑃∗
𝑃𝐷𝑁  where ∗  denotes the whole 

datacenter, some container, some rack, or some chassis. The 

peak power limitation imposed by the UPS inadequacy, local 

electricity generation constraint, or limitation on the provided 

power by utility companies is shown by 𝑃𝑑
𝑚𝑎𝑥 . Determining 

the peak power consumption for a mix of applications in a 

server, chassis, rack, container or the whole datacenter is even 

more arduous. There are different studies focused on this issue 

to determine the power provisioning policy in a datacenter e.g. 

[20] and [22]. In this work, we assume that the peak power 

consumption at each granularity level of a datacenter can be 

estimated by multiplying the average power consumption and 

a factor related to the mix of running applications at that level. 

This factor can be large in case of homogenous workload 

mixes but it decreases if the heterogeneity of the workload in 

the mix goes up [20]. This factor can be calculated based on 

profiling and/or prediction methods, as suggested in [20]. We 

call this factor the peak to average ratio, ( 𝑃𝐴𝑅) . It is 

calculated for each level of granularity, ranging from chassis, 

rack, and container to datacenter.    

Cooling in each container is accomplished in at least one 

of three of ways: overhead Cooling, in-row cooling, and 

circular in-row cooling [33]. A big portion of the total power 

consumed in a datacenter (up to 30% in older datacenters [34]) 

is related to cooling infrastructure. The cooling power 

consumption is non-linearly proportional to the total power 

usage in the container/datacenter. We assume that the air 

flows in different containers are isolated from each other and 

each container has its own CRAC unit. The temperature 

spatial granularity considered in this work is at the chassis 

level. Cold air is drawn to each chassis with temperature 𝑇𝑞
𝑖𝑛 

and exits from the other side with temperature 𝑇𝑞
𝑜𝑢𝑡. 𝑇𝑞

𝑖𝑛 is a 

function of the supply cold air temperature ( 𝑇𝑐
𝑠 ) of the 

container and recirculation of the heat from other chassis in 

that container. Similar to the work by Tang et al. [17], the 

recirculation of heat can be described by a cross-interference 

matrix, which is shown by 𝝓 = [𝜙𝑖𝑗]𝑁𝑐×𝑁𝑐
 in which 𝑁𝑐 is the 

number of chassis in container c. According to reference [17], 

the vector of input cold air temperatures (𝑇⃗ 𝑖𝑛) in a container 

can be calculated based on the following formula. 

𝑇⃗ 𝑖𝑛 = 𝑇𝑐
𝑠 + 𝑫𝑃⃗ 𝑐, 𝑫 = [(𝑲 − 𝝓𝑇𝑲)−1 − 𝑲−1] (1) 

where 𝑃⃗ 𝑐  vector denotes power consumption of chassis in 

container c, and 𝑲  is an 𝑁𝑐 × 𝑁𝑐  diagonal matrix whose 

entries are thermodynamic constants of different chassis. The 

cooling manager in datacenter makes sure that 𝑇𝑞
𝑖𝑛  for each 

chassis is less than a pre-specified critical temperature (𝑇𝑐𝑟𝑖𝑡). 
Note that, supply cold air temperature is determined based on 

this constraint. Coefficient of performance (COP), which 

determines the efficiency of the cooling system, is a 

monotonically decreasing function of of 𝑇𝑐
𝑠 . Due to high 

efficiency of transmission and conversion efficiency in PDN 

of today’s datacenters, we consider 1 + 1/𝐶𝑂𝑃(𝑇𝑐
𝑠)  to 

represent the power usage effectiveness for each container. 

The proposed algorithm assumes a general COP function but 

for simulation environment we used the derived function in 

reference [17].  

B) Virtual machine characteristics 

In this work, we consider virtualized datacenters. Each 

client of the cloud system owns a VM that typically runs one 

or more applications. Each VM is identified by a unique 

identifier, represented by index i.  

Different resources in servers such as the processing cores, 

memory, communication bandwidth, and secondary storage 

can be allocated between assigned VMs by a fixed or round-

robin scheduling policy. The amount of allocated resource to a 

VM is a function of the VM type and the client’s SLA 

contract. In this work, we consider the processing unit and 

memory bandwidth to have fixed allocation policy. 𝜙𝑖𝑠
𝑝

 

denotes the portion of the processing capacity of server s that 

is allocated to VM 𝑖. The amount of memory allocated to a 

VM does not significantly affect performance of the VM 

under different workloads as long as it is no less than a 

specified value [35]. Hence, we assign a fixed amount of 

memory (𝑚𝑖) to the ith client’s VM on any server that the VM 

is assigned to. 

Migrating a VM between two servers causes a downtime 

in the client’s application. Duration of the downtime is related 

to the migration technique used in the datacenter and the 

communication distance between the source and destination of 

the move. We assume that there is a defined cost in SLA 

contracts for these short but infrequent service outages based 

on the length of the downtime. 𝑚𝑐𝑖
∗  denotes the part of the 

migration cost of the VM 𝑖 related to the level of the migration 

where ∗  can be chassis, rack, container or datacenter. For 

example, the cost of migrating VM 𝑖 from one rack to another 

rack inside one container can be calculated as 𝑚𝑐𝑖
𝑄 +𝑚𝑐𝑖

𝑅. 

In this work we focus on response time-sensitive 

applications. Clients in a cloud system have specific SLAs 

with the cloud provider. SLA sets a target performance for the 

client’s instances of the application runs and requires that the 

cloud service provider meet that target response time (𝑅𝑖
𝑡) for 

no less than a certain percentage of the runs (1 − ℎ𝑖 ), e.g. 
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95%. Furthermore, the service provider has to pay a penalty 

(𝑓𝑖) for any application run that violates its performance target.  

To estimate response time of an application, a performance 

model must be considered. To model the response time, we 

assume that the inter-arrival times of the requests for each 

application follow an exponential distribution function similar 

to the inter-arrival times of the requests in the e-commerce 

applications [10]. To calculate the resource requirements, the 

average inter-arrival rate (𝜆𝑖) of the requests for each client in 

each time window is predicted for the optimization 

procedures.  

A multiclass single-server (MCSS) queue exists in servers 

that provide service to more than one VM. We consider 

generalized processor sharing (GPS) model at each queue; 

The GPS model approximates the scheduling policy used by 

most operating systems, e.g., weighted fair queuing and the 

CPU time sharing of Linux. Using this scheduling policy, 

MCSS queue can be replaced by multiple single-server 

queues. Note that the processing capacity of server s allocated 

to VM i is calculated as 𝐶𝑠
𝑝
𝜙𝑖𝑠
𝑝

. Furthermore, it is assumed that 

client service times follow an exponential distribution. Let 𝜇𝑖𝑠 
denote the average service rate of the VM i on server 𝑠 when it 

has a unit of the server’s processing capacity. Now then, the 

response time ( 𝑅𝑖 ) of a VM follows an exponential 

distribution function with a mean value, which is calculated as 

follows: 

𝑅̅𝑖𝑠 =
1

𝐶𝑠
𝑝
𝜙𝑖𝑠𝜇𝑖𝑠 − 𝜆𝑖

 (2) 

We assume that 𝜇𝑖𝑠  for all servers of the same type are 

equal. To determine 𝜇𝑖𝑠 , we consider an offline profiling 

mechanism which collects service rates for different types of 

VMs running on different types of servers. These values 

indeed capture the compatibility of certain client types to 

certain server types.  

Considering these models for request arrival and service 

rate, SLA-related response time constraint for each VM (i.e. 

𝑝𝑟𝑜𝑏{𝑅𝑖 > 𝑅𝑖
𝑡} < ℎ𝑖) can be expressed as follows: 

𝑒−(𝐶𝑠
𝑝
𝜙𝑖𝑠
𝑝
𝜇𝑖𝑠−𝜆𝑖)𝑅𝑖

𝑡
≤ ℎ𝑖 ⇒ 𝜙𝑖𝑠

𝑝
≥ (𝜆𝑖 − ln ℎ𝑖 𝑅𝑖

𝑡⁄ ) 𝜇𝑖𝑠𝐶𝑠
𝑝⁄  (3) 

In addition to parameters for the cloud system and clients, 

there is only one decision parameter:  𝜙𝑖𝑠
𝑝

. This parameter 

determines which server is chosen for VM 𝑖 and how much of 

the processing resource is allocated to that VM. In order to 

simplify the resource management problem formulation and 

make it more understandable, we use a few more parameters 

as follows. 𝜙𝑖𝑠
𝑚  denotes the amount of memory bandwidth 

allocated to the VM in server 𝑠; 𝑥𝑠 is a Boolean variable that 

determines whether the server is on or off; 𝑦𝑖𝑠  signifies 

whether VM 𝑖  is assigned to server 𝑠  or not; and 𝑧𝑖
𝑄

 

determines if VM 𝑖  is migrated in chassis level or not. As 

shown in the next section, these parameters can be derived 

from 𝜙𝑖𝑠
𝑝

. Chassis, rack, container, and datacenter level version 

of 𝑥𝑠, 𝑦𝑖𝑠, and 𝑧𝑖
𝑄

 are also used in the problem formulation. In 

VMM problem, 𝑇𝑐
𝑠  is also a derived parameter that satisfies 

the temperature constraint of the container based on the VM 

assignment solution. 

IV. CLOUD DATACENTER VM MANAGEMENT PROBLEM 

The VM management problem in cloud systems is the key 

to determining the operational cost and the quality of service.  

Considering a set of clients with SLAs with the cloud 

provider, the VM management problem in a cloud system can 

be described as the problem of assigning VMs to servers and 

allocating resources to them to minimize the total operation 

cost of the cloud and the SLA violation penalties subject to 

performance and resource availability constraints. The biggest 

part of the operation cost of a datacenter is the electrical 

energy cost, which must be paid to the utility companies 

providing the electricity. To minimize the power consumption 

in each datacenter, the number of active or idle servers should 

be reduced and at the same time, the power consumption of 

the active servers should be balanced as much as possible in 

order to reduce the cooling system’s power consumption.  

Notice that from the VM management solution, an 

expected quality of service (QoS) provided to each client is 

calculated. Based on this QoS, expected SLA violation 

penalties for all clients can be computed. The other type of 

penalty that should be paid to the customers is the result of 

VM migration between different servers, which can result in 

service outage for a short period of time.  

Various resource managers in cloud datacenters perform 

their jobs by interacting with each other. The VMM performs 

the resource management interacting with the PM and the CM. 

The PM reduces the power consumption in the system and 

uses control-theoretic solutions to ensure that the peak power 

of each component remains below the given peak power 

capacity. The CM reduces the cooling system power 

consumption subject to keeping the temperature below a 

critical threshold at every location inside datacenter. The focus 

of this work is VMM that considers constraints from PM and 

CM and optimizes the operational cost of the data center.  

The common approach used in VMM is to perform 

optimization periodically (such a period is called epoch with 

duration 𝜏) and modify the solution during each epoch in case 

of SLA, peak power or temperature emergencies or dramatic 

workload changes. These processes are called periodic and 

reactive optimizations, respectively. In periodic optimization, 

prediction of workload for each VM in addition to VMs’ 

expected behavior upon assignment to different types of 

servers is used to determine the VM assignment and resource 

allocation solution. 

To assign VMs to datacenters in a multi-datacenter cloud 

system, the whole application run-time, which can last for 

multiple decision epochs, should be considered. Therefore, the 

cloud manager needs to consider the workload trend for each 

client as well as the energy price during the day in order to 

decide how to assign VMs to datacenters in a multi-datacenter 

cloud system. These decisions are usually made based on 

cloud service provider’s policy that aims to achieve some kind 

of geographical load balancing [36]. In this work we focus on 

the VMM problem in one cloud datacenter, considering only 

the resource assignment solution in the previous epoch to 

minimize the operational cost for the current epoch. Resource 

assignment parameters related to the previous epoch are 

marked with superscript 𝛾. Periodic VM management problem 

can be formulated as follows: 
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𝑀𝑖𝑛  𝜏Ψ ∑ 𝑃𝑐
𝑐∈𝐶𝑑

+∑ 𝑓𝑖𝜏𝜆𝑖∑ 𝑦𝑖𝑠𝑒
−(𝐶𝑠

𝑝
𝜙𝑖𝑠
𝑝
𝜇𝑖𝑠−𝜆𝑖)𝑅𝑖

𝑡

𝑠𝑖

+∑ ∑ 𝑚𝑐𝑖
∗𝑧𝑖
∗

∗∈{𝑄,𝑅,𝐶,𝐷}
𝑖

 

subject to: 

𝑥𝑠 ≥ ∑ 𝜙𝑖𝑠
𝑝

𝑖  ,  𝑥𝑞 ≥
∑ 𝑥𝑠𝑠∈𝑆𝑞

|𝑆𝑞|
 , 𝑥𝑟 ≥

∑ 𝑥𝑞𝑞∈𝑄𝑟

|𝑄𝑟|
 , 𝑥∗ ∈ {0,1} (4) 

𝜙𝑠
𝑝
= ∑ 𝜙𝑖𝑠

𝑝
𝑖  , 𝜙𝑠

𝑚 = ∑ 𝜙𝑖𝑠
𝑚

𝑖  , 0 ≤ 𝜙𝑠
∗ ≤ 1 (5) 

𝜙𝑖𝑠
𝑝
≥ 𝑦𝑖𝑠 (𝜆𝑖 − ln ℎ𝑖 𝑅𝑖

𝑡⁄ ) 𝜇𝑖𝑠𝐶𝑠
𝑝⁄  , 𝜙𝑖𝑠

𝑚 ≥ 𝑦𝑖𝑠𝑚𝑖/𝐶𝑠
𝑚 (6) 

{

𝑦𝑖𝑠 ≥ 𝜙𝑖𝑠
𝑝
 , ∑ 𝑦𝑖𝑠𝑠 = 1

𝑦𝑖𝑞 = ∑ 𝑦𝑖𝑠𝑠∈𝑆𝑞
 , 𝑦𝑖𝑟 = ∑ 𝑦𝑖𝑞𝑞∈𝑄𝑟

𝑦𝑖𝑐 = ∑ 𝑦𝑖𝑟𝑟∈𝑅𝑐  , 𝑦𝑖∗ ∈ {0,1}

  (7) 

{
𝑧𝑖
𝑄 = ∑ ∑ (𝑦𝑖𝑠 − 𝑦𝑖𝑠

𝛾
)
+

𝑠∈𝑆𝑞𝑞 , 𝑧𝑖
𝑅 = ∑ ∑ (𝑦𝑖𝑞 − 𝑦𝑖𝑞

𝛾
)
+

𝑞∈𝑄𝑟𝑟

𝑧𝑖
𝐶 = ∑ ∑ (𝑦𝑖𝑟 − 𝑦𝑖𝑟

𝛾
)
+

𝑟∈𝑅𝑐𝑐 , 𝑧𝑖
𝐷 = ∑ ∑ (𝑦𝑖𝑐 − 𝑦𝑖𝑐

𝛾
)
+

𝑐∈𝐶𝑑𝑑

    (8) 

{
 
 
 

 
 
 𝑃𝑞 = 𝑃𝑞

0𝑥𝑞 + ∑ 𝑥𝑠(𝑃𝑠
0 + 𝑃𝑠

𝑝
𝜙𝑠
𝑝
)𝑠∈𝑆𝑞 ≤

𝑃𝑞
𝑃𝐷𝑁

𝑃𝐴𝑅𝑞

𝑃𝑟 = 𝑃𝑟
0𝑥𝑟 + ∑ 𝑃𝑞𝑞∈𝑄𝑟 ≤

𝑃𝑟
𝑃𝐷𝑁

𝑃𝐴𝑅𝑟

𝑃𝑐 = (1 +
1

𝐶𝑂𝑃(𝑇𝑐
𝑠)
)∑ 𝑃𝑟𝑟∈𝑅𝑐 ≤

𝑃𝑐
𝑃𝐷𝑁

𝑃𝐴𝑅𝑐

∑ 𝑃𝑐𝑐∈𝐶𝑑
≤ min (

𝑃𝑑
𝑃𝐷𝑁

𝑃𝐴𝑅𝑑
,
𝑃𝑑
𝑚𝑎𝑥

𝑃𝐴𝑅𝑑
)

  (9) 

𝑇𝑞
𝑖𝑛 ≤ 𝑇𝑐𝑟𝑖𝑡  (10) 

where (𝐴)+captures the maximum value between A and 0. 

There are three main terms in the objective function: (i) IT 

and cooling energy cost, (ii) SLA violation penalty, and, (iii) 

SLA penalties related to service outage caused by VM 

migration. 

Constraint (4) determines whether or not the server, 

chassis or rack is active. Constraint (5) determines the 

utilization of each server and forces them to be less than one. 

Constraint (6) determines the lower bound on the processing 

and memory bandwidth share of a VM from their host 

machine based on SLA constraint.  Constraint (7) determines 

the assignment parameters (assignment of a VM to a server, 

chassis, rack and container). Although the assignment 

parameter for chassis to container can be determined directly 

from the assignment parameter for servers, these parameters 

are derived to be used in constraint (8) to capture the VM 

migration cost. Results of these constraints are 𝑧𝑖
∗ parameters 

that determine whether or not a VM is migrated in chassis 

level, rack level or container level. Constraint (9) calculates 

the average power consumption of the chassis, rack, container 

and datacenter and limits the corresponding power 

consumption to be less than the power provisioning capacity 

in PDN. This constraint also limits the peak power 

consumption of the datacenter to the maximum provided 

power. Constraint (10) forces the inlet temperature of each 

chassis to be lower than the critical temperature. 𝑇𝑞
𝑖𝑛  is a 

function of 𝑃⃗ 𝑐 that can be calculated from (9). 

Periodic resource management problem is a mixed-integer 

non-linear programming problem. By some simplification, 

bin-packing problem and generalized assignment problem can 

be reduced to this problem. So, this problem is an NP-hard 

problem.  

In this work, VMM utilizes the constraints and objectives 

in CM and PM in order to come up with a VM assignment and 

resource allocation that optimizes the true energy cost in the 

system and satisfies the SLA, peak-power and temperature 

constraints. This consideration also results in smaller number 

of VM migration due to resource limitations. Ignoring the 

peak-power constraints and cooling power consumption and 

temperature constraints can lead to inefficient use of resources 

and instability in creating a feasible solution by VMM. 

A set of hierarchical and decentralized decision makers fit 

the distributed nature of resources in cloud systems. 

Hierarchical structures for power management and reactive 

management have been proposed in the previous work, c.f. 

[19] and [26]. Moreover, a centralized manager can cause 

reliability (single point of failure) and scalability issues. The 

big number of servers and VMs in large datacenters 

emphasizes scalability as one of the most important factors in 

designing resource managers. In addition to big scale of the 

problem, the number of performance counters and power and 

temperature measurement signals from different parts of a 

datacenter is huge and aggregating this amount of data in a 

centralized manager may result in low performance and large 

overhead. Finally, there are certain management functions 

(e.g., doing VM migration in case of power or temperature 

emergencies) that are best handled by local managers.  

In this work, we present hierarchical resource management 

(HRM for short) solution in a cloud system. A figurative 

architecture for this manager is shown in Figure 2. This 

hierarchy includes a cloud manager, datacenter managers, 

container managers, rack managers and chassis managers. The 

hierarchical managers collectively try to solve a constrained 

optimization problem with cooperation. This cooperation 

involves exchanging requests of resource assignment, or VM 

migration between resource managers in different levels. In 

each level of the hierarchy, VMM receives feedback from 

power and temperature sensors and PM and CM in that level 

for periodic and reactive resource management decisions.  

 
Figure 2 – An example of proposed cooperative hierarchical manager 

In the proposed management architecture, periodic 

optimization is done by: 

1- Adjusting resource allocation to active VMs 

2- Assigning new VMs to servers 

3- Performing local search to improve the initial solution 

An abstract pseudo code for this periodic resource 

management is presented in Algorithm 1. To assign new VMs 

to servers, the status of previous VM assignment solution after 

proper modification is used. Instead of assigning VMs directly 

to servers, each resource manager distributes the VMs 
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between its lower level resource managers and this process 

continues until the chassis manager assigns VMs to servers. In 

each resource manager, distribution of new VMs between 

lower-level resource managers is performed based on resource 

availability, peak power capacity, temperature distribution, 

and COP of the lower level resource managers. Due to 

constructiveness of this approach, a bottom-up local search 

procedure is used to modify the solution after assigning every 

VM to a server. In local search step, priority of performing a 

VM movement is set based on its effectiveness in reducing the 

operational cost of the datacenter.  

Algorithm 1: Periodic Optimization Problem in VMM 

Inputs: set of new VMs and old active VMs 
Outputs: Initial VM Assignment and resource allocation for the next 
epoch 

1 Find the best avg. workload to be used in resource manager for each VM 

2 //Current VM assignment 

3 Update 𝜙𝑖𝑠
𝑝

 for currently assigned VMs; Report 𝑖 to chassis if not possible 

4 While (There is a VM from current set of VMs not assigned)  

5     Assign reported VMs; report it to higher level manager if not possible 

6 //New VM assignment 

7 Determine 𝑦𝑖𝑐 for all VMs in – Ranking solution in datacenter level 

8 Fork (𝒄 ∈ 𝑪𝒅)  

9   Determine 𝑦𝑖𝑟 – Ranking solution in container level 

10   Fork (𝒓 ∈ 𝑹𝒄) 

11     Determine 𝑦𝑖𝑞 – Ranking solution in rack level 

12     Fork (𝒒 ∈ 𝑸𝒓) 

13       Determine 𝑦𝑖𝑠 – Ranking solution in chassis level 

14     Join 

15   Join 

16 Join 

17 //Local optimization 

18 Fork (𝒄 ∈ 𝑪𝒅)  

19   Fork (𝒓 ∈ 𝑹𝒄) 

20     Fork (𝒒 ∈ 𝑸𝒓) 

21       Move VMs with 𝑦𝑖𝑞 = 1 if it decreases the objective function 

22       Report a limited set of VMs with biggest move/migration incentive 

23     Join 

24     Move the nominated VMs if it decreases the objective function 

25     Report a limited set of VMs with biggest move/migration incentive 

26   Join 

27   Move the nominated VMs if it decreases the objective function 

28   Report a limited set of VMs with biggest move/migration incentive 

29 Join 

30 Move the nominated VMs if it decreases the objective function 

31 Report a limited set of VMs with biggest move/migration incentive 

32 End 

Note that, the size of the problem tackled by each resource 

manager is much smaller than original resource assignment 

problem. Moreover, the assignment or local optimization in all 

resource managers that do not interact with each other can be 

executed in parallel. These two factors reduce the time 

complexity of the periodic optimization solution drastically. 

This means that this hierarchical solution makes the 

optimization solution more scalable without sacrificing the 

performance of the solution. 

In case of peak power or temperature emergency, reactive 

optimization procedure is performed. Similar to the periodic 

optimization procedure, the proposed reactive optimization 

solution is performed in a hierarchal manner to avoid long 

decision making time.  

VM assignment and local optimization steps in periodic 

optimization and reactive optimization algorithms are 

presented in the following sections. Some of the details, 

formulation and algorithms specially related to local search 

and reactive optimization approach are omitted due to space 

limitations. More details regarding HRM solution can be 

found on chapter 3 of reference [37]. 

V. PERIODIC OPTIMIZATION: VM ASSIGNMNET 

The objective in the periodic optimization is to assign new 

VMs and re-assign active VMs to servers based on their 

expected workload in the next epoch so as to minimize the 

summation of total energy cost, the expected SLA violation 

penalty, and migration cost subject to resource, power and 

temperature constraints. The solution is strongly dependent on 

the existing server assignments for active VMs. 

In this section, the important aspects of periodic VM 

assignment solution are presented: 

 Abstraction of VM workload prediction to avoid 

under-provisioning and over-provisioning  

 Finding a feasible solution for active VMs by 

modifying the prediction and resource allocation 

solution and minimal VM migration 

 Abstraction of resources on each level of hierarchy for 

resource assignment solution for new VMs 

 Important factors and resource management problem 

in each level of resource management hierarchy 

A) VM workload prediction 

In order to start periodic optimization, workload associated 

with the active and incoming VMs needs to be predicted for 

the next epoch. We assume that the probability distribution 

function of 𝜆𝑖 (𝑃𝐷𝐹(𝜆𝑖)) for VM i in the next epoch can be 

predicted based on the current workload and the workload 

history. To account for SLA violation penalty and VM 

migration cost, the predicted workload (𝜆𝑖̂) can be different 

from the expected workload (𝜆𝑖̅ = ∫𝜆𝑖𝑃𝐷𝐹(𝜆𝑖)). In case of a 

large SLA violation penalty or VM migration cost, over-

provisioning (𝜆𝑖̂ > 𝜆𝑖̅) becomes useful. In contrast, in case of 

small SLA violation penalty or VM migration cost, under-

provisioning (𝜆𝑖̂ < 𝜆𝑖̅) may result in total cost reduction.  

If 𝜆𝑖̂ is used in the assignment problem, the probability of 

VM migration with the assumption that the selected server 

doesn’t have any un-reserved resources can be found from the 

cumulative distribution function ( 𝐶𝐷𝐹(𝜆𝑖̂) ). In case of 

migration event, cloud provider needs to pay the SLA down-

time penalty in addition to the energy cost and SLA violation 

penalty. In order to find the best 𝜆𝑖̂ , we assume that the 

maximum tolerable 𝜆𝑖  based on the SLA contract (𝜆𝑖
𝑚𝑎𝑥 ) is 

used to determine the resource allocation and cost of 

assignment in the event of VM migration to avoid another 

migration in the near future.  

Summation of the energy cost and expected SLA violation 

penalty related to VM 𝑖 is a function of the VM assignment 

and parameter 𝜆𝑖  used in that process. We define function 

𝐶(𝜆𝑖) , which shows the minimum energy cost plus SLA 

violation penalty of assigning VM 𝑖 to a server. To find the 

minimum value for the energy cost and expected SLA 

violation penalty for VM 𝑖 , we use the maximum COP 

possible in datacenter and find the best 𝜙𝑖𝑠
𝑝

 for different types 
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of servers assuming they have energy proportional behavior 

( 𝑃𝑠
0 = 0 and  𝑃𝑠

𝑝
= 𝑃𝑠

𝑝
+ 𝑃𝑠

0 ). Note that in the mentioned 

scenario, finding 𝜙𝑖𝑠
𝑝

 to minimize energy cost and expected 

SLA violation penalty is a convex optimization problem that 

has a closed-form solution. The minimum energy cost and 

expected SLA violation penalty considering different types of 

servers creates 𝐶(𝜆𝑖) function. 

The predicted 𝜆𝑖 is the value that minimizes the expected 

cost in the next decision epoch: 

𝜆𝑖̂ = argmin
𝜆𝑖

𝐶𝐷𝐹(𝜆𝑖)𝐶(𝜆𝑖)

+ (1 − 𝐶𝐷𝐹(𝜆𝑖))(𝑚𝑐𝑖̅̅ ̅̅ ̅ + 𝐶(𝜆𝑖
max)) 

(11) 

where 𝑚𝑐𝑖̅̅ ̅̅ ̅  is the average migration cost for the VM in 

datacenter.  

This optimization problem tries to find the best balance 

between energy cost, SLA penalty cost, and expected VM 

migration cost. If the optimal 𝜆𝑖 is shown by 𝜆𝑖̂, it can be seen 

that under-provisioning (𝜆𝑖 < 𝜆𝑖̂) results in lower operational 

cost but increase the probability of VM migration because 

𝐶𝐷𝐹(𝜆𝑖) < 𝐶𝐷𝐹(𝜆𝑖̂). In contrast, over-provisioning (𝜆𝑖 > 𝜆𝑖̂) 
decreases the probability of VM migration but it results in 

higher operational cost and lower SLA violation penalty. 

Consider two VMs ( 𝑖  and 𝑖′ ) with the same steady 

characteristics and SLA contracts but different workload 

characteristics with the same expected average 𝜆𝑖̅. If PDF of 𝜆𝑖 
has a longer tail compared to the one for 𝜆𝑖′ , it can be shown 

that 𝜆𝑖̂ ≥ 𝜆𝑖′̂ . This is due to the fact that the CDF function for 

VM 𝑖 is smaller than that for VM 𝑖′ for the same 𝜆. This in 

turn increases the optimum point for the function in (11) for 

VM 𝑖  compared to VM 𝑖′  to reduce the probability of VM 

migration. 

Note that CDF and 𝐶(𝜆𝑖)  are monotonically increasing 

functions between 0 and 𝜆𝑚𝑎𝑥 . 𝜆𝑖̂   can be found between 

possible 𝜆𝑖  that makes the gradient of the expected cost 

function in (11) equal to zero. The effect of over and under 

provisioning for the assignment problem is studied in the 

experimental results section. 

B) Finding a feasible solution for active VMs 

After finding the workload prediction for all VMs, active 

VMs in the previous epoch can be divided into three groups:  

1) VMs that will not be active the next epoch  

2) VMs with expected lighter workload in the next epoch 

3) VMs with expected heavier workload in the next epoch 

Allocated resources to VMs in the first category can be 

released. Next, resource allocation parameter (𝜙𝑖𝑠
𝑝

) for VMs 

with lighter workload is updated. Finally, the resource 

allocation parameter for VMs with heavier workload is also 

determined based on their current assignment although the 

resource requirements for some of these VMs may violate the 

resource constraints. Such VMs have to be migrated to 

different servers with more available resources.  

To create an initial solution for new VM assignments 

problem, we use a greedy technique for these VM migrations. 

For this purpose, each chassis manager examines the available 

servers in the chassis to find a new host for the target VM. If 

this manager cannot find any server satisfying the VM 

resource requirement, it asks the parent rack manager to look 

for a server to host that VM and this process continues until a 

high-level resource manager can find a server to host the VM 

in question. Note that, the generated initial solution will be 

improved by local search after assigning every new VM to a 

server. 

C) Resource management problem in each level of hierarchy 

After finding an initial assignment solution for active 

VMs, each manager reports its current state to its (higher-

level) parent resource manager. For this purpose, the chassis 

manager obtains the current status of all of its servers. A 

compacted form of this information is reported to its rack 

manager to model the chassis. Similarly the container 

manager, the datacenter manager and cloud manager can use 

an appropriate abstraction of the gathered information by their 

lower-level managers to model them in their resource 

management problem. In each resource manager, the lower-

level entities are abstracted by one or a few servers plus the 

peak-power and cooling-related power consumption 

constraint. The assignment problem in each resource manager 

hierarchy can be formulated similar to the following 

assignment problem in datacenter-level resource manager: 

𝑀𝑖𝑛  𝜏Ψ ∑ 𝑃𝑐
𝑐∈𝐶𝑑

+∑ 𝑓𝑖𝜏𝜆𝑖 ∑ 𝑦𝑖𝑐𝑒
−(𝐶𝑠

𝑝
𝜙𝑖𝑐
𝑝
𝜇𝑖𝑠−𝜆𝑖)𝑅𝑖

𝑡

𝑐∈𝐶𝑑
𝑖

 

subject to resource availability and: 

𝑃𝑐 = (1 +
1

𝐶𝑂𝑃(𝑇𝑐
𝑠)
) (𝑃𝑐

𝛾
+ ∑ 𝜙𝑖𝑐

𝑝
𝑃𝑈𝑅𝑐𝑖 )  (12) 

∑ 𝑦𝑖𝑐𝑐 = 1, 𝑦𝑖𝑐 ∈ {0,1} (13) 

𝜙𝑖𝑐
𝑝
≥ 𝑦𝑖𝑐 (𝜆𝑖 − ln ℎ𝑖

𝑐 𝑅𝑖
𝑐⁄ ) 𝜇𝑖𝑠𝐶𝑠

𝑝⁄ , 𝜙𝑖𝑐
𝑚 ≥

𝑦𝑖𝑐𝑚𝑖

𝐶𝑠
𝑚 , 𝜙𝑖𝑐

∗ ≤ 1 (14) 

𝑃𝑐 ≤ 𝑃𝑐
𝑃𝐷𝑁 𝑃𝐴𝑅𝑐⁄  (15) 

∑ 𝜙𝑖𝑐
𝑝
𝑃𝑈𝑅𝑐 Δ𝑆𝑐 Δ𝑃𝑐⁄𝑖 ≤ 𝑆𝑐  (16) 

∑ 𝑃𝑐𝑐∈𝐶𝑑
< 𝑃𝑑

𝑚𝑎𝑥 𝑃𝐴𝑅𝑑⁄    (17) 

where parameter 𝑃𝑈𝑅𝑐  denotes the estimated Power 

consumption to Utilization Ratio value for servers inside 

container c, parameter 𝑆𝑐  denotes the total temperature slack 

(summation of 𝑇𝑐𝑟𝑖𝑡 − 𝑇𝑞
𝑖𝑛 for all chassis inside the container), 

and, Δ𝑆𝑐 Δ𝑃𝑐⁄  denotes the sensitivity of the temperature slack 

to the power increase in the container. Moreover, constraint 

(16) determines a varying temperature-related power cap on 

the additional power consumption in each container. Decision 

parameter in this problem is 𝜙𝑖𝑐
𝑝

, which determines the VM to 

container assignment solution (𝑦𝑖𝑐).  

PUR parameter reflects the power consumption per unit of 

utilization in each server. The PUR parameter is defined to 

capture the energy non-proportional behavior in IT 

infrastructure and account for the fixed power consumptions 

of the server, chassis and rack. PUR parameter for server s is 

shown in equation (18). 

𝑃𝑈𝑅𝑠 = 𝑃𝑠
𝑝
+ 𝑤𝑠𝑃𝑠

0 + 𝑤𝑞 𝑃𝑞
0 |𝑆𝑞|⁄ + 𝑤𝑟 𝑃𝑟

0 |𝑄𝑟| |𝑆𝑞|⁄⁄  (18) 

where 𝑤∗ are weighting parameters that are greater than 1. 

For active servers, 𝑤∗ parameters are set to 1. In case of 

inactive server, chassis, or rack, 𝑤𝑠, 𝑤𝑞, and 𝑤𝑟 parameters are 

set to the inverse of the expected utilization factor of server 

type, chassis, or rack. For example, if expected utilization ratio 

of a server type is 50%, 𝑤𝑠 will be set to 2. This means that 𝑃𝑠
0 

is accounted with a multiplicand of two for each unit of 

utilization in an inactive server with expected utilization of 

50%.  
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Using PUR parameter gives priority to assigning VMs to 

active servers/chassis/rack instead of turning on a new entity. 

This is because active servers/chassis/racks will have lower 

PUR values compared to inactive ones (which must be 

activated to service the VM). This will result in more 

consolidation at the server, chassis, and rack levels. For each 

level of hierarchy, the weighted average PUR value of servers 

inside the entity is used as effective PUR value of the whole 

entity. Weighting is based on the remaining resource in each 

server dampened by the amount of remaining peak power for 

each entity.  

Sensitivity of the temperature slack to the power increase 

in each chassis can be calculated using equation (1). Rack and 

container version of this parameter can be defined as a 

weighted average of the same parameter in their covered 

chassis. For instance, sensitivity of the temperature slack to 

the power increase in a container can be defined as follows: 

Δ𝑆𝑐 Δ𝑃𝑐⁄ =
∑ ∑ Δ𝑆𝑐 Δ𝑃𝑞(𝑃𝑞

𝑃𝐷𝑁−𝑃𝑞)⁄𝑞∈𝑄𝑟𝑟∈𝑅𝑐

∑ ∑ (𝑃𝑞
𝑃𝐷𝑁−𝑃𝑞)𝑞∈𝑄𝑟𝑟∈𝑅𝑐

  (19) 

Finding the allocation parameter that results in minimum 

cost value for assigning a VM to a container is a convex 

optimization problem. To find this value, we need to find the 

derivative of the cost elements for this assignment. This 

derivative with respect to 𝜙𝑖𝑐
𝑝

 has three elements related to the 

energy cost of the VM (𝜏Ψ(1 + 1 𝐶𝑂𝑃(𝑇𝑐
𝑠)⁄ )𝑃𝑈𝑅𝑐 ), SLA 

penalty, and a term to capture the effect of this assignment on 

the cooling power consumption as shown in (20). 

𝜕𝑃𝑐
𝑐𝑜𝑜𝑙𝑖𝑛𝑔

𝜕𝜙
𝑖𝑐
𝑝 ≅ 𝜏Ψ𝜙𝑖𝑐

𝑝
𝑃𝑐

𝜕𝐶𝑂𝑃(𝑇𝑐
𝑠) 𝜕𝑇𝑐

𝑠⁄

(1+𝐶𝑂𝑃(𝑇𝑐
𝑠))

2

𝜕𝑇𝑐
𝑠

𝜕𝑆𝑐

𝜕𝑆𝑐

𝜕𝑃𝑐
𝑃𝑈𝑅𝑐  

 
(20) 

Note that | 𝜕𝑇𝑐
𝑠 𝜕𝑆𝑐⁄ |  is the inverse of the number of 

chassis in the container. 

Solving the mentioned convex optimization problem 

results in finding the expected cost of assigning each VM to 

each container.  

To solve the assignment problem based on the expected 

cost of assigning each VM to each container, we use a novel 

ranking metric. Precisely, the ranking metric for each VM, 

which attempts to capture the urgency of assigning the VM to 

the best available container for it, is calculated by subtracting 

the expected cost of the VM assignment to the best container 

(minimum cost) from the expected cost of assigning VM to 

the second best container. VMs are subsequently ranked based 

on this metric and assigned to containers with minimum 

assignment cost until one of the resources (CPU cycles, 

memory bandwidth, peak power, temperature related power 

cap) in one container is exhausted.  

If the temperature related power cap of a container 

becomes zero, 𝑇𝑐
𝑠  is decreased and ranking parameters are 

updated and the container is kept as one with some extra 

capacity to be utilized. This process continues until all VMs 

are assigned to a container or resources in the datacenter are 

completely exhausted. In the latter case, the remaining VMs 

are reported to the cloud manager for re-assignment. This 

approach results in balanced resource utilization to reduce the 

power consumption with focus on COP, server energy 

efficiency and VM to server compatibility. Moreover, using 

PUR parameter results in giving priority in assigning VMs to 

containers with more active servers compared to the ones with 

more inactive servers. The pseudo code for this assignment 

solution for datacenter manager is presented in Algorithm 2. 

Algorithm 2: Resource Assignment Solution 

Inputs: set of VMs to be assigned 
Outputs: VM Assignment to Containers 

1 Foreach VM 

2     Foreach 𝑐 ∈ 𝐶𝑑 

3        Calculate 𝜙̂𝑖𝑐
𝑝

 to min the cost by resource constraint 

4        Calculate 𝐶𝑜𝑠𝑡𝑖𝑐 based on 𝜙̂𝑖𝑐
𝑝

 

5     End 

6 𝑐1 = argmin𝑐 𝐶𝑜𝑠𝑡𝑖𝑐       

7 𝑐2 = argmin𝑐≠𝑐1 𝐶𝑜𝑠𝑡𝑖𝑐       

8 𝑑𝐶𝑖 = 𝐶𝑜𝑠𝑡𝑖𝑐2 − 𝐶𝑜𝑠𝑡𝑖𝑐1 

9 End 

10 While (set of VMs is not empty) 

11 𝑖 = argmax𝑖 𝑑𝐶𝑖     

12 Assign VM and subtract 𝜙̂𝑖𝑐
𝑝

 from available resources 

13 If (𝑇𝑐
𝑠-related constraint limit is reached) 

14 Reduce 𝑇𝑐
𝑠 and calculate new 𝑆𝑐 

15 If (peak power or server resource constraint limit is reached) 

16 Remove 𝑐 from set of available containers 

17 Update 𝐶𝑜𝑠𝑡𝑖𝑐 and 𝑑𝐶𝑖 for the rest of VMs if constraint limit is reached 

18 Remove 𝑖 from set of VMs 

19 End 

A similar ranking metric and resource assignment solution 

is applicable in container, rack, chassis-level resource 

managers. Going to lower-level resource managers reduces the 

number of VMs to be assigned and increase the opportunity to 

model each entity with more than one PUR values (e.g., one 

for active servers and one for inactive servers) in order to 

increase the quality of the initial solution by giving priority to 

assigning VMs to active servers instead of increasing the 

number of active servers. 

VI. PERIODIC OPTIMIZATION: LOCAL SEARCH METHOD 

Before finalizing VM assignment solution in the periodic 

optimization procedure, a hierarchical local search algorithm 

is performed to decrease the operational cost.  

In the local search procedure, resource managers move 

VMs between servers in order to decrease SLA violation 

penalty or reduce the power consumption by increasing the 

energy proportionality or reducing the cooling power 

consumption. To limit the time complexity of the local search, 

the number of VM movement attempts is bounded. For this 

reason, VM movements are ranked based on their 

effectiveness in reducing the total cost. For each VM, a 

ranking metric is calculated based on the expected cost 

reduction from best possible movement. Depending on the 

resource manager, the ranking metric is found based on the 

most important factors on that level. SLA violation penalty, 

migration cost and energy proportionality are important 

factors in every resource manager but cooling system power 

consumption and temperature distribution are also important 

factors in the rack and container managers. The local search 

procedure after sorting VMs is straight-forward: (i) select the 

first VM; (ii) find the best real cost reduction for the VM 

movement; and (iii) try the VM movement if the cost 

reduction is positive and go to (i) if there is another VM with 

positive ranking metric. Note that, in case of moving a VM 

that was assigned to its current server in the previous epoch, 

VM migration cost is subtracted from cost reduction value 
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associated with that VM. After finishing VM movements in 

each resource manager that can happen at the same time for all 

VMMs in one level of hierarchy, a limited number of VMs 

associated with the highest possible cost reduction values are 

passed to the parent resource manager and that manager start 

VM movements with a similar approach. Details of ranking 

metric for different resource managers are omitted due to 

space limitation.  

VII. METHODS TO DEAL WITH EMERGENCIES 

The periodic optimization solution cannot guarantee SLA 

constraint satisfaction, peak power capacity and critical 

temperature constraint satisfaction due to hardware failure and 

dynamic nature of the VM workload. A costly way of 

providing a performance guarantee in the cloud system is VM 

replication and resource over-provisioning, which are 

necessary for some clients (e.g., an e-commerce client) but 

wasteful for many others. Periodic monitoring of performance, 

power and temperature can be used to make reactive VM 

migration decisions or resource allocation adjustments in order 

to guarantee the satisfaction of the constraints.  

Dynamic changes in VM workload is first detected by the 

server. Power/performance manager in each server monitors 

the workload of the assigned VMs and minimizes the SLA and 

energy cost by dynamically changing the allocation 

parameters. A decrease in VM workload creates power saving 

opportunity whereas an increase in VM workload forces the 

server to increase the power consumption to satisfy SLAs. 

Drastic increases in VM workload may not be responded by 

power increase and may require VM migration. Note that even 

if the power/performance manager module in the server can 

find a resource allocation solution that satisfies all of the VM 

SLA constraints within allowable power capacity, it is 

possible that migrating a VM results in lower total cost. These 

cases can be handled with periodic calls to local search 

procedure during each epoch. 

There are different changes in the cloud system requiring 

immediate response to avoid hardware damage and huge 

penalties. For these situations, different control hardware 

components are placed inside the datacenter to avoid events 

such as temperature run-away in servers or power capacity 

violations. Some prior work such as [19] has studied the 

required control mechanisms. These control mechanisms can, 

however, result in violation of SLA constraints. The resource 

manager must, therefore, closely monitor the power and 

temperature sensors and performance counters in order to 

promptly migrate VM if necessary.  

In different emergency scenarios (SLA, peak power or 

temperature emergency), in addition to the actions that can be 

taken by PM and CM, VM migration and resource allocation 

adjustment can be performed to resolve the issue. In our 

proposed framework, a hierarchical procedure is used to 

choose and then perform the best action, which results in 

lowest cost increase, to resolve the issue. Details are, however, 

omitted due to lack of space. 

VIII. SIMULATION FRAMEWORK AND RESULTS 

A) Simulation framework 

To show the effectiveness of the proposed resource 

management structure and different algorithms, a complete 

datacenter simulation framework is implemented in C++. 

A container-based datacenter is modeled in the simulation 

framework. The structure of the implemented datacenters is 

based on the definitions in section III. Different parameters in 

the system are set based on real-world parameters.  

We consider a heterogeneous datacenter with 16 containers 

and 500 servers per container. We use hourly decision epochs. 

Four different server types are considered in this datacenter. 

Processors in server types are selected from a set of Intel 

processors (e.g. Atom and Xeon) [38] with different number 

of cores, cache sizes, power consumptions and clock 

frequencies. 

For each virtual machine in the system, a VM type from 

four different pre-defined VM types is selected. The virtual 

machine type determines the average characteristics of VM. 

The type also specifies variance from the mean for the 

matching VMs. For example, a given VM type sets 𝜇𝑖𝑠
𝑝

 for 

each server type and each VM has this service rate per unit 

capacity plus or minus a deviation that is solely dependent on 

the VM. Similarly, the average request arrival rate (which in 

turn determines the VM workload in each epoch) is 

determined by its VM type. However, the exact probability 

distribution function, (and thus, the variance of the 

distribution) depends on the specific VM. This PDF is used to 

determine the best workload to avoid over-provisioning or 

under-provisioning. Different PDF’s for 𝜆𝑖  are used in this 

simulation framework including exponential and uniform 

distributions. In each decision epoch, the simulation starts 

with a randomly chosen 𝜆𝑖 based on the selected PDF and in 

each update, another 𝜆𝑖 is randomly chosen again based on the 

PDF to be used for the next time. The frequency of doing 𝜆𝑖 
change for each VM depends on a VM-specific parameter. 

The number of 𝜆𝑖 updates for a VM can be up to 50 times per 

epoch. The selected 𝜆𝑖 in this simulation has different ranges 

for different VM classes and was set to be between 0.1 to 10 

requests per second. To reduce the simulation time, we assume 

that workload changes only change the average inter-arrival 

time but the inter-arrival time and service time follow the 

exponential distribution at all time. High number of changes in 

average inter-arrival time makes us confident that the 

workload is not following the exponential distribution in 

general. This means that in each time, the request response 

time for each virtual machine can be determined based on 

queuing formulation. Without this assumption, the long 

convergence time to determine the response time for each VM 

does not allow us to simulate a datacenter with thousands of 

servers and VMs in a reasonable amount of time. The VM 

lifetime is set randomly based on uniform distribution between 

one and 8 hours.  

In response to VM workload changes, the host server 

changes the resource allocation parameters after a small delay. 

For this period of time, if SLA constraint is violated, SLA 

violation penalty for 100% of the arriving requests is added to 

the cost of the datacenter. Moreover, if the server is not able to 

determine the resource allocation parameters such that SLA 

constraints for VMs or power or temperature constraint are 

satisfied, reactive optimizations are performed.   
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To simulate the datacenter, we implemented an event-

driven simulator. After processing any VM workload changes, 

an event is generated to modify the resource allocation 

parameters in the server after some delay. If this resource 

allocation modification results in SLA violation or peak power 

or temperature violation, another event regarding the reactive 

optimizations is added to the event queue. After each event, 

the total cost of the datacenter is updated. 

SLA for each VM is dependent on its VM type. The 

maximum tolerable request arrival rate, target response time, 

SLA violation penalty, maximum tolerable SLA violation rate, 

and migration penalties are determined based on the selected 

VM type which is set based on EC2 pricing schemes [39].  

Cooling system parameters for each container are set based 

on the provided data in reference [17]. Peak power capacities 

for each component inside the datacenter (chassis, rack, and 

container) are pre-set as fixed parameter values. These 

parameters capture the ratio of the theoretical peak power 

consumption of each component to the actual peak power 

capacity. For example if this ratio is 0.8 for a chassis, it means 

that the peak power in that chassis cannot be more than 80% 

of the power consumption of an active chassis with fully-

utilized servers. These ratios can be the same in different 

levels of the cloud system hierarchy or change depending on 

the aforesaid level. PAR parameters for each level of 

hierarchy used in periodic optimization procedure is estimated 

by the PAR value derived in the previous epoch due to VM 

workload changes. Energy cost is set to 15¢ per KWhr.     

B) Base-line heuristics         

To compare the results of the HRM with previous work, a 

power and migration-aware VM placement algorithm 

(periodic optimization) called pMapper [5] is modified and 

implemented. pMapper borrows FFD heuristics from bin-

packing problem to find the amount of resource needed from 

each server. After this step, VMs are sorted based on their 

required processing size and assigned to the first available 

server with the least power to the processing capacity ratio. To 

avoid high migration cost, VM migrations are sorted based on 

a metric which is the power decrease to the migration cost. 

VM migrations are performed based on this ranking metric if 

their metric is greater than one.  

Note that pMapper is a centralized VM placement 

approach, which does not consider the peak power capacity 

and CRAC efficiency in its algorithms.  We thus modified 

pMapper to address these two issues as follows: (i) When 

calculating the ranking metric for servers, the effective power 

consumption of the server in the previous epoch considering 

the CRAC efficiency factor is used; (ii) A utilization capacity 

is considered for each server to decrease the possibility of 

having power capacity violation. Furthermore, after finalizing 

the VM assignment, the same reactive optimization procedure 

that we use for handling any peak power capacity violations is 

applied. With these two changes, pMapper can serve as a good 

baseline against the proposed methods in this paper. 

Moreover, to show the performance loss of using HRM 

instead of a centralized periodic optimization algorithm with 

the same decision criteria, we implemented another 

centralized periodic resource management algorithm called 

CRM. In this algorithm, VMs are sorted based on their 

processing requirement size. Starting from the VM with the 

biggest resource requirement size, servers are sorted based on 

their associated VM assignment cost and the VM is assigned 

to the server with minimum assignment cost. After any 

assignment, resource, peak power and supply cold air 

temperature is updated.    

Note that, the presented reactive optimization technique is 

also applied to the case with pMapper and CRM algorithms as 

periodic optimization technique. 

C) Simulation results 

Total number of active VMs and workload intensity 

(calculated as the summation of minimum resource 

requirement of active VMs from a reference server type) in 

each epoch is shown in Figure 3. During the full-day 

simulation, nearly 1,000,000 workload changes are generated 

in our simulator.  

 
Figure 3- Number of VMs and workload intensity in each epoch 

The total costs of the datacenter by applying HRM, CRM 

or pMapper algorithms are presented in Figure 4.  

 
Figure 4- Total cost of datacenter in each epoch 

As it can be seen, considering flexible SLA, cooling 

system efficiency, and peak power capacity in datacenter 

makes HRM algorithm better than pMapper (by an average of 

43%) in terms of the total cost of the system. Moreover, 

performance loss of HRM method with respect to CRM 

approach is less than 2% which shows the effectiveness of the 

hierarchical management. In order to reach the highest level of 

consolidation in datacenter without increasing the cooling 

energy cost or SLA violation penalties, a global view of the 

resource allocation is needed.  However, the rather small cost 

increase in the proposed HRM method versus the CRM 

method shows that the hierarchical management solution does 

not result in much of a decrease in the server consolidation 

factor compared to the centralized solution. This is because 

PUR parameter favors consolidation in each management 

level and enables HRM to react to the energy non-proportional 

behavior of the servers and IT infrastructure in datacenter. The 

saving in server energy cost plus SLA penalty by only 

considering VM sizing based on state of the datacenter is 

around 18% as reported in [4]. 
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One of the key motivations for HRM is to reduce the run-

time of the periodic optimization procedures and improve the 

solution scalability. Run-time of HRM, CRM and pMapper 

periodic optimization procedures are shown in Figure 5. As it 

can be seen, the proposed hierarchical method has a very short 

run-time compared to the centralized approaches. In fact, 

HRM is in average 7 times faster than pMapper and 27 times 

faster than CRM. 

 
Figure 5- Run-time of the periodic optimization procedure in each epoch 

(run-time is reported in logarithmic scales) 

Calculating the arrival rate for each VM based on the 

prediction about its workload significantly affects the periodic 

optimization solution. Moreover, due to migration cost, effect 

of periodic optimization solution does not disappear even in 

case of very dynamic workloads. To show this effect, we 

considered over-provisioning (20% increase in predicted 

arrival rate) and under-provisioning (20% decrease in 

predicted arrival rate) with respect to HRM algorithm for 

calculating the arrival rate. The results of these two scenarios 

in addition to the HRM results are shown in Figure 6. 

 
Figure 6- Run-time of the periodic optimization procedure in each epoch 

It can be seen that the over-provisioning results in 13% 

higher cost than HRM and under-provisioning results in 2% 

lower cost than HRM.  Note that, this 2% reduction in total 

cost results in higher SLA hard constraint violation (low user 

satisfaction) and significantly higher number of reactive 

optimization calls in each epoch due to SLA emergencies.  

To understand the operational cost of the datacenter, 

different elements of the total cost having different periodic 

optimization techniques are shown in Figure 7. 

As can be seen, the over-provisioning approach results in 

high energy cost and low SLA violation penalty and migration 

cost. This is due to the fact that the amount of resources 

allocated to each VM is more than what it needs to be. In 

contrast, the under-provisioning approach results in low 

energy cost but high SLA violation penalty and migration 

cost. Moreover, SLA hard constraint violation penalty which 

results in user dissatisfaction is high in this approach. The 

pMapper algorithm results in high energy cost and SLA 

violation penalty due to the lack of flexibility for resource 

allocation mechanism in this approach but this approach 

results in the lowest hard SLA constraint violation. Moreover, 

the pMapper algorithm does not consider the cooling system 

efficiency and may result in uneven temperature distribution 

inside containers and higher power usage effectiveness. CRM 

approach results in lower energy cost with respect to HRM 

solution but SLA violation penalty, VM migration cost and 

SLA hard constraint violation penalty are higher in CRM 

approach. CRM approach results in higher consolidation level 

than HRM solution due to global search between all servers 

for each VM assignment in CRM approach which results in 

lower energy cost and possibly higher resource contention 

between VMs and higher probability of forced VM migration 

due to emergencies.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 7- Elements of the total cost: (a) Energy cost, (b) SLA violation 

penalty, (c) Migration cost, and, (d) SLA hard constraint violation penalty. 

Figure 8 reports the total number of calls to the reactive 

optimization procedures in one day considering different 

management strategies.  

As expected, the number of calls to reactive optimization 

procedures for the under-provisioning scenario is larger than 

other hierarchical management algorithms. Moreover, the 

rather large number of calls to reactive optimization 

procedures for pMapper scenario has two important reasons: 

(i) usual power capacity violation due to issues in periodic 
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solution, and (ii) dynamic calls to solve SLA violation 

problems due to inflexibility of the resource allocation 

procedure. 

 
Figure 8- Total number of calls to the reactive optimization procedures in one 

day 

To show the effectiveness of HRM algorithms in reducing 

the cooling system power consumption, Figure 9 and Figure 

10 show two instances of power and temperature distribution 

in 10-rack containers. In these containers, two rows of racks 

(five racks in each row) are placed in parallel. Each rack has 

five chassis (A on bottom to E on top).  

  
(a) (b) 

Figure 9- (a) power and (b) temperature distribution in a container with heavy 

workload. 𝑇𝑠 = 15
𝑜𝐶 and 𝑚𝑎𝑥 𝑇𝑞

𝑖𝑛 = 30. 2𝑜𝐶 

  
(a) (b) 

Figure 10- (a) power and (b) temperature distribution in a container with light 

workload. Ts = 22
oC and max Tq

in = 29. 9oC 

Figure 9 shows a case with heavier workload having 

supply cold air temperature equal to 15oC and maximum 

temperature of 30.2oC. Figure 10 shows a case with lighter 

workload having supply cold air temperature equal to 22oC 

and maximum temperature of 29.9oC. In both cases, it can be 

seen that the resource manager tries to decrease heat 

recirculation which is the main results of the literature in 

temperature-aware task scheduling in datacenter such as [17]. 

Note that this is not always possible because the resource 

managers also consider three important factors in the resource 

allocation which are energy proportionality, VM migration 

cost and peak power cap.  

Energy price has a big impact in determining the total cost 

of the system. Energy price is an important factor in 

determining the resource allocation strategy in datacenters. All 

of the proposed algorithms in this paper consider the energy 

price to decide about the amount of resource allocated to each 

VM. To examine the effect of energy price on the result of the 

proposed algorithms, we considered a scenario with 5000 

VMs with no significant workload change during the day and 

different energy prices for each epoch. The energy price and 

total cost of the datacenter in a full day is shown in Figure 11. 

The shape of time-of-use dependent energy price in Figure 11 

is similar the summer rate of the time-of-use energy pricing 

for business customers in California shown in reference [40]. 

As can be seen in this figure, the total cost in datacenter has a 

similar pattern to the energy price in the system.  

 
Figure 11- Dynamic energy price and total cost of datacenter in a full day 

Figure 12 shows the share of the SLA violation penalty in 

the total cost and average predicted arrival rate for VMs in 

different epochs. 

 
(a) 

 
(b) 

 

Figure 12- (a) percentage of the SLA violation penalty in the total cost and 
(b) average predicted arrival rate for VMs in different epochs 

As can be seen in Figure 12(a), the share of SLA violation 

penalty does not significantly change with energy price. This 

means that in case of low energy price, resource manager tries 

to lower the SLA violation penalty and in case of high energy 

price, it tries to reduce energy consumption by decreasing the 

resource allocated to each VM. Another proof for this 

observation is Figure 12(b) which shows that by increasing the 

energy price, the resource manager decreases the size of each 

VM (under-provision) to reduce the energy cost.  

IX. CONCLUSION  

In this paper, a hierarchical resource management structure 

for cloud system is presented. The presented structure shows 

scalability and higher performance compared to a centralized 

structure suggested in the literature. Adding the flexibility of 
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SLA-based VM sizing to the resource management problem is 

a big contributor to the higher performance of the solution 

compared to the previous approach. Moreover, the 

performance loss of the decentralized approach with respect to 

the centralized version of the algorithm is less than 2% having 

27 times shorter run-time. 

The proposed algorithm results in higher energy 

proportionality in the overall datacenter, lower SLA violation 

penalty and migration cost and higher cooling system 

efficiency. The proposed management structure is appropriate 

for localized VM migrations and resource allocation 

adjustment to avoid temperature, peak power and SLA 

emergencies. The effect of over and under-provisioning 

approaches in this algorithm is studied in the simulation 

results.  
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