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Abstract—Cloud computing is an emerging paradigm that 

allows the on-demand delivering of software, hardware, and data 

as services. It has attracted a lot of attention recently due to the 

increasing demand for high performance computing and storage. 

Resource allocation is one of the most important challenges in the 

cloud computing system, especially when the clients have some 

Service Level Agreements (SLAs) and the total profit depends on 

how the system can meet these SLAs. A set of multiple cloud 

service providers (CSPs) in the cloud, such as Google or Amazon, 

may support the similar type of application, and therefore, 

service requests generated from the network edges are free to be 

dispatched to any CSP in the set. This paper considers the 

problem of SLA-based resource provisioning and management 

among different CSPs. Each CSP owns a set of potentially 

heterogeneous servers supporting a common application type, 

and each performs resource allocation in these servers for 

request processing. In the cloud, a central request dispatcher 

allocates service requests to different servers (belonging to 

potentially different CSPs) based on the amounts of allocated 

resources in those servers. Each CSP optimizes its own profit, 

which is the total revenue obtained from servicing the clients 

subtracted by the total energy cost. The total revenue depends on 

the average service request response time as specified in the 

SLAs. The resource allocation problem among multiple CSPs 

forms a competitive normal-form game, since the payoff (profit) 

of each CSP depends not only on its own resource allocation 

results but also on the actions of the other CSPs. The existence 

and uniqueness of Nash equilibrium in this game are proved. 

Each CSP will find its optimal strategy at the Nash equilibrium 

point using the convex optimization technique. Experimental 

results demonstrate the effectiveness of the game theoretic 

resource provisioning framework for the CSPs.  

Keywords—cloud computing; cloud service provider; request 

dispatching; resource allocation; game theory 

I. INTRODUCTION 

Cloud computing has been widely envisioned as the next-

generation computing paradigm for its advantages in location 

independent resource pooling, ubiquitous network access, on-

demand service, and transference of risk [1]-[4]. Cloud 

computing shifts the computation and storage resources from 

the network edges to a "Cloud", from which businesses and 

users are able to access applications on demand from anywhere 

in the world. In cloud computing, the capabilities of various 

business applications are exposed as sophisticated services that 

can be accessed by the clients over a network. Cloud service 

providers (CSPs) are incentivized by the profits obtained from 

charging clients for accessing their services. Clients, on the 

other hand, are incentivized by the opportunity for enhancing 

performance and reducing the costs associated with “in-house” 

provisioning of these services. It is essential that the clients 

have guarantees from CSPs on the quality-of-service (QoS). 

Typically, the QoS requirements are specified in the Service 

Level Agreements (SLAs) brokered between CSPs and clients. 

The SLAs include requirements and guarantees on computing 

power, storage space, network bandwidth, availability and 

security, etc. 

The underlying infrastructure of cloud computing is 

comprised of data centers and server clusters that are 

monitored and maintained by the CSPs [5]. The CSPs often 

end up over-provisioning their resources in these servers in 

order to meet the QoS requirements specified in SLAs [6]. 

Such over-provisioning will increase both the electrical energy 

cost and the carbon footprint incurred on the servers. Therefore, 

it is critical to perform optimal (service) request dispatching to 

various servers as well as optimal resource allocation in those 

servers in order to reduce the energy cost and the 

environmental impact, as have been investigated in [8] - [11]. 

The more general problem of resource allocation and 

management in distributed computing systems has been an 

active research topic in the past decade, in the context of grid 

computing systems [12][13], electronic commerce systems 

[14], autonomic computing systems [15][16], and in clusters of 

hosting servers [17][18]. 

Multiple CSPs in the cloud computing framework, such as 

Google and Amazon, may provide the same or similar type of 

applications as services e.g., web applications, large-scale 

scientific and engineering applications. For remote processing 

in the cloud, service requests can be dispatched to the servers 

of any CSP supporting such type of application. Each CSP in 

this framework will perform optimal resource provisioning in 

order for profit maximization. Game theoretic approaches are 

important to obtain a thorough analytical understanding of the 

resource provisioning problem among various CSPs. The 

authors [19] of considered the scenario where multiple CSPs 

cooperate with each other to establish a resource pool to 

support internal users and to offer services to public cloud 

users, and proposed a hierarchical cooperative game model and 

corresponding solutions. Similarly, reference [20] shows that 



multiple CSPs can collaborate to establish a cloud federation, 

which in turn enhances the CSPs’ ability to serve public cloud 

users. However, since most of the CSPs are entities aiming at 

profit maximization, it will be more realistic to assume that the 

CSPs in the cloud computing framework are non-cooperative 

(i.e., competitive) among each other. 

In competitive games, one of the most widely utilized 

"solution concept" is the Nash equilibrium [30]. A set of 

strategies for the players constitute a Nash equilibrium if no 

player can benefit by changing his/her strategy unilaterally 

while the other players keep their strategies unchanged. In 

other words, every player is playing a best response to the 

strategy choices of his/her opponents. In the multiple-CSP 

framework, references [21][22] analyze a cloud computing 

system where different CSPs host their applications at an 

Infrastructure as a Service (IaaS) provider. The CSPs compete 

and bid for the usage of infrastructural resources in order to 

maximize their revenues from SLAs while minimizing the cost 

of resource usage. The service provisioning problem is 

modeled as a Generalized Nash game in [21][22], and run-time 

resource management policy is proposed for the CSPs. 

In this work, we consider the problem of SLA-based 

resource provisioning and management among different CSPs 

in a cloud computing system. Different from references 

[21][22], each CSP owns a set of potentially heterogeneous 

servers (in terms of request processing capability) supporting a 

common type of application, and performs resource allocation 

in its servers for request processing. In the cloud, service 

requests from a common request pool are free to be dispatched 

to any server. A central request dispatcher allocates service 

requests to different servers (belonging to potentially different 

CSPs) based on the amounts of allocated resources in those 

servers. The total profit of each CSP for maximization is the 

total revenue obtained from request servicing, which depends 

on the average request response time as specified in the SLA, 

subtracted by the energy cost of the servers. We show that the 

resource allocation problem among multiple CSPs forms a 

competitive normal-form game, since the payoff (profit) of 

each CSP depends not only on its own resource allocation 

results but also on the actions of the other CSPs. We prove that 

this normal-form game is a strictly concave n-person game [31], 

and subsequently, prove the existence and uniqueness of the 

Nash equilibrium in this game. Each CSP will find its optimal 

strategy in the Nash equilibrium point using the convex 

optimization technique [28]. Experimental results demonstrate 

the effectiveness of the game theoretic resource provisioning 

optimization framework for the CSPs. 

The rest of this paper is organized as follows. Section II 

introduces the system model for the game theory-based 

resource management problem in the cloud computing system. 

The game theoretic optimization problem formulation and 

optimization are provided in Section III. Experimental results 

are presented in Section IV, and we conclude this paper in 

Section V. 

 

II. SYSTEM MODEL AND PROBLEM FORMULATION 

Figure 1 illustrates the structure of the target cloud 

computing resource allocation system, which is comprised of a 

service request pool, a central request dispatcher node, as well 

as a set of servers from   CSPs supporting the same type of 

application (e.g., web applications, large-scale scientific and 

engineering applications.) Each i
th
 CSP         owns and 

maintains    potentially heterogeneous servers. We use j as the 

index of servers of a CSP. Each j
th
          server of the 

i
th

 CSP allocates a portion of its total resources, denoted by     

         , for servicing the requests. We use     to denote 

the average service request processing speed of the j
th
 server of 

the i
th
 CSP when all its resources have been allocated for 

request processing, i.e.,      , and we name         the 

computation resource allocated by the corresponding server. 
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Fig. 1. Architecture of the Resource Allocation Problem in the Cloud 

Computing System with Multiple CSPs. 

The service request pool contains service requests of a 

single type of application that are generated from all the clients. 

A service request is free to be dispatched to any server 

belonging to any CSP, because all the servers in the target 

cloud computing system can support such application type. As 

long as a service request is dispatched to a server, the server 

creates a dedicated virtual machine (VM) [23] for that service 

request, loads the application executable and starts execution. 

The central request dispatcher assigns a request to the the j
th
 

server of the i
th
 CSP with probability    , which is proportional 

to the amount of computation resource         allocated by 

that server. In other words,     is given by: 

    
       

         
  
   

 
   

 (1) 



In order the derive the analytical form of the average 

response time, service requests in the request pool are assumed 

to follow a Poisson process with an average generating rate of 

 , which can be predicted based on the past behavior of the 

clients. According to the properties of the exponential 

distributions [26], service requests that are dispatched to the j
th
 

server of the i
th
 CSP satisfies a Poisson process with an average 

rate of      , which is the average request arrival rate of that 

server. Based on the well-known formula in the M/M/1 queues 

[27], the average response time of service requests dispatched 

to each j
th
 server of the i

th
 CSP is given by: 

    
 

             
 (2) 

Let     denote the power consumption of each j
th
 server of 

the i
th

 CSP.     is the sum of a constant term    
    , which 

represents the server power consumption when it is idle, and 

another term    
         that is a superlinear function of the 

portion of allocated resources     for request processing. More 

specifically,     is given by: 

       
        

         (3) 

where the function    
         can be presented as follows: 

   
            

             
       

      (4) 

where    
    is the server power consumption level when the 

server is active and all its resources have been allocated for 

service request processing i.e.,      .    
         is a 

normalized convex function of    , which equals to 0 when 

      and equals to 1 when      . One typical function 

satisfying this property is    
              

 
. According to 

the power consumption expression in Eqn. (3), there is a most 

desirable utilization level     to optimize the         value, 

which is unit power consumption level per allocated resource. 

The most desirable utilization level is typically around 70% in 

various references [24][25]. 

Let               denote the revenue the i
th
 CSP 

receives when servicing a request with response time equal to 

 , as specified in the SLA. Let         denote the unit 

electricity price at the location where the j
th
 server of the i

th
 

CSP is built (i.e., we consider potential differences in 

electricity prices at different locations of the cloud computing 

framework.) Then the total profit of the i
th
         CSP 

over a time period   is calculated by: 

        

  

   

        
 

             
  

                
        

         

  

   

 

(5) 

where the first term of Eqn. (5) is the total revenue of the i
th
 

CSP obtained from servicing the requests, as specified in the 

SLA, whereas the second term is the total energy cost over the 

time period  . 

 

III. OPTIMIAZATION PROBLEM FORMULATION AND 

SOLUTION 

A. Problem Formulation 

We consider the competition among the   CSPs in the 

cloud computing framework. Each CSP maximizes its own 

profit given in Eqn. (5). The optimization variables (action) of 

each i
th
         CSP is the resource allocation vector 

                  
 . As discussed in Section II, the 

request dispatching probability value     depends not only on 

   of the i
th
 CSP but also on the actions of the other CSPs. 

Hence we denote the probability value as            , where 

    represents the resource allocation vectors of all the other 

CSPs than the i
th

 one. Of course,     is not given to the i
th

 CSP 

when it makes decisions. The power consumption value     in 

the j
th
 server of the i

th
 CSP, as shown in Eqn. (3), only depends 

on the local resource allocation action    . In summary, the 

payoff function (i.e., total profit) of the i
th
         CSP to 

maximize, as given in Eqn. (5), can be represented as follows 

to emphasize the dependence on the optimization variables: 

     

            

  

   

       
 

                     
  

                    
        

         

  

   

 

(6) 

Moreover, each i
th

         CSP needs to satisfy the 

following constraints: 

               (7) 

        

  

   

 
    
  
   

     
  
   

 
   

     (8) 

where   is a small predefined value. Constraint (8) is enforced 

by the cloud computing framework to make sure that the all the 

requests from the service request pool can be serviced by 

certain CSP. 

B. Optimization Procedure 

Because the payoff function (6) of each i
th
         

CSP depends on not only its own action    but also the actions 

of the other CSPs, the resource management problem stated in 

Section III.A essentially forms a non-cooperative normal-form 

game, where all the players take action simultaneously. We 

name the normal-form game the Resource Allocation among 



Multiple Cloud Service Providers (RA-MCSP) game. The 

players in the RA-MCSP game are the   CSPs in the cloud 

computing framework. The strategy of each i
th

         
CSP is the    vector, and the constraints are given in Eqns. (7), 

(8). 

As the CSPs in the cloud computing framework are 

considered to be non-cooperative among each other, we are 

interested in the existence and uniqueness of the Nash 

equilibrium [30]. As one of the most widely utilized "solution 

concept" in normal-form games, the Nash equilibrium is the 

optimal strategy profile for all the players in the sense that no 

player can benefit by changing his/her strategy unilaterally 

while the other players keep their strategies unchanged. In 

other words, no player (CSP) will have incentive to leave the 

current strategy in the Nash equilibrium. We prove the 

existence and uniqueness of the Nash equilibrium in the RA-

MCSP game. 

Theorem I (Nash equilibrium in the RA-MCSP game): The 

Nash equilibrium in the RA-MCSP game exists and is unique. 

Proof: We are going to prove that the RA-MCSP game is a 

strictly concave n-person game. We need to prove (i) the 

domain of the strategy profile for all the players, which is 

specified by constraints (7), (8), is a closed convex set, and (ii) 

the objective (payoff) function of each player to maximize is a 

strictly concave function with respect to the optimization 

variables of that player, assuming that the optimization variable 

values of the other players are given in prior. One can easily 

observe that statement (i) is true because constraints (7), (8) are 

all linear constraints of optimization variables   . In the 

following, we prove that statement (ii) is also true: 

 The first term of the payoff function (6) is a concave 

function of the optimization variables    as long as (i) 

            
  
    is a concave function of    when     is 

given, and (ii) 
           

                     
 is a convex function of 

  . We prove statement (i) as follows: 

            

  

   

  
       

         
  
   

 
   

  

   

                            

 
        
  
   

        
  
               

   

       

 

            
           

 
  

       

        
  
               

   

       

 

(9) 

Hence we have proved the statement (i) because 

           
 
  

        is assumed to be a constant value. 

Moreover, we prove statement (ii) as follows: 

           

                     
 

 

       

         
  
   

 
   

        
       

         
  
   

 
   

  

               

 
 

         
  
   

 
     

                                  

 
 

        
  
   

            
   

         
 

(10) 

And we have proved the convexity of the function 
           

                     
. 

 The second term of the payoff function (6), i.e.,   

             
        

         
  
   , is a strictly convex 

function of the optimization variable   , because each 

function    
         is a strictly convex function of    . 

After we have proved that the RA-MCSP game is a strictly 

concave n-person game, the existence and uniqueness of Nash 

equilibrium are directly resulted from the first and third 

theorems in [31], respectively.                                                    

Each i
th
 player (CSP) of the RA-MCSP game finds its 

optimal strategy in the Nash equilibrium using standard convex 

optimization technique [28]. The detailed procedure is 

illustrated in Algorithm 1. 

 

Algorithm 1: Finding the Nash Equilibrium in the RA-

MCSP Game for the i
th

 CSP. 

Initialize the    vector (i.e., the resource allocation results of 

the i
th

 CSP), as well as     for the other CSPs, satisfying 

constraints (7), (8). 

Do the following procedure iteratively: 

For each       : 

Find the optimal     vector (i.e., the best response of 

CSP   ) with respect to     , by solving the convex 

optimization problem with objective function (6) and 

constraints (7), (8) using standard techniques [29].  

Update the     vector to be the new value. 

End 

Until the solution converges. 

Return the optimized    vector. 

 



IV. EXPERIMENTAL RESULTS 

In this section, we implement the game theory-based 

resource provisioning framework for multiple CSPs, and 

compare the optimization results with baseline resource 

allocation algorithms. We use normalized amounts of most of 

the parameters in the cloud computing system instead of their 

real values. 

We consider a cloud computing framework that is 

comprised of five CSPs. The five CSPs contain 4 servers, 6 

servers, 5 servers, 7 servers, and 3 servers, respectively. The 

average service request generating rate   is the parameter that 

we sweep in the experiments. The average service request 

processing rate     in each j
th

          server of the i
th
 

        CSP is a uniformly distributed random variable 

between 8 and 12. The maximum power consumption    
    of 

each server is a uniformly distributed random variable between 

250 and 350. The idle power consumption    
     of each server 

is uniformly distributed between 60 and 20. The normalized 

superlinear function    
         is given by    

              
 
. 

The unit energy price value         is uniformly distributed 

between 0.1 and 0.2, at the building location of each server in 

the cloud. For the utility functions of each i
th
         CSP, 

parameters    and    are uniformly distributed between 10 and 

12, and between 4 and 6, respectively. The time period   is 

assumed to be 1, i.e., the unit time period. 

 

Fig. 2. The Total Revenue, Total Energy Cost, and Total Profit of the 

Cloud Computing System with Different   Values. 

In the first experiment, we change the average service 

request generating rate   from 25 to 225, and observe the total 

revenue, total energy cost, and total profit (revenue – energy 

cost) of all the five CSPs, as illustrated in Figure 2. In this 

experiment, each CSP is a rational player and finds its best 

strategy in the Nash equilibrium of the RA-MCSP game by 

executing Algorithm 1. We can observe from Figure 2 that (i) 

the total energy cost of the cloud computing system keeps 

increasing when   increases because of the increasing amount 

of resource required for service request processing, and (ii) the 

total revenue from servicing requests and the total profit of the 

cloud computing system first increase when   increases due to 

the increasing number of served requests, and then decrease 

during the further increasing of the parameter  . This 

phenomenon is because of the increasing of the request 

response time significantly reduces the revenue of each CSP 

(to be even negative) as specified in the SLA. As shown in 

Figure 2, the overall cloud computing system achieves the 

maximum profit when      .  

In the second experiment, we compare the profit of the 3
rd

 

CSP (with 5 servers) in this framework achieved by executing 

the proposed game theoretic optimization method (Algorithm 1) 

and three baseline methods. In this experiment, all the other 

CSPs are rational and find the best strategy in the Nash 

equilibrium of the RA-MCSP game by executing Algorithm 1. 

In the three baseline systems, the 3
rd

 CSP is not aware of the 

optimal strategy in the Nash equilibrium. Instead, it uses 

estimation of the other CSPs’ strategies (resource allocation 

results). In Baseline 1, the 3
rd

 CSP assumes that all the other 

CSPs allocate all the server resources for request processing 

(i.e., the     values are equal to 1 for          ), and 

performs optimal resource allocation (i.e., finding the optimal 

    values) based on this assumption. In Baseline 2 and 3, the 

3
rd

 CSP calculates the minimum resource required in each j
th 

server of the i
th
 CSP as follows: 

     
 

     
  
   

 
   

 (11) 

One can observe that the underlying assumption is to allocate 

the same portion of resource in each server of the cloud. Then 

Baseline 2 assumes that all the other CSPs allocate         

portion of resource in their servers, whereas Baseline 3 

assumes         portion of resource for request processing. 

Of course the portion of resource allocation cannot exceed 

100%. Then the 3
rd

 CSP of our interest performs optimal 

resource allocation based on the corresponding assumptions. 

 

Fig. 3. The Profit of the 3rd CSP Achieved by the Proposed Method and 

Three Baseline Algorithms when the   Value Increases from 50 to 100. 
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Figure 3 illustrates the profit of the 3
rd

 CSP achieved by the 

proposed method and three baseline algorithms when the   

value increases from 50 to 100. We can observe that (i) the 

game theoretic optimization method consistently results in 

higher profit for the 3
rd

 CSP compared with baseline methods, 

illustrating that the CSP finds its best response using the Nash 

equilibrium-based optimization method, and (ii) the profit gain 

achieved by the proposed method gradually reduces with the 

increase of  . For example, the 3
rd

 CSP achieves 13.5X profit 

when      by employing the game theoretic optimization 

method compared with Baseline 3 (the best-performing 

baseline method.) This profit gain reduces to 36.8% when 

     and to 14.9% when     . 

V. CONCLUSION 

In this paper, we consider the problem of SLA-based 

resource provisioning problem among different CSPs in the 

cloud computing framework. Each CSP hosts a set of 

potentially heterogeneous servers and performs resource 

allocation in these servers for request processing. In the cloud, 

service requests from a common request pool are free to be 

dispatched to any server. A central request dispatcher allocates 

service requests to different servers (belonging to potentially 

different CSPs) based on the amounts of allocated resources in 

those servers. The objective of each CSP is to maximize its 

own profit, which is the total revenue obtained from request 

servicing subtracted by the energy cost of the servers. The total 

revenue depends on the average service request response time 

as specified in the SLAs. We show that the resource 

provisioning problem among multiple CSPs forms a 

competitive normal-form game, since the payoff (profit) of 

each CSP depends not only on its own resource allocation 

results but also on the actions of the other CSPs. We prove that 

this normal-form game is a strictly concave n-person game, 

and subsequently, prove the existence and uniqueness of the 

Nash equilibrium in this game. Each CSP will find its optimal 

strategy in the Nash equilibrium point using the convex 

optimization technique. Experimental results demonstrate the 

effectiveness of the game theory-based resource provisioning 

optimization framework for the CSPs. 
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