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Abstract— For modern high performance systems, aggressive 

technology and voltage scaling has drastically increased their 
susceptibility to soft errors. At the grand scale of cloud 
computing, it is clear that soft error induced failures will occur 
far more frequently, but it is unclear as to how to effectively 
apply current error detection and fault tolerance techniques in 
scale. In this paper, we focus on energy-aware fault tolerant 
scheduling in public, multi-user cloud systems, and explore the 
three-way tradeoff between reliability (in terms of soft error 
resiliency), performance and energy. Through a systematically 
optimized resource allocation, error detection approach selection, 
virtual machine placement, spatial/temporal redundancy 
augmentation and task scheduling process, the cloud service 
provider can achieve high error coverage and fault tolerance 
confidence while minimizing global energy costs under user 
deadline constraints. Our scheduling algorithm includes a static 
scheduling phase that operates on task graph based workload 
inputs prior to execution, and a light-weight dynamic scheduler 
that migrates tasks during execution in case of excessive re-
executions. All schedules are evaluated on a runtime simulation 
engine that (1) mimics the performance fluctuations in cloud 
systems, and (2) supports the injection of arbitrary fault patterns. 
Compared to current virtual machine or task replication 
techniques, we are able to reduce overall application failure rates 
by over 50% with approximately 76% total energy overhead. 

I. INTRODUCTION 

Soft error resiliency has become a major concern for 
modern computing systems as CMOS technology and voltage 
continues to scale [1]. Soft errors can occur in circuits due to 
transient and intermittent faults (henceforth referred to as 
faults) induced by noise, high energy cosmic particles, and 
hardware fatigue. As errors propagate through the system, they 
may manifest as different forms of failures such as corrupted 
outputs or system crash. At the grand scale of cloud 
computing, this problem can only worsen [2, 3, 4, 5, 6], 
especially for cost-effective cloud systems built with 
commodity components [7]. Researchers have witnessed 
unacceptably high failure rates when running scientific 
workloads in cloud or grid systems [8, 9]. 

Although it is impossible to entirely eliminate spontaneous 
soft errors, they can be masked from users to promote a 
satisfactory Quality-of-Service (QoS). This is achieved by 
predicting the faults/errors and applying the appropriate error 
detection and fault tolerance methods. Doing so will often 
incur large power consumption overheads, which will 
significantly impact operating costs [10]. In addition, in a 
multi-user cloud, protecting one application may stifle the 
performance for other applications because of resource sharing. 

Although ad-hoc fault tolerance techniques such as virtual 
machine (VM) replication [11] and idempotent task retry [8] 

have already seen commercial success, as more and more 
providers and users are drawn to the cloud [12], a systematic 
approach is needed, especially for users running deadline or 
data accuracy sensitive applications. In this paper, we focus on 
soft error resiliency in public cloud systems from the 
perspective of the cloud service provider (CSP). We introduce 
a unified resource allocation and fault tolerant scheduling 
(FTS) framework that leverages the three core aspects in cloud 
computing: reliability, performance and energy. To achieve 
this, the CSP must select the appropriate error detection and 
fault tolerance measures for each user. Our framework is 
inspired by FTS techniques used for chip multiprocessors [13, 
14], but properly updated for cloud computing systems. To the 
best of our knowledge, this is the first paper that analyzes the 
impact of error detection and fault tolerance mechanisms in 
order to co-optimize global energy and soft error resiliency 
under deadline constraints in a multi-user cloud environment. 

We acknowledge the fact that cloud computing fault 
tolerance is still an emerging field without standardization. For 
example, how to accurately model hardware faults in the cloud 
is still largely unknown [5, 8]. With this in mind, our 
framework depicted in Fig. 1 is designed to be modular. It 
allows us to “plug-in” almost any fault model, any error 
detection and any fault tolerance option. In this paper, we will 
determine these inputs based on recent research.  
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Fig. 1 Overview of the optimization framework and its inputs 

II. RELATED WORK 

For cloud computing systems, fault tolerance is demanded 
in data storage, transmission and computation. Providing fault 
tolerance in data storage [15] is relatively straightforward. 
RAID [16] setups and Amazon's EBS (Elastic Block Storage) 
[17] can tolerate disc failures through local redundant storage 
mediums. Many well known networking protocols can be 
revised to cover data transmission faults in cloud computing. 
Queue based message retrieval/retry mechanisms have already 
been utilized in Windows Azure [18]. 
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Addressing errors that occur during computation in cloud 
systems is orthogonal to the two aforementioned items, and is 
the focus of this paper. Although cloud users can continue to 
utilize traditional algorithm level fault tolerance approaches 
[19], due to the opaqueness of the public cloud [20], it is 
significantly more efficient for the CSP to handle fault 
tolerance. The most popular high level approaches include 
spatial redundancy and temporal redundancy. 

The concept of spatial redundancy can be traced back to 
Triple Modular Redundancy (TMR) [21]; when instantiated in 
the cloud computing context, modules translate to replicated 
VMs or tasks operating in lock-step [22, 23]. Such 
implementations can already be seen in high availability cloud 
solutions such as VMware [11] and VGrADS [24].  

Temporal redundancy typically entails re-execution. Tasks 
can be resubmitted in case of a failure as seen in Condor-G [25] 
and MODISAzure [8], or restarted from an intermediate valid 
state [26]. Similarly, VM checkpointing methods periodically 
stores a checkpoint image of the primary VM in another 
backup VM. The VM pairs in Remus [27] operate in a leader-
follower fashion. Kemari [28] and HydraVM [29] are other 
examples of VM checkpointing.  

Thus far one important subject has escaped our discussion, 
namely error detection and error coverage. Error coverage is 
defined as the fraction of total errors that will be detected by 
the given error detection approach. Current cloud systems only 
address VM crash and timeout exceptions due to their ease of 
detection. However, not all faults manifest as such easily 
observable events [30]. Understanding application behaviors 
in the presence of soft errors is an active area of research. 
Statistical and proton irradiation fault injection experiments on 
the IBM POWER6 machine report that near 30% of unmasked 
latch flips lead to incorrect architectural state, which is the 
precursor to silent data corruptions [31]. In cloud systems, 
researchers have noticed that 30% - 60% of failed applications 
were unrecoverable [8, 9]. For cloud users that demand high 
reliability, we argue that both robust error detection and fault 
tolerance should be offered transparently by the CSP. 

III. SYSTEM MODEL 

Workload Model 
We use directed acyclic graphs (DAGs) to model user 

workloads. The entire workload is represented as a collection 
of N disjoint DAGs: {G1, G2, ..., GN}. Each DAG Ga (1 ≤ a ≤ 
N) represents a workload request, and each vertex   

  in Ga 
embodies a task. Without the loss of generality, we assume 
that each workload request belongs to a separate user. A 
directed edge from   

  to   
  denotes that   

  is dependent on 

the output of   
 . The weight of the edge     

  represents the 

amount of data that needs to be passed from the predecessor 
task (  

 ) to the successor task (  
 ), or to the final output 

when i = j. By definition   
          

    . Other cloud 

frameworks that use similar task graph based workload models 
include Dryad [32] and Nephele [20]. The deadline for Ga is 
denoted as          

 . In this paper all deadlines are hard. 

Tasks are run on VMs, which are categorized into K 
distinct types: {VM1, VM2, ..., VMK}, each VMg is coupled with 

a  two-tuple integer set that specifies the CPU and memory 

resource requirements: {    
 

,     
 

} [33]. 

Each task   
  is also coupled with a two-tuple integer input 

set {  
 ,   

 }.   
  represents the type of VM on which   

  can 
execute. This information can be provided externally, or 
deduced internally through collected statistics [20].   

  is the 
estimated execution time of   

 , derived from approximation 
methods such as machine learning [20] or benchmark probing 
[9]. Scheduling optimizations will operate on   

  values, while 
the runtime simulation engine will account for VM 
performance fluctuations [9]. 

Cloud Platform Model 
The cloud consists of a set of M servers: {D1, D2, ..., DM}. 

The power consumption of Dx at time t includes the static 
power consumption        

     and the dynamic power 

consumption         
    . Both are correlated with the 

utilization rate of Dx at time t:         . We calculate          
by aggregating the CPU requirements of active VMs.  

       
     is constant when Utilx(t) > 0, 0 otherwise. 

Servers have optimal utilization level in terms of performance-
per-watt, which we define as Optx for Dx. It is commonly 
accepted that for modern servers Optx ≈ 0.7, and the increase 
in dynamic power consumption beyond this operating point is 
more drastic than when Utilx(t) < Optx [10, 34]. Even for 
identical utilization levels, the energy efficiency of different 
servers may vary [35]. This is captured by the coefficients αx, 
βx and γx, representing the power consumption increase of Dx 
when Utilx(t) < Optx and Utilx(t) ≥ Optx. The dynamic power 

consumption         
     is then calculated as: 

 
           

                       
     

   
                

               
 
 
  

The total energy consumption is the sum of the power 
consumption across all servers throughout the timeline: 

                        
             

     

    

   

 

 

   

 
  

IV. FAULT MODEL 

In this paper we use a fault model which is inspired by 
microprocessor fault tolerance research. 

Task Failure Modes 
Tasks can fail in the following two ways: (1) crash or (2) 

silent data corruption (SDC). Crashes are triggered by 
exceptions such as memory misalignment or transmission 
timeout. SDC refers to when a task produces erroneous output 
without triggering crashes [36]. We do not consider failures 
caused by middleware or software bugs. 

Failure Probabilities 
The failure probability of a particular task depends on 

many factors. We correlate this probability to two primary 
factors: (1) task execution duration and (2) the underlying 
hardware, i.e. the host server. If we use μx to characterize the 
failure rate of Dx, and adopt the widely used Poisson model for 
failure occurrences, then the failure rate of   

  would be:  

     
          

 
  

The discrepancy between server failure rates are justified 
by the fact that servers in the cloud are often heterogeneous, in 



 

terms of both hardware infrastructure and operating 
environments: temperature, supply voltage [37], and age [3].  

The probability of a task failure being a crash (    
 ) or 

silent data corruption (    
 ) are calculated as      

     and 

     
    , respectively. ρ1 and ρ2 can be approximated with 

empirical data. 

V. ERROR DETECTION 

In this paper we consider two error detection approaches 
corresponding to the two types of VM failures: crash detection 
and explicit output comparison (EOC). 

VM sensors are very cost effective in detecting application 
crashes [8]. In this paper, crash detection is presumed to be 
ubiquitously deployed. With EOC, tasks are spatially 
replicated to enable output data comparison. EOC is error 
detection in its most powerful form, reaching near perfect 
error coverage [13]. This confidence comes with the price of 
extra VM allocations to run the task replicas and the additional 
time to perform output comparisons, which we reasonably 
relate to the amount of data that needs to be compared (  

 ).  

VI. FAULT TOLERANT CLOUD SCHEDULING 

Our fault tolerant cloud scheduling framework is composed 
of two phases: static scheduling and dynamic scheduling.  

Static Scheduling 
During this phase, the CSP manipulates workloads at the 

granularity of users {G1, G2, ..., GN} and performs three 
assignments. First, the CSP performs resource allocation for 
each user Ga by setting the integer array    

    
     

   where 
  
  is the number of VMi’s allocated to Ga. The goal of this 

process is to provide each user with sufficient amount VMs so 
that the deadline can be met during execution. 

Second, the CSP must establish, for each user Ga, the level 
of "effort" devoted to error detection and fault tolerance by 
associating each user Ga with the following:  
DETECTa 0: Crash Detection Only, 1: EOC 
REPa Replication Factor, ≥ 2 if DETECTa = 1 
The detection method (DETECTa) influences the task runtimes. 
When EOC is used, output comparisons will increase the task 
execution time of   

  from   
  to   

    
 . The replication 

factor (REPa) denotes the number of task replicas.  

Third, each user is mapped to a server (we assume that one 
application does not span across multiple servers, but one 
server may host multiple applications), and a temporal 
schedule is generated. The objective of the CSP in this stage is 
to systematically maximize fault tolerance confidence and 
error coverage while minimizing global energy consumption 
under deadline constraints. While energy consumption can be 
calculated using the aforementioned formula, the 
quantification of fault tolerance confidence and error coverage 
is not so straightforward. A brute force method would be to 
implement a comprehensive fault simulator, but such an 
approach is incompatible with optimization algorithms due to 
repeated evaluations during the solution space exploration. We 
propose a computationally attractive approach based on 
dynamic programming (DP) described below. 

The fault tolerance confidence for each user Ga is 
measured with two probabilities:  

1) P_DROPa: The probability of the user request being 
dropped due to errors being detected but unable to be 
tolerated within the deadline. High P_DROPa values 
indicate low fault tolerance confidence. 

2) P_ERRa: The probability of the CSP delivering erroneous 
outputs to the user due to undetected SDC. High P_ERRa 
values indicate low error coverage. 

P_ERRa can be approximated in linear time as the probability 
of at least one non-detectable error occurring during execution:  

                
     

  
  

P_DROPa is calculated using a dynamic programming based 
algorithm of complexity O(                  

 ) described in 
Algorithm 1. This fast evaluation of fault tolerance confidence 
is a key enabler for the static scheduling algorithm. 

Algorithm 1. Calculating P_DROPa 
N_Tasksa = Number of tasks in Ga; 
                

                            ; 
DP_TABLE[][] = {0}; 
for (i = N_Tasksa; i ≥ 1; i--)  
   if (DETECTa = 0)         

    
 ; 

   else if (DETECTa = 1)        
    

          
  ; 

            
          

   ; 

for (t =          
 ; t ≥ 0; t--) 

   for (i = N_Tasksa; i ≥ 1; i--) 

      if (       
          

               
 ) 

         DP_TABLE[i][t] = 0; 
      else 

         DP_TABLE[i][t] = Success(  
 ) * DP_TABLE[i + 1][t +       

 ] 
                 + [1 - Success(  

 )] * DP_TABLE[i][t +       
 ]; 

return (1 - DP_TABLE[0][0]); 

Both dropping requests and delivering erroneous outputs 
will cause customer dissatisfaction and potential profit loss for 
the CSP. In this paper we do not presume any profit model, 
and only operate on raw failure probabilities. This allows for 
the CSP to superimpose cost functions on our framework. 

We examine a simple case study for a single task (  
 ) user 

G1 below to gain some insight on the advantages and 
disadvantages of different error detection mechanisms. Three 
example schedules are presented in Table I. Formulas for 
calculating        and         values are listed in Table 
II, extrapolated to a generic replicator factor k. 

Table I. Error detection and active replication combinations (static schedule) 

Example 

Schedule for   
 

 

DETECT1 = 0  
REP1 = 1 

DETECT1 = 0  
REP1 = 2 

DETECT1 = 1  
 REP1 = 3 

1

1L
 

1

1L

1

1L
 

=1

1L

1

1L

1

1L

 
Single Crash Re-execute Seamless Seamless 

Single SDC Erroneous Erroneous Seamless 

In the first column of Table I, the task is not enhanced with 
any error detection or fault tolerance beyond crash detection 
and task retry. The second column showcases the basic 
implementation of spatial redundancy in cloud systems [11, 
22]. This schedule can seamlessly recover from a single task 
crash by gathering outputs from the healthy replica. In the 
event of both replicas crashing, the task can be re-executed. In 
this case           follows the geometric distribution. 
The rightmost column in Table I is a almost bulletproof TMR 



 

schedule. It not only reaches full error coverage, but also 
supports seamless recovery through output voting. 

We plot the values from Table II in Fig. 2. Clearly, the 
benefits of having longer slacks and higher replication factors 
suffer from the phenomena of diminished returns. 
Conceptually, the optimization procedure seeks for the knee of 
these two curves so that the failure rates can be reduced 
without excessive VM allocations.  

Table II. P_ERR1 and P_DROP1 values of the example schedules 

 P_ERR1 P_DROP1 

DETECT1=0 
REP1=k 

          
  

   
         

     
  

         
 

  
  

  

DETECT1=1 
REP1=k 

0       
  

        
    

        
   

 
         
 

  
    

  

  

 
Fig. 2. Analysis of the tradeoffs during scheduling 

Next we present the static scheduling algorithm in high 
level pseudo code form in Algorithm 2. It first operates in 
batch mode (batch mode and dependency mode scheduling 
classifications are defined in survey [38]) to keep the 
algorithm runtime tractable. In this stage, we combine bin-
packing which has been proven useful for cloud scheduling 
[39], and core concepts from genetic algorithm [40]. However, 
the actual procedure is not evolutionary, it is deterministic 
with a complexity of O(                       

 ). Next, 
the static schedule is placed on the timeline for dependency 
mode scheduling. VM allocations and task migrations will be 
performed to accelerate applications with deadline violations. 

Algorithm 2. Static Scheduling Algorithm 
call resource_allocation(); 
DETECTa = 0 and REPa = 1  1 ≤ a ≤N 
Schedule[0] = call BEST_FIT_FOR_POWER_BIN_PACKING(); 
for (k = 0 and k = 1) 
   DETECTa = k and REPa = 1  1 ≤ a ≤N 
   Schedule[k] = call BEST_FIT_FOR_RELIABILITY_BIN_PACKING(); 
   select Gi that REPi++ maximizes increase in (1 - P_DROPi)/Total_Energy; 
   if (increase in P_DROP < 1.5x) 
      REPi--; 
for (i = 1; i ≤ N; i++) 
   if (P_DROPi[2] < P_DROPi[1] - P_ERRi[1]) 
      accept(Gi, Schedule[2]); 
for (all unscheduled applications) 
   if (valid(accept(Gi, Schedule[1]))) 
      accept(Gi, Schedule[1]); 
for (all unscheduled applications) 
   accept(Gi, Schedule[1]) or place(Gi, select(Dx)); 
call implement_placement _schedule_to_timeline(); 
for (i = 1; i ≤ N; i++) 
   if (deadline_violated(Gi)) 

      if (can_execute_sooner(  
 ) == 1) 

         allocate_and_migrate(  
 ); 

   for (j = 1; j ≤ N_TASKS[i]; i++) 
      add_replica_oppurtunistic(i, j); 
output can_execute_sooner[]; 
output Static_Schedule; 

Dynamic Scheduling 
During cloud operation, the static schedule will only serve 

as a reference, since it cannot handle task runtime variations 
and spontaneous faults. Distributed dynamic schedulers will:  
1) Manage output comparisons and initiate re-execution 

when appropriate. We illustrate with a simple example. 
Suppose the cloud is servicing a single user G1 (Table III). 
Fig. 3 displays a dynamic trace, hence all latencies shown 
(L') are actual latencies, which may or may not be the 
same as the estimated values (L) due to VM performance 
fluctuations. G1 is augmented with EOC with REP1 = 2. 
Re-execution was initiated at t = 10 due to the comparison 
mismatch for   

 , delaying subsequent tasks. At t = 23, 

one   
  replica crashed, hence the comparison at t = 25 

was nullified, since only one set of output remain, which 
may have been corrupted by SDC. We conservatively 
initiate re-execution in this scenario. 

2) Initiate dynamic allocation and task migration when 
appropriate. Based on the re-executions, dynamic 
scheduling is carried out with Algorithm 3. The dynamic 
scheduler is designed to be as simple as possible to 
comply with real time constraints. For example, the 
dynamic scheduler does not examine whether a re-
executed task is on the critical path or not, it simply 
assumes all re-executions will extend the schedule length.  

Algorithm 3. Dynamic Scheduling Algorithm 
if (application i task k initiated re-execution at time t) 

                                           
 ; 

   if (                                              
 ) 

      for (k' = 1; k' ≤ number of tasks in Ga; k'++) 

         if (can_execute_sooner(   
 ) == 1 && start_time(   

 ) > t) 

            migrate_and_allocate(   
 )     

  statically scheduled after   
 ; 

Returning to previous case study, the re-execution at t = 10 
caused the dynamic allocation of a pair of VM1’s (fast VM 
allocations has been explored in SnowFlock [41]), allowing 

for the migration of   
 ,   

  and   
 . This solved the anticipated 

deadline violation, and created opportunities for future re-

executions, which came into effect when   
  was re-executed. 

Table III. Task graph, deadline and task latency information 
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Fig. 3 Dynamic allocation and migration 
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Runtime Simulation Engine 
In order to break away from analytical evaluations, we 

implemented a runtime simulation engine that is capable of 
simulating the cloud environment, integrating the abilities to: 
1) Reflect VM performance fluctuations. The task latencies 

during runtime can deviate from the estimated latencies. 
2) Inject failures at arbitrary times. Failures can occur at 

arbitrary times, not necessarily matching the fault model 
assumed by the scheduling algorithm. Fail logs can also 
be used to recreate realistic fault/failure patterns.  

VI. EXPERIMENTAL RESULTS 

Experiments on Large Scale Workloads 
We demonstrate the effectiveness of our scheduling 

framework with large scale workload inputs on large scale 
cloud platforms. Table IV summarizes the input ranges, along 
with some fault model parameters. 

Table IV. System model and fault model input parameter ranges 

Cloud Platform 
Parameters 

User Workload Characteristics 
Fault Model 
Parameters 

No. of 
Servers 

μx  
Variation 

Total No. of 
Users 

Tasks per 
User 

Task 
Latency 

ρ1 ρ2 

10 - 30 1x - 2x 30 - 60 20 - 100 1 - 10 90% 10% 

We created 12 sets of indexed experiments (EX_1 to 
EX_12) with randomly generated task graphs. The cloud 
platform is capable of hosting all applications if REPa = 4  a. 
Results are presented in Table V. For each experiment we 
compare our optimized schedule with three reference 
schedules introduced in Table I. The first reference schedule 
(Ref1) is a bare bones schedule with no added detection or 
replication. This schedule is extremely energy efficient but 
highly susceptible to soft errors. The second reference 
schedule (Ref2) uses a simple one-size-fits-all methodology 
found in commercial tools like VMware to combat faults: 
VM/task duplication (REPa = 2  a). Ref2 aims to reduce 
failure induced deadline violations. It is important to note that 
we assume 90% of all failures will trigger crashes, so as to 
give a clear advantage to Ref1 and Ref2, since both are 
bottlenecked by the error coverage of native crash detection. 
The third reference schedule (Ref3) employs TMR plus support 
for re-execution across the time domain. Without our 
optimization procedure, this would be a feasible solution if 
high error coverage and fault tolerance confidence is critical. 

Table V. Results for large scale workload inputs 

Index 

Total Energy 
Overhead 

 Averaged P_DROP 
Improvement 
(∆P_DROP) 

Averaged P_ERR 
Improvement 

(∆P_ERR) 

Over 
Ref1 

Over 
Ref2 

Over 
Ref3 

Over 
Ref1 

Over 
Ref2 

Over 
Ref3 

Over 
Ref1 

Over 
Ref2 

Over 
Ref3 

EX_1 149.9% 57.5% -25.2% 4.1% -0.4% 0.6% 8.4% 21.1% -4.7% 

EX_2 140.4% 84.5% -11.4% 31.7% 1.7% 0.0% 12.7% 33.6% -0.6% 

EX_3 219.8% 105.1% -4.2% 31.3% -7.3% 0.3% 7.7% 50.3% -17.7% 

EX_4 103.8% 95.9% 23.5% 45.9% 11.4% 10.1% 28.8% 64.6% 0.0% 

EX_5 100.3% 36.5% -7.6% 68.6% 3.8% 0.7% 9.3% 45.9% -1.4% 

EX_6 73.0% 20.3% -23.3% 74.1% 9.0% 0.0% 4.8% 46.2% 0.0% 

EX_7 99.3% 38.3% -15.8% 69.1% 9.7% 0.0% 6.6% 49.1% -0.3% 

EX_8 202.4% 84.3% -21.4% 43.7% 7.1% 0.3% 21.4% 58.9% -1.7% 

EX_9 352.3% 192.2% 61.1% 61.6% 24.0% 2.5% 29.6% 65.6% 0.0% 

EX_10 179.0% 69.1% -6.7% 79.5% 3.5% 0.0% 10.0% 59.8% 0.0% 

EX_11 118.5% 49.7% -30.9% 4.6% -0.3% 1.3% 7.9% 19.9% -5.5% 

EX_12 158.7% 80.3% -15.5% 32.9% 1.6% 0.0% 10.5% 32.7% -0.6% 

Avg. 158.1% 76.2% -6.5% 45.6% 5.3% 1.3% 13.1% 45.6% -2.7% 

For each index we carry out 100 fault injection runs on the 
runtime simulation engine to obtain averaged statistics. We 
evaluate the optimized schedule in terms of three aspects: 
observed power overhead, observed P_ERR improvement and 
observed P_DROP improvement. Due to space limitations, the 
latter two are derived from averaging the P_ERR and 
P_DROP values across all users.  

The error detection and replication factor configurations 
for the first three experiments are show in Table VI to prove 
that the optimized schedules are not trivially uniform. For 
EX_1, the optimized schedule has a 2.5 times higher (149.9% 
overhead) energy consumption compared to that of Ref1. This 
trades for 4.1% and 8.4% improvement in P_DROP and 
P_ERR, respectively, which can be roughly translated to a 
12.5% decrease in overall failure rate. Compared to Ref2 which 
is designed to minimize P_DROP, their P_DROP values are 
almost identical, but our optimized schedule improved P_ERR 
by 21.1%. Compared to Ref3 (TMR), P_DROP values are 
again almost identical, but energy consumption decreased by 
over 25%, at the cost of raising P_ERR by 4.7%. The situation 
is similar when the optimized schedule from EX_2 is 
compared with its Ref3: with identical P_DROP values, 0.6% 
P_ERR was sacrificed for 11.4% energy improvement. On the 
other hand, the algorithm behavior for EX_4 is quite different: 
seeing that Ref3 still maintains a high P_DROP, an additional 
23.5% of energy is devoted to decreasing P_DROP by over 
10%, while allowing the result schedule to remain immune to 
SDCs. Due to the diminishing returns when increasing REP, in 
some cases, chasing after the last few percent of P_DROP 
could become challenging. This is reflected in EX_9: when the 
Ref3 saw a P_DROP value of 3.45%, the algorithm returned 
with a schedule that decreased this value to below 1%, at the 
cost of 60% energy overhead.  

Table VI. Error detection and replication factor value compositions 

Index 

Error Detection 
Percentage 

Replication Factor 
Percentage 

Crash EOC 1 2 3 4 

EX_1 40% 60% 40% 43% 17% 0% 

EX_2 4% 96% 3% 93% 4% 0% 

EX_3 17% 83% 17% 20% 57% 6% 

The two key takeaways from this analysis are: 
1) Addressing error coverage and fault tolerance in large 

scale cloud systems is expensive in terms of energy 
consumption. To prevent this overhead from spiraling out 
of control, the scheduler must be intelligent, and the CSP 
should use optimization frameworks like the one 
presented in this paper to assess the economic viabilities 
of guaranteeing fault tolerance to the users. 

2) Our framework achieves a balance between minimizing 
P_DROP/P_ERR and maximizing energy efficiency. The 
chosen operating point is significantly more reliable than 
Ref1 and Ref2 with average total energy overheads of 
158.1% and 76.1% respectively. It is more energy 
efficient than TMR when TMR is sufficient, but reaches 
beyond TMR when needed. 

Fault Tolerance Confidence Evaluation 
The calculation of P_ERR and P_DROP (Algorithm 1) is 

crucial to the scheduling algorithm. In Fig. 4  we plot the static 
(calculated) and observed (simulated) P_DROP and P_ERR 

http://en.wikipedia.org/wiki/Turned_a
http://en.wikipedia.org/wiki/Turned_a


 

values for Ref1 of EX_1, at the granularity of individual 
applications. Our evaluation methods performed rather well. 

 

 
Fig. 4. User failure statistics 

VI. CONCULSION 

Soft error resiliency is a major concern for future 
microprocessors. At the grand scale of cloud computing, this 
issue can only worsen without appropriate countermeasures. 
Although ad-hoc methods such as VM duplication or task 
retry have seen success, current cloud systems are far from 
fully protected. At least two critical aspects remain unclear: 
(1) whether current approaches will be sufficient for deadline 
or data accuracy sensitive applications, and (2) how to manage 
the efforts devoted to error detection and fault tolerance in a 
large scale multi-user environment.  

This paper focuses on energy-aware FTS in public cloud 
systems, and explores the three-way tradeoff between 
reliability, performance and global energy consumption. Our 
static plus dynamic scheduling and optimization framework 
enables the CSP to achieve high error coverage and fault 
tolerance confidence while minimizing global energy costs 
under user deadline constraints. The CSP can superimpose 
profit models on our framework, and through our runtime 
simulation engine, evaluate the financial gains and cost of 
providing highly reliable computations to the cloud users. 
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