

An Energy-Aware Fault Tolerant Scheduling Framework for
Soft Error Resilient Cloud Computing Systems

Yue Gao Sandeep K. Gupta Yanzhi Wang Massoud Pedram
Ming Hsieh Department of Electrical Engineering

University of Southern California

Los Angeles, USA

yuegao@usc.edu, sandeep@usc.edu, yanzhiwa@usc.edu, pedram@usc.edu

Abstract— For modern high performance systems, aggressive

technology and voltage scaling has drastically increased their
susceptibility to soft errors. At the grand scale of cloud
computing, it is clear that soft error induced failures will occur
far more frequently, but it is unclear as to how to effectively
apply current error detection and fault tolerance techniques in
scale. In this paper, we focus on energy-aware fault tolerant
scheduling in public, multi-user cloud systems, and explore the
three-way tradeoff between reliability (in terms of soft error
resiliency), performance and energy. Through a systematically
optimized resource allocation, error detection approach selection,
virtual machine placement, spatial/temporal redundancy
augmentation and task scheduling process, the cloud service
provider can achieve high error coverage and fault tolerance
confidence while minimizing global energy costs under user
deadline constraints. Our scheduling algorithm includes a static
scheduling phase that operates on task graph based workload
inputs prior to execution, and a light-weight dynamic scheduler
that migrates tasks during execution in case of excessive re-
executions. All schedules are evaluated on a runtime simulation
engine that (1) mimics the performance fluctuations in cloud
systems, and (2) supports the injection of arbitrary fault patterns.
Compared to current virtual machine or task replication
techniques, we are able to reduce overall application failure rates
by over 50% with approximately 76% total energy overhead.

I. INTRODUCTION

Soft error resiliency has become a major concern for
modern computing systems as CMOS technology and voltage
continues to scale [1]. Soft errors can occur in circuits due to
transient and intermittent faults (henceforth referred to as
faults) induced by noise, high energy cosmic particles, and
hardware fatigue. As errors propagate through the system, they
may manifest as different forms of failures such as corrupted
outputs or system crash. At the grand scale of cloud
computing, this problem can only worsen [2, 3, 4, 5, 6],
especially for cost-effective cloud systems built with
commodity components [7]. Researchers have witnessed
unacceptably high failure rates when running scientific
workloads in cloud or grid systems [8, 9].

Although it is impossible to entirely eliminate spontaneous
soft errors, they can be masked from users to promote a
satisfactory Quality-of-Service (QoS). This is achieved by
predicting the faults/errors and applying the appropriate error
detection and fault tolerance methods. Doing so will often
incur large power consumption overheads, which will
significantly impact operating costs [10]. In addition, in a
multi-user cloud, protecting one application may stifle the
performance for other applications because of resource sharing.

Although ad-hoc fault tolerance techniques such as virtual
machine (VM) replication [11] and idempotent task retry [8]

have already seen commercial success, as more and more
providers and users are drawn to the cloud [12], a systematic
approach is needed, especially for users running deadline or
data accuracy sensitive applications. In this paper, we focus on
soft error resiliency in public cloud systems from the
perspective of the cloud service provider (CSP). We introduce
a unified resource allocation and fault tolerant scheduling
(FTS) framework that leverages the three core aspects in cloud
computing: reliability, performance and energy. To achieve
this, the CSP must select the appropriate error detection and
fault tolerance measures for each user. Our framework is
inspired by FTS techniques used for chip multiprocessors [13,
14], but properly updated for cloud computing systems. To the
best of our knowledge, this is the first paper that analyzes the
impact of error detection and fault tolerance mechanisms in
order to co-optimize global energy and soft error resiliency
under deadline constraints in a multi-user cloud environment.

We acknowledge the fact that cloud computing fault
tolerance is still an emerging field without standardization. For
example, how to accurately model hardware faults in the cloud
is still largely unknown [5, 8]. With this in mind, our
framework depicted in Fig. 1 is designed to be modular. It
allows us to “plug-in” almost any fault model, any error
detection and any fault tolerance option. In this paper, we will
determine these inputs based on recent research.

…

Failure

Modes

Failure

Probabilities

Fault Model

Workload

Information

Cloud

Platform

Error

Detection

Options

Fault

Tolerance

Options

SLA

Static Scheduling

Dynamic Scheduling

Fig. 1 Overview of the optimization framework and its inputs

II. RELATED WORK

For cloud computing systems, fault tolerance is demanded
in data storage, transmission and computation. Providing fault
tolerance in data storage [15] is relatively straightforward.
RAID [16] setups and Amazon's EBS (Elastic Block Storage)
[17] can tolerate disc failures through local redundant storage
mediums. Many well known networking protocols can be
revised to cover data transmission faults in cloud computing.
Queue based message retrieval/retry mechanisms have already
been utilized in Windows Azure [18].

978-3-9815370-2-4/DATE14/©2014 EDAA

Addressing errors that occur during computation in cloud
systems is orthogonal to the two aforementioned items, and is
the focus of this paper. Although cloud users can continue to
utilize traditional algorithm level fault tolerance approaches
[19], due to the opaqueness of the public cloud [20], it is
significantly more efficient for the CSP to handle fault
tolerance. The most popular high level approaches include
spatial redundancy and temporal redundancy.

The concept of spatial redundancy can be traced back to
Triple Modular Redundancy (TMR) [21]; when instantiated in
the cloud computing context, modules translate to replicated
VMs or tasks operating in lock-step [22, 23]. Such
implementations can already be seen in high availability cloud
solutions such as VMware [11] and VGrADS [24].

Temporal redundancy typically entails re-execution. Tasks
can be resubmitted in case of a failure as seen in Condor-G [25]
and MODISAzure [8], or restarted from an intermediate valid
state [26]. Similarly, VM checkpointing methods periodically
stores a checkpoint image of the primary VM in another
backup VM. The VM pairs in Remus [27] operate in a leader-
follower fashion. Kemari [28] and HydraVM [29] are other
examples of VM checkpointing.

Thus far one important subject has escaped our discussion,
namely error detection and error coverage. Error coverage is
defined as the fraction of total errors that will be detected by
the given error detection approach. Current cloud systems only
address VM crash and timeout exceptions due to their ease of
detection. However, not all faults manifest as such easily
observable events [30]. Understanding application behaviors
in the presence of soft errors is an active area of research.
Statistical and proton irradiation fault injection experiments on
the IBM POWER6 machine report that near 30% of unmasked
latch flips lead to incorrect architectural state, which is the
precursor to silent data corruptions [31]. In cloud systems,
researchers have noticed that 30% - 60% of failed applications
were unrecoverable [8, 9]. For cloud users that demand high
reliability, we argue that both robust error detection and fault
tolerance should be offered transparently by the CSP.

III. SYSTEM MODEL

Workload Model
We use directed acyclic graphs (DAGs) to model user

workloads. The entire workload is represented as a collection
of N disjoint DAGs: {G1, G2, ..., GN}. Each DAG Ga (1 ≤ a ≤
N) represents a workload request, and each vertex

 in Ga
embodies a task. Without the loss of generality, we assume
that each workload request belongs to a separate user. A
directed edge from

 to
 denotes that

 is dependent on

the output of
 . The weight of the edge

 represents the

amount of data that needs to be passed from the predecessor
task (

) to the successor task (
), or to the final output

when i = j. By definition

 . Other cloud

frameworks that use similar task graph based workload models
include Dryad [32] and Nephele [20]. The deadline for Ga is
denoted as

 . In this paper all deadlines are hard.

Tasks are run on VMs, which are categorized into K
distinct types: {VM1, VM2, ..., VMK}, each VMg is coupled with

a two-tuple integer set that specifies the CPU and memory

resource requirements: {

,

} [33].

Each task
 is also coupled with a two-tuple integer input

set {
 ,

 }.
 represents the type of VM on which

 can
execute. This information can be provided externally, or
deduced internally through collected statistics [20].

 is the
estimated execution time of

 , derived from approximation
methods such as machine learning [20] or benchmark probing
[9]. Scheduling optimizations will operate on

 values, while
the runtime simulation engine will account for VM
performance fluctuations [9].

Cloud Platform Model
The cloud consists of a set of M servers: {D1, D2, ..., DM}.

The power consumption of Dx at time t includes the static
power consumption

 and the dynamic power

consumption
 . Both are correlated with the

utilization rate of Dx at time t: . We calculate
by aggregating the CPU requirements of active VMs.

 is constant when Utilx(t) > 0, 0 otherwise.

Servers have optimal utilization level in terms of performance-
per-watt, which we define as Optx for Dx. It is commonly
accepted that for modern servers Optx ≈ 0.7, and the increase
in dynamic power consumption beyond this operating point is
more drastic than when Utilx(t) < Optx [10, 34]. Even for
identical utilization levels, the energy efficiency of different
servers may vary [35]. This is captured by the coefficients αx,
βx and γx, representing the power consumption increase of Dx
when Utilx(t) < Optx and Utilx(t) ≥ Optx. The dynamic power

consumption
 is then calculated as:

The total energy consumption is the sum of the power
consumption across all servers throughout the timeline:

IV. FAULT MODEL

In this paper we use a fault model which is inspired by
microprocessor fault tolerance research.

Task Failure Modes
Tasks can fail in the following two ways: (1) crash or (2)

silent data corruption (SDC). Crashes are triggered by
exceptions such as memory misalignment or transmission
timeout. SDC refers to when a task produces erroneous output
without triggering crashes [36]. We do not consider failures
caused by middleware or software bugs.

Failure Probabilities
The failure probability of a particular task depends on

many factors. We correlate this probability to two primary
factors: (1) task execution duration and (2) the underlying
hardware, i.e. the host server. If we use μx to characterize the
failure rate of Dx, and adopt the widely used Poisson model for
failure occurrences, then the failure rate of

 would be:

The discrepancy between server failure rates are justified
by the fact that servers in the cloud are often heterogeneous, in

terms of both hardware infrastructure and operating
environments: temperature, supply voltage [37], and age [3].

The probability of a task failure being a crash (
) or

silent data corruption (
) are calculated as

 and

 , respectively. ρ1 and ρ2 can be approximated with

empirical data.

V. ERROR DETECTION

In this paper we consider two error detection approaches
corresponding to the two types of VM failures: crash detection
and explicit output comparison (EOC).

VM sensors are very cost effective in detecting application
crashes [8]. In this paper, crash detection is presumed to be
ubiquitously deployed. With EOC, tasks are spatially
replicated to enable output data comparison. EOC is error
detection in its most powerful form, reaching near perfect
error coverage [13]. This confidence comes with the price of
extra VM allocations to run the task replicas and the additional
time to perform output comparisons, which we reasonably
relate to the amount of data that needs to be compared (

).

VI. FAULT TOLERANT CLOUD SCHEDULING

Our fault tolerant cloud scheduling framework is composed
of two phases: static scheduling and dynamic scheduling.

Static Scheduling
During this phase, the CSP manipulates workloads at the

granularity of users {G1, G2, ..., GN} and performs three
assignments. First, the CSP performs resource allocation for
each user Ga by setting the integer array

 where

 is the number of VMi’s allocated to Ga. The goal of this

process is to provide each user with sufficient amount VMs so
that the deadline can be met during execution.

Second, the CSP must establish, for each user Ga, the level
of "effort" devoted to error detection and fault tolerance by
associating each user Ga with the following:
DETECTa 0: Crash Detection Only, 1: EOC
REPa Replication Factor, ≥ 2 if DETECTa = 1
The detection method (DETECTa) influences the task runtimes.
When EOC is used, output comparisons will increase the task
execution time of

 from
 to

 . The replication

factor (REPa) denotes the number of task replicas.

Third, each user is mapped to a server (we assume that one
application does not span across multiple servers, but one
server may host multiple applications), and a temporal
schedule is generated. The objective of the CSP in this stage is
to systematically maximize fault tolerance confidence and
error coverage while minimizing global energy consumption
under deadline constraints. While energy consumption can be
calculated using the aforementioned formula, the
quantification of fault tolerance confidence and error coverage
is not so straightforward. A brute force method would be to
implement a comprehensive fault simulator, but such an
approach is incompatible with optimization algorithms due to
repeated evaluations during the solution space exploration. We
propose a computationally attractive approach based on
dynamic programming (DP) described below.

The fault tolerance confidence for each user Ga is
measured with two probabilities:

1) P_DROPa: The probability of the user request being
dropped due to errors being detected but unable to be
tolerated within the deadline. High P_DROPa values
indicate low fault tolerance confidence.

2) P_ERRa: The probability of the CSP delivering erroneous
outputs to the user due to undetected SDC. High P_ERRa
values indicate low error coverage.

P_ERRa can be approximated in linear time as the probability
of at least one non-detectable error occurring during execution:

P_DROPa is calculated using a dynamic programming based
algorithm of complexity O(

) described in
Algorithm 1. This fast evaluation of fault tolerance confidence
is a key enabler for the static scheduling algorithm.

Algorithm 1. Calculating P_DROPa
N_Tasksa = Number of tasks in Ga;

 ;
DP_TABLE[][] = {0};
for (i = N_Tasksa; i ≥ 1; i--)
 if (DETECTa = 0)

 ;

 else if (DETECTa = 1)

 ;

 ;

for (t =
 ; t ≥ 0; t--)

 for (i = N_Tasksa; i ≥ 1; i--)

 if (

)

 DP_TABLE[i][t] = 0;
 else

 DP_TABLE[i][t] = Success(
) * DP_TABLE[i + 1][t +

]
 + [1 - Success(

)] * DP_TABLE[i][t +
];

return (1 - DP_TABLE[0][0]);

Both dropping requests and delivering erroneous outputs
will cause customer dissatisfaction and potential profit loss for
the CSP. In this paper we do not presume any profit model,
and only operate on raw failure probabilities. This allows for
the CSP to superimpose cost functions on our framework.

We examine a simple case study for a single task (
) user

G1 below to gain some insight on the advantages and
disadvantages of different error detection mechanisms. Three
example schedules are presented in Table I. Formulas for
calculating and values are listed in Table
II, extrapolated to a generic replicator factor k.

Table I. Error detection and active replication combinations (static schedule)

Example

Schedule for

DETECT1 = 0
REP1 = 1

DETECT1 = 0
REP1 = 2

DETECT1 = 1
 REP1 = 3

1

1L

1

1L

1

1L

=1

1L

1

1L

1

1L

Single Crash Re-execute Seamless Seamless

Single SDC Erroneous Erroneous Seamless

In the first column of Table I, the task is not enhanced with
any error detection or fault tolerance beyond crash detection
and task retry. The second column showcases the basic
implementation of spatial redundancy in cloud systems [11,
22]. This schedule can seamlessly recover from a single task
crash by gathering outputs from the healthy replica. In the
event of both replicas crashing, the task can be re-executed. In
this case follows the geometric distribution.
The rightmost column in Table I is a almost bulletproof TMR

schedule. It not only reaches full error coverage, but also
supports seamless recovery through output voting.

We plot the values from Table II in Fig. 2. Clearly, the
benefits of having longer slacks and higher replication factors
suffer from the phenomena of diminished returns.
Conceptually, the optimization procedure seeks for the knee of
these two curves so that the failure rates can be reduced
without excessive VM allocations.

Table II. P_ERR1 and P_DROP1 values of the example schedules

 P_ERR1 P_DROP1

DETECT1=0
REP1=k

DETECT1=1
REP1=k

0

Fig. 2. Analysis of the tradeoffs during scheduling

Next we present the static scheduling algorithm in high
level pseudo code form in Algorithm 2. It first operates in
batch mode (batch mode and dependency mode scheduling
classifications are defined in survey [38]) to keep the
algorithm runtime tractable. In this stage, we combine bin-
packing which has been proven useful for cloud scheduling
[39], and core concepts from genetic algorithm [40]. However,
the actual procedure is not evolutionary, it is deterministic
with a complexity of O(

). Next,
the static schedule is placed on the timeline for dependency
mode scheduling. VM allocations and task migrations will be
performed to accelerate applications with deadline violations.

Algorithm 2. Static Scheduling Algorithm
call resource_allocation();
DETECTa = 0 and REPa = 1 1 ≤ a ≤N
Schedule[0] = call BEST_FIT_FOR_POWER_BIN_PACKING();
for (k = 0 and k = 1)
 DETECTa = k and REPa = 1 1 ≤ a ≤N
 Schedule[k] = call BEST_FIT_FOR_RELIABILITY_BIN_PACKING();
 select Gi that REPi++ maximizes increase in (1 - P_DROPi)/Total_Energy;
 if (increase in P_DROP < 1.5x)
 REPi--;
for (i = 1; i ≤ N; i++)
 if (P_DROPi[2] < P_DROPi[1] - P_ERRi[1])
 accept(Gi, Schedule[2]);
for (all unscheduled applications)
 if (valid(accept(Gi, Schedule[1])))
 accept(Gi, Schedule[1]);
for (all unscheduled applications)
 accept(Gi, Schedule[1]) or place(Gi, select(Dx));
call implement_placement _schedule_to_timeline();
for (i = 1; i ≤ N; i++)
 if (deadline_violated(Gi))

 if (can_execute_sooner(
) == 1)

 allocate_and_migrate(
);

 for (j = 1; j ≤ N_TASKS[i]; i++)
 add_replica_oppurtunistic(i, j);
output can_execute_sooner[];
output Static_Schedule;

Dynamic Scheduling
During cloud operation, the static schedule will only serve

as a reference, since it cannot handle task runtime variations
and spontaneous faults. Distributed dynamic schedulers will:
1) Manage output comparisons and initiate re-execution

when appropriate. We illustrate with a simple example.
Suppose the cloud is servicing a single user G1 (Table III).
Fig. 3 displays a dynamic trace, hence all latencies shown
(L') are actual latencies, which may or may not be the
same as the estimated values (L) due to VM performance
fluctuations. G1 is augmented with EOC with REP1 = 2.
Re-execution was initiated at t = 10 due to the comparison
mismatch for

 , delaying subsequent tasks. At t = 23,

one
 replica crashed, hence the comparison at t = 25

was nullified, since only one set of output remain, which
may have been corrupted by SDC. We conservatively
initiate re-execution in this scenario.

2) Initiate dynamic allocation and task migration when
appropriate. Based on the re-executions, dynamic
scheduling is carried out with Algorithm 3. The dynamic
scheduler is designed to be as simple as possible to
comply with real time constraints. For example, the
dynamic scheduler does not examine whether a re-
executed task is on the critical path or not, it simply
assumes all re-executions will extend the schedule length.

Algorithm 3. Dynamic Scheduling Algorithm
if (application i task k initiated re-execution at time t)

 ;

 if (
)

 for (k' = 1; k' ≤ number of tasks in Ga; k'++)

 if (can_execute_sooner(
) == 1 && start_time(

) > t)

 migrate_and_allocate(
)

 statically scheduled after
 ;

Returning to previous case study, the re-execution at t = 10
caused the dynamic allocation of a pair of VM1’s (fast VM
allocations has been explored in SnowFlock [41]), allowing

for the migration of
 ,

 and
 . This solved the anticipated

deadline violation, and created opportunities for future re-

executions, which came into effect when
 was re-executed.

Table III. Task graph, deadline and task latency information

U
se

r
 1

D
e
a

d
li

n
e
:

3
0

Task
(T/θ)

Estimated
Latency (L)

Observed
Latency (L’)

 /1 4 4

 /1 3 4

 /1 4 4

 /1 6 6

 /1 4 3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

VM1

VM1

VM1

VM1

time

= =

1

1'L

1

1'L

1

3'L

1

2'L

1

2'L

1

2'L

1

2'L

1

3'L 1

4'L

1

4'L

=
1

5'L

1

5'L

=

31 32

= =
1

5'L

1

5'L

Dynamic Re-execution Application Crash

Silent Data CorruptionDynamic Migration

= Comparison Mismatch

= Nullified Comparison

Fig. 3 Dynamic allocation and migration

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 2 4 6 8 10

P
_D

R
O

P

Slack

DETECT=0 DETECT=1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

2 3 4 5 6

P
_D

R
O

P

Replication Factor

DETECT=0 DETECT=1

1

1

 1 1

http://en.wikipedia.org/wiki/Turned_a
http://en.wikipedia.org/wiki/Turned_a
http://en.wikipedia.org/wiki/Turned_a

Runtime Simulation Engine
In order to break away from analytical evaluations, we

implemented a runtime simulation engine that is capable of
simulating the cloud environment, integrating the abilities to:
1) Reflect VM performance fluctuations. The task latencies

during runtime can deviate from the estimated latencies.
2) Inject failures at arbitrary times. Failures can occur at

arbitrary times, not necessarily matching the fault model
assumed by the scheduling algorithm. Fail logs can also
be used to recreate realistic fault/failure patterns.

VI. EXPERIMENTAL RESULTS

Experiments on Large Scale Workloads
We demonstrate the effectiveness of our scheduling

framework with large scale workload inputs on large scale
cloud platforms. Table IV summarizes the input ranges, along
with some fault model parameters.

Table IV. System model and fault model input parameter ranges

Cloud Platform
Parameters

User Workload Characteristics
Fault Model
Parameters

No. of
Servers

μx
Variation

Total No. of
Users

Tasks per
User

Task
Latency

ρ1 ρ2

10 - 30 1x - 2x 30 - 60 20 - 100 1 - 10 90% 10%

We created 12 sets of indexed experiments (EX_1 to
EX_12) with randomly generated task graphs. The cloud
platform is capable of hosting all applications if REPa = 4 a.
Results are presented in Table V. For each experiment we
compare our optimized schedule with three reference
schedules introduced in Table I. The first reference schedule
(Ref1) is a bare bones schedule with no added detection or
replication. This schedule is extremely energy efficient but
highly susceptible to soft errors. The second reference
schedule (Ref2) uses a simple one-size-fits-all methodology
found in commercial tools like VMware to combat faults:
VM/task duplication (REPa = 2 a). Ref2 aims to reduce
failure induced deadline violations. It is important to note that
we assume 90% of all failures will trigger crashes, so as to
give a clear advantage to Ref1 and Ref2, since both are
bottlenecked by the error coverage of native crash detection.
The third reference schedule (Ref3) employs TMR plus support
for re-execution across the time domain. Without our
optimization procedure, this would be a feasible solution if
high error coverage and fault tolerance confidence is critical.

Table V. Results for large scale workload inputs

Index

Total Energy
Overhead

 Averaged P_DROP
Improvement
(∆P_DROP)

Averaged P_ERR
Improvement

(∆P_ERR)

Over
Ref1

Over
Ref2

Over
Ref3

Over
Ref1

Over
Ref2

Over
Ref3

Over
Ref1

Over
Ref2

Over
Ref3

EX_1 149.9% 57.5% -25.2% 4.1% -0.4% 0.6% 8.4% 21.1% -4.7%

EX_2 140.4% 84.5% -11.4% 31.7% 1.7% 0.0% 12.7% 33.6% -0.6%

EX_3 219.8% 105.1% -4.2% 31.3% -7.3% 0.3% 7.7% 50.3% -17.7%

EX_4 103.8% 95.9% 23.5% 45.9% 11.4% 10.1% 28.8% 64.6% 0.0%

EX_5 100.3% 36.5% -7.6% 68.6% 3.8% 0.7% 9.3% 45.9% -1.4%

EX_6 73.0% 20.3% -23.3% 74.1% 9.0% 0.0% 4.8% 46.2% 0.0%

EX_7 99.3% 38.3% -15.8% 69.1% 9.7% 0.0% 6.6% 49.1% -0.3%

EX_8 202.4% 84.3% -21.4% 43.7% 7.1% 0.3% 21.4% 58.9% -1.7%

EX_9 352.3% 192.2% 61.1% 61.6% 24.0% 2.5% 29.6% 65.6% 0.0%

EX_10 179.0% 69.1% -6.7% 79.5% 3.5% 0.0% 10.0% 59.8% 0.0%

EX_11 118.5% 49.7% -30.9% 4.6% -0.3% 1.3% 7.9% 19.9% -5.5%

EX_12 158.7% 80.3% -15.5% 32.9% 1.6% 0.0% 10.5% 32.7% -0.6%

Avg. 158.1% 76.2% -6.5% 45.6% 5.3% 1.3% 13.1% 45.6% -2.7%

For each index we carry out 100 fault injection runs on the
runtime simulation engine to obtain averaged statistics. We
evaluate the optimized schedule in terms of three aspects:
observed power overhead, observed P_ERR improvement and
observed P_DROP improvement. Due to space limitations, the
latter two are derived from averaging the P_ERR and
P_DROP values across all users.

The error detection and replication factor configurations
for the first three experiments are show in Table VI to prove
that the optimized schedules are not trivially uniform. For
EX_1, the optimized schedule has a 2.5 times higher (149.9%
overhead) energy consumption compared to that of Ref1. This
trades for 4.1% and 8.4% improvement in P_DROP and
P_ERR, respectively, which can be roughly translated to a
12.5% decrease in overall failure rate. Compared to Ref2 which
is designed to minimize P_DROP, their P_DROP values are
almost identical, but our optimized schedule improved P_ERR
by 21.1%. Compared to Ref3 (TMR), P_DROP values are
again almost identical, but energy consumption decreased by
over 25%, at the cost of raising P_ERR by 4.7%. The situation
is similar when the optimized schedule from EX_2 is
compared with its Ref3: with identical P_DROP values, 0.6%
P_ERR was sacrificed for 11.4% energy improvement. On the
other hand, the algorithm behavior for EX_4 is quite different:
seeing that Ref3 still maintains a high P_DROP, an additional
23.5% of energy is devoted to decreasing P_DROP by over
10%, while allowing the result schedule to remain immune to
SDCs. Due to the diminishing returns when increasing REP, in
some cases, chasing after the last few percent of P_DROP
could become challenging. This is reflected in EX_9: when the
Ref3 saw a P_DROP value of 3.45%, the algorithm returned
with a schedule that decreased this value to below 1%, at the
cost of 60% energy overhead.

Table VI. Error detection and replication factor value compositions

Index

Error Detection
Percentage

Replication Factor
Percentage

Crash EOC 1 2 3 4

EX_1 40% 60% 40% 43% 17% 0%

EX_2 4% 96% 3% 93% 4% 0%

EX_3 17% 83% 17% 20% 57% 6%

The two key takeaways from this analysis are:
1) Addressing error coverage and fault tolerance in large

scale cloud systems is expensive in terms of energy
consumption. To prevent this overhead from spiraling out
of control, the scheduler must be intelligent, and the CSP
should use optimization frameworks like the one
presented in this paper to assess the economic viabilities
of guaranteeing fault tolerance to the users.

2) Our framework achieves a balance between minimizing
P_DROP/P_ERR and maximizing energy efficiency. The
chosen operating point is significantly more reliable than
Ref1 and Ref2 with average total energy overheads of
158.1% and 76.1% respectively. It is more energy
efficient than TMR when TMR is sufficient, but reaches
beyond TMR when needed.

Fault Tolerance Confidence Evaluation
The calculation of P_ERR and P_DROP (Algorithm 1) is

crucial to the scheduling algorithm. In Fig. 4 we plot the static
(calculated) and observed (simulated) P_DROP and P_ERR

http://en.wikipedia.org/wiki/Turned_a
http://en.wikipedia.org/wiki/Turned_a

values for Ref1 of EX_1, at the granularity of individual
applications. Our evaluation methods performed rather well.

Fig. 4. User failure statistics

VI. CONCULSION

Soft error resiliency is a major concern for future
microprocessors. At the grand scale of cloud computing, this
issue can only worsen without appropriate countermeasures.
Although ad-hoc methods such as VM duplication or task
retry have seen success, current cloud systems are far from
fully protected. At least two critical aspects remain unclear:
(1) whether current approaches will be sufficient for deadline
or data accuracy sensitive applications, and (2) how to manage
the efforts devoted to error detection and fault tolerance in a
large scale multi-user environment.

This paper focuses on energy-aware FTS in public cloud
systems, and explores the three-way tradeoff between
reliability, performance and global energy consumption. Our
static plus dynamic scheduling and optimization framework
enables the CSP to achieve high error coverage and fault
tolerance confidence while minimizing global energy costs
under user deadline constraints. The CSP can superimpose
profit models on our framework, and through our runtime
simulation engine, evaluate the financial gains and cost of
providing highly reliable computations to the cloud users.

REFERENCES

[1] C. Weaver et al., "Techniques to Reduce the Soft Error Rate of a High-
Performance Microprocessor," Int’l. Symp. on Computer Architecture, 2004.
[2] L. A. Barroso and U. Hölzle, "The datacenter as a computer: An
introduction to the design of warehouse-scale machines," Synthesis Lectures
on Computer Architecture, 2009.
[3] K. V. Vishwanath and N. Nagappan, "Characterizing cloud computing
hardware reliability," Symp. on Cloud Computing, 2010.
[4] R. Garg and A. K. Singh, "Fault tolerance in grid computing: State of the
art and open issues," Int’l Journal of Computer Science & Engineering
Survey, 2(1), 2011.
[5] Y. Liang et al., "BlueGene/L failure analysis and prediction models," Int'l
Conf. on Dependable Systems and Networks, 2006.
[6] T. Nguyen and J.-A. Desideri. "Resilience issues for application
workflows on clouds," Int'l Conf. on Networking and Services, 2012.

[7] J. Hamilton, "An architecture for modular data centers," CIDR, 2007.
[8] J. Li et al., "Fault tolerance and scaling in e-Science cloud applications:
observations from the continuing development of MODISAzure," Int'l. Conf.
on e-Science, 2010.
[9] G. Kandaswamy et al., "Fault tolerance and recovery of scientific
workflows on computational grid," Int’l Cluster Computing, 2008.
[10] M. Pedram, "Energy-efficient datacenters," IEEE Trans. on CAD, 2012.
[11] http://www.vmware.com/products/fault-tolerance.
[12] B. Hayes, "Cloud Computing," Communications of the ACM, 2008.
[13] Y. Gao et al., "Using explicit output comparisons for fault tolerant
scheduling (FTS) on modern high-performance processors," Design
Automation & Test in Europe, 2013.
[14] V. Izosimov et al., "Design optimization of time- and cost-constrained
fault-tolerant distributed embedded systems," Design Automation & Test in
Europe, 2005.
[15] D. J. Abadi, "Data management in the cloud: Limitations and
opportunities," IEEE Data Eng. Bull, 32(1): 3-12, 2009.
[16] D. A. Patterson et al., "A case for redundant arrays of inexpensive disks
(RAID)," Int'l. Conf. on Management of Data, 1988.
[17] http://aws.amazon.com/ebs.
[18] W. Lu et al., "AzureBlast: a case study of developing science applications
on the cloud," High Performance Distributed Computing, 2010.
[19] J. Deng et al., "Fault-tolerant and reliable computation in cloud
computing," GLOBECOM Workshops, 2010.
[20] D. Warneke and O. Kao, "Nephele: efficient parallel data processing in
the cloud," SC-MTAGS, 2009.
[21] R. E. Lyons and W. Vanderkulk, "The Use of Triple Modular
Redundancy to Improve Computer Reliability," IBM Journal of Research and
Development, 7(2):200–209, 1962.
[22] R. Jhawar et al., "A comprehensive conceptual system-level approach to
fault tolerance in cloud computing," Int'l. Systems Conf., 2012.
[23] T. C. Bressoud and F. B. Schneider, "Hypervisor-based fault tolerance,"
ACM Trans. on Computer Systems, 14(1): 80-107, 1996.
[24] L. Ramakrishnan et al., "VGrADS: enabling e-Science workflows on
grids and clouds with fault tolerance," High Performance Computing
Networking, Storage and Analysis, 2009.
[25] J. Frey et al., "Condor-G: A computation management agent for Multi-
Institutional Grids," High Performance Distributed Computing, 2001.
[26] N. R. Rejinpaul and L. Maria Michael Visuwasam, "Checkpoint-based
intelligent fault tolerance for cloud service providers," Int'l. Journal of
Computers & Distributed Systems, 2(1): 59-64, 2012.
[27] B. Cully et al., "Remus: High availability via asynchronous virtual
machine replication," USENIX Symp. on Networked Systems Design and
Implementation, 2008.
[28] Y. Tamura et al., "Kemari: Virtual machine synchronization for fault
tolerance," USENIX Annual Technical Conf., 2008.
[29] K. Y. Hou et al., "HydraVM: Low-cost, transparent high availability for
virtual machines," HP Laboratories Tech. Rep., 2011.
[30] S. Chandra and P. M. Chen, "The impact of recovery mechanisms on the
likelihood of saving corrupted state," Int’l Symp. on Software Reliability
Engineering, 2002.
[31] P. N. Sanda et al., "Soft-error resilience of the IBM POWER6
processor," IBM Journal of Research and Development, 52(3): 275-284. 2008.
[32] M. Isard et al., "Dryad: distributed data-parallel programs from sequential
building blocks," EuroSys, 2007.
[33] Y. Gao et al., "An energy and deadline aware resource provisioning,
scheduling and optimization framework for cloud systems," Int'l Conf. on
Hardware/Software Codesign and System Synthesis, 2013.
[34] G. Chen et al., "Energy-aware server provisioning and load dispatching
for connection-intensive internet services," NSDI, 2008.
[35] P. Greenhalgh, "Big.LITTLE Processing with ARM Cortex-A15 &
Cortex-A7," ARM White Paper, 2011.
[36] O. Khalili et al., "Measuring the performance and reliability of
production computational grids," Int'l Conf. on Grid Computing, 2006.
[37] V. Chandra and R. Aitken, "Impact of technology and voltage scaling on
the soft error susceptibility in nanoscale CMOS," Int'l. Symp. on Defect and
Fault Tolerance of VLSI Systems, 2008.
[38] S. Xavier and S. J. Lovesum, "A survey of various workflow scheduling
algorithms in cloud environment," International Journal of Scientific and
Research Publications, 3(2), 2013.
[39] S. Srikantaiah et al., "Energy aware consolidation for cloud computing,"
Cluster Computing, 12(1): 1–15, 2009.
[40] D. E. Goldberg and J. H. Holland, "Genetic algorithms and machine
learning," Machine learning, 3(2): 95-99, 1988.
[41] H. A. Lagar-Cavilla et al., "SnowFlock: rapid virtual machine cloning for
cloud computing," European conference on Computer systems, 2009.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P_
ER

R

Application Index

Static Observed

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P_
DR

OP

Application Index

Static Observed

