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Abstract—With the emergence of many-core multiprocessor 

system-on-chips (MPSoCs), the on-chip networks are facing 

serious challenges in providing fast communication for various 

tasks and cores. One promising solution shown in recent studies 

is to add express channels to the network as shortcuts to bypass 

intermediate routers, thereby reducing packet latency. However, 

this approach also greatly changes the packet delay estimation 

and traffic behaviors of the network, both of which have not yet 

been exploited in existing mapping algorithms. In this paper, we 

explore the opportunities in optimizing application mapping for 

express channel-based on-chip networks. Specifically, we derive a 

new delay model for this type of networks, identify their unique 

characteristics, and propose an efficient heuristic mapping algo-

rithm that increases the bypassing opportunities by reducing 

unnecessary turns that would otherwise impose the entire router 

pipeline delay to packets. Simulation results show that the pro-

posed algorithm can achieve a 2~4X reduction in the number of 

turns and 10~26% reduction in the average packet delay. 

Keywords—network-on-chip; application mapping; express 

channels 

I. INTRODUCTION 

With the integration of tens to possibly a hundred of cores on 
a chip [8][18], multiprocessor system-on-chips (MPSoCs) have 
been provided with tremendous opportunities for parallel exe-
cution. A key challenge of the parallel paradigm is the design 
of high performance on-chip network (a.k.a. OCN or NoC) that 
can connect various IP blocks or tasks running on different 
cores. However, as the network sizes continue to grow, tradi-
tional NoC topologies such as mesh or concentrated mesh [1] 
have been facing serious performance issues due to their inher-
ent nature of hop-by-hop packet forwarding.  

A more scalable approach that has been paid increasing at-
tention is to add express channels [7][12][14] to the tile-based 
NoCs. These express channels act as shortcuts between non-
neighboring tiles to bypass all intermediate routers, thereby 
accelerating packet transfer. Nevertheless, the addition of ex-
press channels significantly changes the traffic patterns and 
requires different delay calculation models between tiles. For 
example, packets on express channels cannot make turns; so 
packets need to get off the express channels and go through the 
entire router pipeline stages in order to make a turn, which 
slows down the packet transport. These and other new charac-
teristics exhibited in express channel-based networks are not 
captured and exploited in existing application mapping algo-
rithms that are responsible for mapping tasks to physical tiles. 

In this paper, we investigate the opportunity of optimizing 

application mapping for express channel-based networks. Spe-
cially, we identify the critical differences between traditional 
networks and express channel-based networks, derive a new 
delay model reflecting express channels, mathematically for-
mulated the corresponding application mapping problem, and 
proposed an efficient heuristic mapping algorithm based on the 
key observations of the problem characteristics. The proposed 
algorithm, Turn Reduction Algorithm for Mapping (TRAM), is 
able to not only effectively map tasks with large communica-
tion rate closer to each other as what have been achieved in 
previous algorithms, but also maximize the alignment of heavi-
ly communicating tasks in both rows and columns, thus 
reducing unnecessary turns that would otherwise impose the 
long delay of router pipeline to packets.  

The rest of the paper is organized as follows. Section II pro-
vides more background on express channel-based on-chip 
networks and motivates the need for new mapping algorithms. 
Section III formulates the problem, and Section IV explains the 
details of the proposed TRAM algorithm. Section V and VI 
describe evaluation methodology and present simulation results. 
Finally, Section VII concludes the paper. 

II. BACKGROUND AND MOTIVATION 

A. Express Channel-Based On-chip Networks 

While mesh topology has traditionally been used for tile-
based NoCs, packets in mesh networks must be forwarded hop-
by-hop, which exposes the router delay (e.g., 3~4 cycles) and 
link delay (e.g., 1 cycle) at every hop to the packet latency. To 
mitigate the latency problem of mesh, particularly for large 
networks, concentration [1] (Figure 1b CMesh) has been pro-
posed in which multiple IP blocks or tasks are placed on the 
same tile to form a task cluster. All tasks in a task cluster occu-
py one tile and share one router. With a concentration degree 
of 4, the network diameter can be reduced by half. However, 
due to the layout constraints and the increased router complexi-
ty, it is difficult to employ high concentration degrees, thus 
limiting the latency reduction through this technique. 

As more research being conducted to improve NoC perfor-
mance, recent studies show promise of adding express channels 
on top of concentration to accelerate packet transfer [7][12][14]. 
Figure 1(c) shows an example of the popular flattened butterfly 
(FB) topology [12] that adds separate links to connect two non-
neighbor tiles directly (e.g., from top-left tile to top-right tile). 
To better utilize the link resources, a network with multi-drop 
express channels (Figure 1d MECS) [7] is proposed to com-
bine separate links to a unified link but with multiple “drops”, 
so that no additional input or output ports are needed. Packets 
are routed on the express channels as much as possible and use 
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non-express channels only if contention occurs. In this way, 
intermediate routers on the same row or column can be by-
passed, resulting in only the link latency.  

However, in order to change dimension, packets need to get 
off the express channels and enter the normal router/switch 
pipeline to make the turns. Also, dimension-order routing is 
typically used in FB and MECS instead of adaptive routing [7]. 
This is because adaptive routing may generate a large number 
of turns, causing most packets to go through normal routers, 
which defeats the purpose of adding express channels. 

B. Related Work 

Application mapping is an important component in the de-
sign of multiprocessor systems. MPSoC applications such as 
video encoder/decoder typically consist of many tasks that are 
working collaboratively to perform certain functions. By map-
ping frequently or heavily communicating tasks to physically 
close tiles, the average packet delay and power consumption 
can be greatly reduced. Due to the importance of application 
mapping, a number of mapping algorithms have been proposed. 
For example, Hu et al. in [9] use graphs to model the character-
istic of applications and propose a branch-and-bound algorithm 
to minimize communication energy of mapping. A two-step 
genetic algorithm is proposed in [15] to map applications on 
mesh-based NoCs to optimize task graph execution. Murali et 
al. focus on minimizing communication delay under bandwidth 
constraints in [16]. Chen et al. present mechanisms for joint 
optimization by task scheduling, application mapping, data 
mapping and routing on NoC-based CMPs [2]. Faruque et al. 
use a distributed approach based on agents for application 
mapping and greatly lowered the monitoring traffic and com-
putational effort compared to centralized schemes [5]. In [10], 
Jang et al. form the mapping of heterogeneous cores on irregu-
lar mesh-based MPSoCs to a mixed-integer programming 
problem and proposed two effective heuristic algorithms. 

While the above works are very effective in achieving their 
corresponding objectives, these algorithms are not able to dis-
tinguish the differences in tile communication latency between 
the two types of networks. For instance, in mesh networks, as 
long as two tiles (e.g., A and B in Figure 1b) have the same 
Manhattan distances from a source tile (e.g., S in Figure 1b), 
the latencies are the same; whereas in express channel-based 
networks, the tile with less turns has shorter latency (e.g., 7 
cycles from S to A in Figure 1c) than the tile with more turns 
(e.g., 11 cycles from S to B in Figure 1c). Therefore, applying 
existing mapping algorithms to express channel-based NoCs 
may result in suboptimal or inefficient mapping solutions.  

III. PROBLEM STATEMENT 

A. Network, Application, and Average Packet Delay 

Several important definitions are given below. 

Definition 1 Network Topology: 
1) A     CMesh network has a network size of      tiles. 
2) Concentration degree   is the number of processing ele-

ments (PEs) that can be placed on one tile. 

Therefore, a     CMesh-based MPSoC with a concentra-
tion degree of   can hold at most     PEs. 

Definition 2 Application: 
3) An application contains a set of tasks {  }, each executed 

on one PE. Tasks communicate with each other during exe-
cution to exchange data, maintain coherency, etc. 

4) A task cluster     is a set of tasks that are grouped together 
to be placed on one tile of a CMesh network. Concentration 
degree   indicates a task cluster     contains at most   tasks. 

Since the partitioning of tasks into task clusters greatly de-
pends on the specific functionalities and restrictions of each 
task in a particular application, in this paper, we assume the 
task clusters       are given for an application, and focus on the 
main problem of mapping task clusters to tiles on the NoC. 

Definition 3 An application mapping solution is a permu-
tation                        , so that task cluster     is 
mapped to tile   . 

In order to give a formal definition of average packet delay, 
we define the communication graph of an application and the 
tile delay graph of a given NoC topology as follows. 

Definition 4 A communication graph           is a di-
rected graph, in which each vertex     represents a task cluster 
    and each edge                denotes the communication 

from     to    . The weight associated with edge      denotes 

the communication rate    , i.e., the average number of flits 

sent from     to     per unit time. 

Definition 5 A tile delay graph           is a complete 
directed graph, in which each vertex     represents a tile   . 
There is an edge                between any two vertices 

(tiles). The weight associated with edge      represents the 

delay     from tile    to tile    when following the routing path 

(e.g., XY routing path) from    to   . 

Given that task cluster     is mapped to tile      , the average 

packet delay of an application can be defined as follows. 

Figure 1. On-chip networks without express channels: (a) and (b), and with express channels: (c) and (d). 
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Definition 6 The average packet delay (APD) of an appli-
cation can be calculated by 

    
              

 
   

 
   

      
 
   

 
   

 
(1)  

Note that this equation is applicable to both CMesh networks 
as well as networks with express channels. The key difference 
is the tile delay model     used in task delay graph in Defini-

tion 5, which is discussed next. 

B. Delay Models 

1) Tile delay model for CMesh networks 

Definition 7 Unit-length link delay    is the number of 
cycles (typically 1) between neighboring tiles. Delays for long 
express channels are proportional to the length. Router delay 
   is the number of cycles a packet takes to go through a rout-
er, i.e., the number of router pipeline stages. 

In CMesh networks without express channels, each packet 
has to go through the entire router pipeline for each hop it 
travels. Therefore the tile delay on CMesh network without 
express channels can be calculated by: 

                                (2)  

where        is the Manhattan distance between tile    and   , 

and    is the per router contention latency which depends on 
traffic load. In contemporary NoCs, because of the large link-
width (e.g., 256-bit) and low load of real applications, the value 
of    is usually between 0.5 to 1 cycles per router (also ob-
served in our simulations). Also note that this delay model has 
already included the injection router and the ejection router to 
account for end-to-end tile delay. 

2) Tile delay model for express channel-based networks 

To derive the tile delay model for express channel-based 
networks, we first define an auxiliary turn function as below: 

Definition 8 A turn function        is used to identify 
whether packets sent from tile    to tile    need to make a turn 

assuming XY routing: 

        
                                      

                                                   
                                                             

  (3)  

The turn function is crucial in determining the packet delay 
on express-channel networks. If    and    are on the same row 

or column, the router of    will directly send packets to the 
express channel from    to    , so that packets only go through 

two router pipelines (the injection router and ejection router) 
before reaching the destination tile. Otherwise, packets are sent 
to the router of the turning point tile first, which is in the same 
column with the destination tile. Packets go through three 
routers in total in this case. 

With the above turn function       , the tile delay model 
from tile    to tile    can be expressed by: 

                               (4)  

Figure 2 exemplifies the base packet latency from tile    to 
all other tiles in a CMesh-based NoC and express channel-
based networks, assuming     and      (the 3-cycle 
router follows a canonical pipeline design consisting of virtual 
channel allocation, switch allocation and switch traversal, with 
the optimization of look-ahead routing to hide routing compu-

tation). Figure 2 highlights why algorithms proposed for 
CMesh-based NoCs are less effective when applied to express 
channel-based NoCs directly. In the CMesh delay model, tile 
  ,   ,     are     are considered to have the same packet delay 
to   ; whereas in the new delay model with express channels,    
and     have 33% larger delays compared to the other two. 
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Figure 2. Tile delay of packets with source at tile   . 

C. Problem Formulation 

With the above definitions and delay models, we can formu-
late the application mapping problem as follows: 
Given:  

1) An express channel-based network, containing     tiles; 

2) The application communication graph          , with 

communication rate     as the edge weight; and 

3) The tile delay graph          , with delay     as the edge 

weight; 

Find: Mapping of task clusters to tiles: 

                           
Minimize the average packet delay: 

    
              

 
   

 
   

     
 
   

 
   

 (5)  

The above formulated problem has the form of a Quadratic 
Assignment Problem (QAP). A general QAP is NP-hard [6]. 
Enumerating all       possible solutions is costly even for a 
simple     NoC, not to mention larger networks. However, 
the special characteristics of the tile delay model of express-
channel networks may give us some insights for designing 
effective heuristic algorithms. 

IV. PROPOSED ALGORITHM 

In this section, we propose an efficient heuristic algorithm 
that runs in polynomial time for application mapping in express 
channel-based networks. The proposed algorithm, Turn Reduc-
tion Algorithm for Mapping (TRAM), utilizes the following two 
observations. First, as tiles on the same row or column have 
smaller packet delay, aligning task clusters with large commu-
nication rate in the same row or column can effectively reduce 
both delay and turns. Second, similar to mapping methods on 
CMesh networks, as the link delay linearly depends on the 
Manhattan distance between source and destination tiles ac-
cording to Equation (4), it is still beneficial to put task clusters 
as close to each other as possible. TRAM contains three main 
steps to realize these objectives. 

Step 1 Partition    task clusters into   sets and place each set 
on one row of the express-channel network. 

The partitioning is based on Kernighan–Lin (KL) algorithm 
[11], an efficient heuristic algorithm for solving graph parti-
tioning problems. It attempts to partition a graph into two sets 
with equal sizes, such that the sum of edge weights between 
vertices in the two sets are minimized (min-cut). 



We call KL algorithm in a hierarchical fashion until we get   
sets each with   task clusters, as shown in Figure 3(a). After 
each two-way partitioning, we use a heuristic to determine the 
placement of the two sets. Take the     partitioning stage in 
Figure 3(a) as an example. We name each two sets a KL sec-
tion (i.e., KL sections are labeled 1 to 4). The order among 
these four KL sections is decided at the previous stage, and KL 
has finished the partitioning in the current four KL sections. 
The orders of the pair of sets within each KL section need to be 
determined. Consider the KL section 2, which contains the 

third and fourth sets. Let   
    

 denote the total communica-

tion rate between the third set and all the sets above KL section 

2 (i.e. section 1), and   
    denote the total communication rate 

between the third set and all the sets below section 2 (i.e. sec-

tion 3 and 4). Similarly we define   
    

   
    for the fourth 

set. We calculate and compare the differences between 

high/low communication rate, i.e.      
    

   
    and 

     
    

   
   , and then place the set with higher   in 

the third row and the other in the fourth row, so that the heavier 
communication is put closer to the outside of  the KL section. 
The orders in other sections are determined similarly. The 
complete pseudo code for step 1 is shown below: 

for   from 1 to       

 // current number of sections is      

 // in this iteration we get    sets 

 for   from 1 to      
  in current section   , call KL to get the new       -
th and     -th sets 

     
    

      (      -th set,         ) 

       
    

     (        -th set,         ) 

     
         (      -th set,         ) 

       
         (        -th set,         ) 

         
    

    
    

             
    

      
    

  if           place     -th set at       -th row 
    place       -th set at     -th row 
  else place     -th set at     -th row 
   place       -th set at       -th row 

The time complexity of KL algorithm is       since the 

graph has    vertices. Calculating       and      takes 
      operations. Therefore the time complexity of Step 1 is 
            according to the master theorem [3]. 

Step 2 Distribute task clusters in each set to the columns of 
the network. 

The first step fixes the positions of rows whereas the order of 
task clusters within each row remains unsolved. In Step 2, we 

iteratively distributes of task clusters within each row to the 
columns. The order of task clusters in the first row is randomly 
assigned, of which the possible performance loss can be re-

stored in Step 3. At the     iteration, with the task clusters in 
the first       rows already placed, the placement of the task 

clusters of the     set is determined to minimize the average 
packet delay considering the communication rate between the 
current row and the first       rows, as shown in Figure 3(b). 
The above problem at each iteration is an assignment problem: 

In the cost matrix      ,     denotes the APD contributed by     

placed at the  -th column. It is solved by Hungarian algorithm 
[13] optimally. The pseudo code for Step 2 is shown below: 

Randomly assign tasks clusters in the first row to each column; 
for    from 2 to   (the  -th row) 

 Calculate the     cost matrix      ; 

 Call Hungarian with the cost matrix       as input; 

 Assign task clusters in the  -th row to each column accord-
ing to the Hungarian assignment results; 

Hungarian algorithm can achieve a time complexity of 

     . Calculating the cost matrix       has a time complexity 

of      . Therefore the time complexity of Step 2 is      . 

Step 3 Rearrange the columns to minimize the link delay of 
communication traffic on horizontal links. 

The process is similar to Step 1, except that each column is 
treated as a node in the input graph of KL algorithm. The time 
complexity of Step 3 is      .  

Taking into account all the three steps, the overall time com-
plexity of the proposed algorithm is      . 

V. EVALUATION METHODOLOGY 

A. Schemes Under Comparison 

As mesh network without concentration has much higher la-
tency than other structures, in order to provide more fair 
comparison, we use CMesh as the baseline. The following six 
application mapping schemes on CMesh and MECS architec-
tures are compared: 1) MC_CMesh (the baseline): Monte 
Carlo method on CMesh, which picks the mapping with the 
smallest latency among a large number of randomly generated 
mapping solutions based on CMesh structure; 2) SA_CMesh: 
simulated annealing algorithm on CMesh structure; 3) 
MC_MECS: Monte Carlo method on MECS structure; 4) 
SA_MECS: simulated annealing algorithm on MECS structure 
using the new tile delay model; 5) SA_CMesh(MECS): the 
mapping solution is first generated by SA_CMesh, and then 
apply the solution on MECS structure; and 6) TRAM: our 
proposed approach. 
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Figure 3. Three steps of TRAM. 



Since Monte Carlo and simulated annealing are algorithms 
that have tradeoff between runtime and performance, for fair 
comparison, the runtime of both algorithms are configured to 
be roughly the same as the runtime of our proposed algorithm. 

B. Simulation Setup 

The proposed TRAM algorithm is evaluated quantitatively 
under both typical and stressed workloads. This includes the 
traces of four real applications, namely mpeg4, toybox, vopd, 
and mms, as well as four random task graphs generated by 
TGFF [4], referred to as tgff_r1, tgff_r2 tgff_sp1 and tgff_sp2.             
Figure 4 shows the communication rate graph of mpeg4 and 
toybox (vopd and mms are omitted here due to space limita-
tion). Each node denotes a task cluster, and the edge width 
indicates the relative magnitude of the communication rate. 
The tgff_r1 and tgff_r2 are two random graphs while tgff_sp1 
and tgff_sp2 are two series-parallel graphs formed recursively 
by joining two sub-graphs in series and parallel, mimicking the 
stressed behaviors of multithreaded applications. Collectively, 
these eight inputs comprise a representative set of MPSoC 
scenarios. A 64-task configuration with concentration degree 4 
is simulated for majority of the evaluation. In addition, 256-
task configuration is also evaluated for scalability discussion. 

In the simulation results, the APDs are calculated according 
to our delay model. Runtime is based on a machine with an 
Intel Core i7-3770 processor. NoC power is calculated using 
the latest NoC power model dsent [17] under 45nm and 1V. 
The unit-length link delay    is set to 1 and    is set to 3. For 
each of the test case, the contention delay    is acquired by 
feeding the trace in a cycle-accurate NoC simulator. 

VI. RESULTS AND ANALYSIS 

A. Impact on Performance 

We first evaluate the effectiveness of TRAM to reduce turns. 
Table I compares the percentage of communication traffic that 
needs to make turns in express-channel networks for different 
algorithms. It can be seen that the proposed TRAM is able to 
achieve an average of 2~4X reduction in the percentage com-

pared to other algorithms. Figure 5 presents the mapping re-
sults obtained by TRAM for mpeg4 and toybox. A dashed 
arrow means the packet from source to destination tile needs to 
take a turn. When TRAM is used, only 11.8% and 4.2% of the 
traffic needs to make turns for mpeg4 and toybox, respectively. 
It is worth noting that, while the proposed algorithm is optimiz-
ing for the number of turns, most of the heavily communicating 
tasks (as indicated by wider edges) are also mapped close to 
each other, as can be seen from Figure 5. 

The reduced turns and closer physical distances result in 
considerable improvement of packet latency. Figure 6 plots the 
results of average packet delay for the eight different test cases. 
Compared to the baseline system, the proposed TRAM algo-
rithm reduces the packet delay by 26.5% on average. Also, 
TRAM is 10% better than SA_CMesh(MECS). This indicates 
that the mapping solution generated from CMesh-based net-
works is not optimal when applied to express channel-based 
networks. 

B. Impact on Power Consumption 

Although the primary objective is to reduce packet delay, the 
proposed TRAM is also able to slightly reduce power con-
sumption as a side effect, because the algorithm reduces the 
number of routers and links through which packets need to 
travel. Table II shows the dynamic power of different mapping 
algorithm solutions on various applications. It can be seen that, 
even though TRAM does not target for power optimization, it 
still achieves the lowest dynamic power consumption among 
all schemes. 

C. Impact of Pipeline Stages 

So far we have assumed a 3-stage router pipeline, which is 
an optimized version on top of the canonical 4-stage router. 
Equation (5) indicates that the number of router pipeline stages 
may affect the latency of express-channel networks. To assess 
this impact, Figure 7 compares the mapping results of simulat-
ed annealing on CMesh networks, simulated annealing on 
MECS and the proposed TRAM on MECS while varying the 
numbers of pipeline stages (  ) from 1 to 4. As can be seen, 
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Figure 6. Normalized average packet delay for eight different applications. 
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the proposed TRAM is effective across different number of 
pipeline stages. This illustrates that TRAM can be useful in a 
wide range of networks built from more aggressive or more 
conservative router architectures.  

 
Figure 7. Average packet delay as a function of router pipeline stages. 

D. Scalability 

Previous evaluation uses 64-task configurations with concen-
tration degree of 4. To further illustrate the scalability of the 
proposed algorithm, we generate four TGFF configurations of 
256 tasks with the same concentration degree. Simulation 
results show that, compared with MC_CMesh and SA_MECS, 
TRAM is able to reduce the average packet delay by 55% and 
23% under the same runtime, respectively. This demonstrates 
that the proposed TRAM can achieve higher improvement for 
larger networks, indicating its good scalability. 

VII. CONCLUSIONS 

Express channel-based networks have been proposed in re-
cent studies as a promising approach to support fast on-chip 
communications for current and future many-core MPSoCs. 
However, the characteristics of these new topologies have not 
been exploited in existing application mapping algorithms. In 
this paper, we propose an efficient heuristic algorithm to ex-
plore the application mapping opportunities in express-channel 
networks. The proposed TRAM algorithm is able to effectively 
map tasks with large communication rate closer to each other, 
and aligns heavily communicating tasks to the same rows or 
columns to reduce unnecessary turns. Simulation results show 
significant reduction in the number of turns and considerable 
reduction in average packet delay in the generated mapping 
solutions. 
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TABLE I. PERCENTAGE OF TRAFFIC THAT NEEDS TO MAKE TURN. 

Systems 
Percentage (%) 

mpeg4 toybox vopd mms tgff_r1 tgff_r2 tgff_sp1 tgff_sp2 Average 

MC_MECS 40.82 31.26 34.16 37.62 56.73 50.07 33.27 48.30 41.53 

SA_CMesh(MECS) 38.47 22.53 31.67 20.98 48.71 48.78 43.02 43.04 37.15 

SA_MECS 25.03 15.00 19.41 11.96 40.97 39.98 36.92 27.69 27.12 

TRAM 11.80 4.22 4.37 0.12 20.93 19.52 21.23 12.10 11.79 

TABLE II. DYNAMIC POWER CONSUMPTION. 

Systems 
Dynamic Power (mW) 

mpeg4 toybox vopd mms tgff_r1 tgff_r2 tgff_sp1 tgff_sp2 

MC_CMesh 95.91 130.05 167.25 42.30 107.28 121.83 119.86 100.31 

SA_CMesh 91.38 125.46 156.93 40.77 105.24 110.67 108.31 92.31 

MC_MECS 84.22 113.51 146.54 38.79 87.59 97.26 96.15 83.98 

SA_CMesh(MECS) 82.46 111.74 145.07 38.72 85.99 96.98 95.67 83.13 

SA_MECS 80.69 105.63 140.17 38.09 85.80 96.44 94.17 81.27 

TRAM 77.07 104.55 129.78 37.91 82.66 91.62 88.80 76.12 

 

 

 
 


