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Abstract—Integration of residential-level photovoltaic (PV)
power generation and energy storage systems into the smart grid
will provide a better way of utilizing renewable power. With
dynamic energy pricing models, consumers can use PV-based
generation and controllable storage devices for peak shaving on
their power demand profile from the grid, and thereby, minimize
their electric bill cost. The residential storage controller should
possess the ability of forecasting future PV power generation
as well as the power consumption profile of the household for
better performance. In this paper, novel PV power generation
and load power consumption prediction algorithms are presented,
which are specifically designed for a residential storage controller.
Furthermore, to perform effective storage control based on these
predictions, the proposed storage control algorithm is separated
into two tiers: the global control tier and the local control tier.
The former is performed at decision epochs of a billing period
(a month) to globally “plan” the future discharging/charging
schemes of the storage system, whereas the latter one is performed
more frequently as system operates to dynamically revise the
storage control policy in response to the difference between pre-
dicted and actual power generation and consumption profiles.
The global tier is formulated and solved as a convex optimization
problem at each decision epoch, whereas the local tier is analyti-
cally solved. Finally, the optimal size of the energy storage module
is determined so as to minimize the break-even time of the initial
investment in the PV and storage systems.

Index Terms—Control, energy storage, photovoltaic, prediction.

I. INTRODUCTION

HE traditional static and centralized structure of elec-

tricity grid is comprised of a transmission network, which
transmits electrical power generated at remote power plants
through long-distance high-voltage lines to substations, and
a distribution network, which delivers electrical power from
substations to local end users. Since the end user profiles often
significantly change according to the day of week and time
of day, the power grid must be able to support the worst-case
demand of power to all end users [1].

The smart grid infrastructure is being designed to avoid ex-
pending a large amount of capital for increasing the power gen-
eration capacity of utility companies in order to meet the ex-
pected growth of end user energy consumption at the worst case
[2]. The smart grid is integrated with smart meters, which can
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monitor and control the power flow in the Grid to match the
amount of power generation to that of power consumption, and
to minimize the overall cost of electrical power delivered to
the end users. Utility companies can employ dynamic electricity
pricing strategies, incentivizing consumers to perform demand
side management by adjusting their loads to match the current
state of the network, i.e., shifting their loads from the peak pe-
riods to off peak periods. There are several ways to perform
demand side management, including integration of renewable
energy sources such as photovoltaic (PV) power or wind power
at the residential level, demand shaping, and so on [3]. In this
paper, we focus on the former solution, or more specifically, in-
tegrating PV power generation with the smart grid for residen-
tial usage.

Although integrating residential-level renewable energy
sources into the smart grid proves useful in reducing the usage
of fossil fuels, several problems need to be addressed for these
benefits to be realized. First, there exists a mismatch between
the peak PV power generation time (usually at noon) and the
peak load power consumption time for the residential user
(usually in the evening.) This timing skew results in cases
where the generated PV power cannot be optimally utilized for
peak power shaving. Moreover, at each time instance, the PV
output power is fixed, depending on the solar irradiance [4].
Hence, the ability of the residential user for peak shaving is
also restricted by the PV output power.

An effective solution of the above-mentioned problems is
to incorporate an energy storage module for houses equipped
with PV modules [5]. The proposed residential energy storage
module stores power from the smart grid during off peak periods
of each day and (or) from the PV system, and provide power for
the end users during the peak periods of that day for peak power
shaving and energy cost reduction (since electrical energy tends
to be the most expensive during these peak hours.) Therefore,
the design of energy pricing-aware control algorithm for the res-
idential storage system, which controls the charging and dis-
charging of the storage and the magnitude of the charging/dis-
charging current, is an important task in order for the smart grid
technology to deliver on its promises.

A realistic electricity pricing function [9] consists of both an
energy price component, which is a time of usage (TOU) depen-
dent function indicating the unit energy price during each time
period of the billing period (a day, or a month, etc.), and a de-
mand price component, which is an additional charge due to the
peak power consumption in the billing period. The latter compo-
nent is added to the price of energy consumption in order to pre-
vent a case whereby all customers utilize their PV power gen-
eration and energy storage systems and/or schedule their loads
such that a very large amount of power is demanded from the
smart grid during low-cost time slots, which can subsequently
result in the power delivery failure.
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Fig. 1. Block diagram showing the interface between PV module, storage
system, residential load, and the smart grid.
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Moreover, the size of the storage system is limited due to the
relatively high cost of electrical energy storage elements. There-
fore, at each decision epoch (some predefined time instances for
the storage controller to make decisions) of a billing period, it is
important for the controller to forecast the future PV power gen-
eration and load power consumption profiles so that it can per-
form optimization of the total cost. References [6]—[8] are repre-
sentative of PV power generation and load power consumption
profile predictions by either predicting the whole power profiles,
or predicting certain statistical characteristics. However, these
methods are general profile predicting methods, not specifically
designed to help a residential storage controller. The controller
may not perform the optimal electrical energy cost reduction
over each billing period by using such prediction methods.

In this paper, we consider the case of a residential smart grid
user equipped with a local PV power generation module and an
energy storage module. We consider a realistic electricity price
function comprised of both energy and demand prices. First, we
present novel PV power generation and load power consump-
tion profile predictors specifically designed for the residential
smart grid controller. The predictors exploit the specific form
of the energy price function, and effectively avoid underestima-
tion of the load power consumption or overestimation of the PV
power generation. Furthermore, to perform effective and adap-
tive storage control utilizing these prediction results to mini-
mize the total energy cost, we decompose the proposed con-
trol algorithm into a global control tier and a local control tier.
The global control tier is performed at each decision epoch of
the billing period to globally “plan” the future discharging and
charging schemes of the storage system, whereas the local con-
trol tier is performed along with system operation to compen-
sate the prediction errors. The global tier is effectively imple-
mented by solving a convex optimization problem at each de-
cision epoch, whereas the local tier has a time complexity of
O(1). We find the optimal size of the energy storage module so
as to minimize the break-even time of the initial investment in
the PV and storage systems.

II. SYSTEM MODEL AND COST FUNCTIONS

In this paper, we consider a residential smart grid user
equipped with PV power generation and energy storage mod-
ules as shown in Fig. 1. The PV and storage modules are
connected to a (residential) DC bus via DC-DC converters.
An AC bus, which is further connected to the smart grid, is
connected to the DC bus via AC/DC inverter and rectifier. The
residential 4C load is connected to the AC bus.

We adopt a slotted time model, i.e., all system constraints
as well as decisions are provided for discrete time intervals of
equal and constant length. Each day is divided into 7’ time slots,
each of duration D. We use 7" = 96 and D = 15 minutes.

We adopt a realistic electricity price function comprising both
the energy price component and the demand price component,

with a billing period of a month [9]. Consider a specific day i
of a billing period. The residential load power consumption at
the jth time slot of that day is denoted by Piyaq.:[7]- The output
power levels of the PV and storage systems at the jth time slot
are denoted by P, ;[j] and Py ;[7], respectively, where Py ;[7]
can be positive (discharging the storage), negative (charging the
storage), or zero. Therefore, the power drawn from the smart
grid, i.e., the grid power, at the jth time slot of the 2th day is:

Perid ilj] = Pload,i[i] — Ppv,ili] — Pst.ilJ] (D

where Py,iq,;[j] can be positive (if the smart grid provides power
for the residential usage), negative (if the residential user sells
power back into the smart grid), or zero.

As specified in [9], the electricity price function is pre-an-
nounced by the utility company just before the start of each
billing period, and the price function will not change until pos-
sibly the start of the next billing period. Reference [9] also spec-
ifies five different time periods of each day, denoted by the term
price periods, with (potentially) different unit energy prices and
(or) demand prices. These pre-announced price periods are: the
1st off peak (OP) period from 00:00 to 09:59, the 1st low peak
(LP) period from 10:00 to 12:59, the high peak (HP) period from
13:00 to 16:59, the 2nd LP period from 17:00 to 19:59, and the
2nd OP period from 20:00 to 23:59. For notation simplicity, we
denote the 1st OP, 1st LP, HP, 2nd LP, and 2nd OP price periods
of a day as the 1st, 2nd, 3rd, 4th, and 5th price periods of that
day. Weuse j € S}, to denote the statement that the yth time slot
belongs to the kth price period. We use %, ; and ¢, j to denote
the start time and end time of the kth price period in each day,
respectively. We have ¢, ;1 = 00 : 00 (start time of the day),
tes = 23 : 59 (end time of the day), and ¢, = .1 for
2 < k <5,

We use Price_Fop, Price_F1p, and Price_Eyp to denote
the unit energy price in the OP period (the Ist and 5th price
periods), the LP period (the 2nd and 4th price periods), and
the HP period (the 3rd price period) of each day, respectively,
and use Price_Dyp, Price_Dyp, and Price_Dveran to denote
the monthly demand price for the peak power demands drawn
from the Grid during the LP period, the HP period, and the
overall peak power demand of a billing period (a month), re-
spectively. We have Pricc_FEyp > Pricc_Frp > Pricc_Eop
and Price_Dyp > Price_Dyp. The cost we pay in a billing pe-
riod due to the energy price component is given by:

30
COStE = PI‘i(JC_EQp . Z Z Pgrid,’i, []] - D
i=Lljesi|Jss

30
+ PI‘iCE_ELP . Z Z Pgrid,i[j] -D
=1 jeg, U Sa

30
+Price Enp - Y Y Pyiaalj] - D
i=1 j€S3

2

and the cost we pay in the billing period due to the demand price
component is given by

Costp = Price_Drp - max Poiaili
1<i<30,7€8:US, seid.ilJ]
+ Price_Dyp - max  Pyialj]

1<i<30,j€S3

max Pgrid,i [j] (3)

+ Price_Doverall -
Vera 1<i<30,1<5<96
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The total cost for the residential user in the billing period is the
sum of the two aforesaid cost components.

III. PV AND LOAD POWER PROFILE PREDICTION

Accurate prediction of the PV power generation and load
power consumption profiles is extremely important for the
development of residential storage control algorithms. Due to
the fact that predicting the complete load (or PV) power profile
is difficult and unnecessary (since the storage controller only
needs certain characteristics of the load or PV power profiles,
e.g., average values and magnitudes and time instances of
peaks), we use predictors to forecast the peak and average
load power consumption (or PV power generation) values for
different price periods in each day, i.e., one predictor for the
st OP period, one for the 1st LP period, one for the HP period,
one for the 2nd LP period, and one for the 2nd OP period.
Subsequently, we reconstruct the approximate load (or PV)
power profile for each day based on the predicted average and
peak values in each price period.

In the following, we describe the peak power predictors. The
average predictors, which tend to be more accurate, are realized
by using the same algorithms. The proposed load power con-
sumption and PV power generation prediction algorithms con-
sist of an initial prediction phase followed by an intra-day re-
finement phase, as explained below.

Consider the peak power (consumption or generation) predic-
tion for the +th day of a billing period (i.e., a month.) The initial
prediction of the peak power refers to the prediction performed
at time 00:00 (¢5,1) of the th day, for the peak load power con-
sumption (or PV power generation) in all five price periods of
the zth day. The intra-day refinement of peak power (consump-
tion or generation) prediction may be performed at the start time
of the kth (1 < k& < 5) price periods, i.e., ¢z, of the ith day,
with the goal of refining the initial prediction results in the kth,
(k+ 1)st, ..., 5th price periods.

Motivation for the intra-day refinement is that at time % 3
(1 < k < 5), the actual peak load power consumption (or PV
power generation) values in the Ist, 2nd, . . ., (k— 1)st price pe-
riods of the sth day are known to the controller. This information
can thus be used to improve the accuracy of peak power predic-
tion for the rest of price periods in the same day. The proposed
intra-day refinement process is crucial since the characteristics
of the load power consumption and PV power generation pro-
files are required to be more accurate for the 1st LP, HP, and 2nd
LP periods compared to the 1st OP period. This is because the
energy and demand prices in the former price periods are higher
than those for the 1st OP price period. In addition, it is very un-
likely for the peak power demand from the Grid to occur during
the 1st OP period.

A. Prediction for the Peak Load Power Consumption

For the initial prediction phase of peak load power consump-
tion, an adaptive regression-based algorithm is used. Consider
that we are at time 7, ; = 00 : 00 of the ¢th day. The peak load
power consumption values in the kth price period of the ¢th day
(1 < k < 5) are predicted as follows:

PI‘ediCtl"k = Z Huf(l) . Featllrei7k(l) (4)
=1

where the feature

(Feature; (1),

vector Feature; ;, =
Feature; 4(2),. .., Feature; »(n))
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captures the actual values of peak load power consumption
sampled at some previous points of interest, and n is the
number of elements in the feature vector. In addition,
0:r = (6;1(1),...,0, 1(n)) denotes a dynamically-updated
coefficient vector with n elements. The values of elements
Gik(1),.... 0, 1(n) are all initilized to 1/n. Utilizing a
stochastic gradient descent method (see [10] for details), the
coefficient vector @; . is updated as follows:

0i+1.k — ai,k + - (Actuali_yk — PI'ediCti_’k) . Featurei,k
(5)

where 0 < a < 1 is a pre-defined learning parameter.

Testing on the load power consumption profile from Balti-
more Gas and Electric Company [11], we have found that a
value of n = 5 with the feature vector defined as follows yields
the best prediction results with a relatively low computational
complexity (a overlarge n will result in not only high computa-
tion complexity but also over-fitting [10]):

Feature; ;. = (Actual;_1 5, Actual; o,
(6)

where the Actual, » values denote the actual peak load power
consumption values in the kth price period of the (i — 1)st day,
the (i — 2)nd day, the (i — 7)th day, the (¢ — 14)th day, and the
(i—21)st day, respectively. This is because the tested load power
profile exhibits both daily dependency and weekly dependency.
The daily dependency is properly captured by the feature ele-
ments of the (¢ — 1)st day and the (i — 2)nd day, whereas the
weekly dependency is captured by those of the (i — 7)th day,
the (¢ — 14)th day, and the (i — 21)st day.

For the intra-day refinement phase of peak load power con-
sumption prediction, consider that we are currently at time in-
stance ¢, ;. (the start time of the kth price period) of day ¢, and
we intend to refine the initial prediction results of the peak load
power consumption values in the kth (kK < &k < 5) price pe-
riod of that day. We denote the result of refinement as Refine; ;.
Since at that time ¢, ; the actual peak load power consumption
in the (k — 1)st price period is already known, we calculate
Refine, ; as follows:

Actuali,zk s Actuali,m,k Actuali,gl,k)

Actuali’k,l

Rleﬁneijc — (1 — ’y)PI‘E'dlCtH]; + -

Predicti,k,l

Predict, i (7)
where the coefficient 0 < v < 1. We learn the optimal -y value
using the same stochastic gradient descent method (see [10] for
details) as the learning process of the coefficient vector 8; .
Typically, a v value in the range of [0.5, 0.7] will yield the best
prediction results.

The intuition for this update equation (7) is as follows: If the
actual peak load power consumption in the (k — 1)st price pe-
riod is higher than the predicted peak load power consumption
in that period, i.e., Actual; 1 > Predict; ;_1, it is highly
likely that the actual load power consumption in the kth price
period (k < k < b) of the same day will also be higher than the
predicted peak load power consumption in that period, and vice
versa. Experimental results in Section V will demonstrate that
the prediction error can be reduced to 50% of the initial predic-
tion error by using intra-day refinement.

It is important to note that underestimating peak load power
consumption needs to be avoided, since it may result in larger
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than expected power demand from the smart grid, which in turn
significantly increases the monthly demand price of electricity.
We propose to use the following heuristic for avoiding underes-
timation of peak load power consumption. We modify the afore-
said intra-day refinement algorithm in that after we have derived
the Refine, ; (2 < k < 5) value using (7), we add the following
additional correction phase:

Rcﬁnoi’fv — Rcﬁnci’@ “Toad, 1f Rcﬁncivk > PrcdlctijC

®)

where the correction factor 7j0aq > 1.

The reason for this modification is as follows. Experimental
results show that underestimating peak load power consumption
in the kth price period of the ith day is very likely to occur when
Reﬁneiy i > Predict, ;.

We effectively learn the optimal correction factor
Moad Vvalue using a simple learning technique [10] dis-
cussed as follows. We maintain a set of correction factors
{Moad. 1+ Moad 25 - - - » Moad.m } and pick one of them in each
billing period. At the end of the billing period, we evaluate
the cost-saving performance of the storage controller if each
correction factor is chosen in this billing period, and find
Mload,; that results in the lowest energy cost. Then we select the
correction factor 7,.4,¢ in the next billing period.

B. Prediction Algorithm for the Peak PV Power Generation

For the peak PV power generation prediction, an important
observation is that the actual peak PV power generation over a
specific price period (e.g., the kth price period) in the ¢th day of
a billing period may be viewed as the peak PV power generation
over the kth price period for a sunny day, multiplied by a decay
factor, representing the effect of clouds, if that day is cloudy.
Obviously, such sunny day peak PV power generation over the
kth period (1 < k < 5) varies with the change in seasons.
This effect is however captured by a smoothing operation as
described below (cf. (9) and (10).) Therefore, we use the initial
prediction, which is performed at the beginning of each day,
mainly to predict the sunny day peak PV power generation over
each price period of that day. Next, we rely on the intra-day
refinement, which is performed at the start time of the kth (1 <
k < b) price period ¢, 4, of that day, in order to predict the decay
factors (and subsequently, the actual peak PV power generation
levels) in the rest of price periods. Please note that at time #, 1,
the decay factor in the (k — 1)st price period is already known.
Moreover, decay factors for different price periods of the same
day are positively correlated in general.

In the initial prediction phase, we adopt a variant of the well-
known exponential average-based prediction method, in order
for effectively predicting the sunny day peak PV power genera-
tion in each price period of day (please see the discussion below
about how our version is different from the standard method.)
Consider that we are at time ¢, ;1 = 00 : 00 of the sth day. We
want to derive the prediction value of the sunny day peak PV
power generation in the kth (1 < k < 3) price period of that
day, denoted by Predict; ;, based on the prediction result of
sunny day peak PV power generation value in the kth price pe-
riod of the (i — 1)st day, denoted by Predict, _; ., and the actual
peak PV power generation value in the kth price period of the
(i —1)st day, denoted by Actual;_1 x. Please note that we must
also capture and predict the seasonal change of the sunny day
peak PV power generation values, while filtering out random

power decaying effects due to the presence of clouds. This is a
smoothing operation. The Predict;  value is calculated as fol-
lows:

PI'ediCti’k = B(Pl‘edi(}tiflvk, Actuali,Lk) . Actuali,l’k

+ (1 — f(Predict; _q k, Actual, _q 1)) - Predict;_1 . (9)
In the above equation, the learning rate function
B(Predict;_q k, Actual;_q ) is set to:
/3(], if PI'ediCti717k < Actuali,ljk
ﬁO . efA-(Prodicrl,l,k7Actua‘lq',1,k)‘ otherwise (10)

where [y is the basis learning rate, and A is the decaying param-
eter for the learning rate.

The motivation for this smoothing operation is as follows.
Since (i) we want to predict the seasonal change of sunny day
peak PV power generations while filtering out the effect of
clouds and (ii) Actual; _1 r < Predict;_1 ; only if there are
clouds, it is natural that our new predicted sunny day peak PV
power generation Predict; 5, should not be so much influenced
by Actual;_; ; (which is strongly affected by the clouds.)
Therefore, we adopt the exponentially decaying learning rate
function (10), rather than the constant learning rate in the
original exponential average-based prediction algorithm.

The intra-day refinement phase of PV power generation pre-
diction, which is performed at the start time of the kth (1 < & <
5) price period of each day to predict the decay factors (and sub-
sequently, the actual peak PV power generation values) in the re-
mainder price periods, can be implemented via exactly the same
algorithm (7) as the intra-day refinement phase of load power
consumption prediction. Finally, in contrast to the load power
consumption prediction, overestimating peak (or average) PV
power generation needs to be avoided. Therefore similarly, we
modify the intra-day refinement phase of peak PV power gener-
ation prediction as follows to avoid overestimating, in that after
we derive the Refine, ; (2 < k£ < 5) value, we add the fol-
lowing conditional correction phase:

R,eﬁnei7]; — Reﬁnei’]; CNpy, if Reﬁnei;,; < Predictiyl;

(11)

in which the correction factor 7,,, < 1. We effectively learn the
optimal 1), value using the learning technique, similar to the
learning process of the optimal 7,4 Value.

The reason for this modification is as follows. Experimental
results show that overestimating peak PV power generation in
the kth price period of the ¢th day is very likely to happen when
Refine, ; < Predict, ;.

IV. ADAPTIVE RESIDENTIAL STORAGE CONTROL ALGORITHM

In this section, we discuss the proposed residential storage
control algorithm, which could effectively utilize the combi-
nation of PV power generation and load power consumption
prediction results to minimize the total energy cost over each
billing period. The proposed storage control algorithm is Aier-
archical in that it consists of a global control tier and a local
control tier. The global control tier is performed at each deci-
sion epoch (to be precisely defined later) to “plan” for the future
discharging and charging schemes of the energy storage for the
rest of the day. The local control tier is performed locally and
much more frequently at regular fixed-length timing intervals
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called time slots as the controller operates to mitigate the ef-
fect of prediction error. In control theory, the global tier of the
control algorithm is essentially a feedforward control, which is
mostly optimization-based, whereas the local tier is a feedback
control, which is mostly real-time control. The combination of
feedforward control and feedback control can be a very effec-
tive control strategy. Detailed algorithms for the global control
tier and the local control tier shall be described in Sections IV-A
and I'V-B, respectively. Before introducing such detailed algo-
rithms, we first define the term “decision epoch” and explain
the (brief) optimization objective at each decision epoch in the
global tier of storage control algorithm.

Consider that we are currently in the ¢th day of a billing period
(amonth). Then the decision epochs in that day are defined to be
the start times of each price periods of that day (excluding the
1st OP period), i.e., 5 1 for 1 < k < 5. At each decision epoch,
the storage controller obtains information about the PV power
generation and load power consumption profile characteristics
(peak and average power) over the kth, (k + 1)st, ..., 5th price
periods from the intra-day refinement phase of PV and load pre-
dictors performed just at that decision epoch £, ;.. The controller
is going to globally “plan” the discharging and charging scheme
of the storage in the remainder price periods of the day, making
use of such predicted characteristics. Obviously, the “globally
planned storage charging/discharging scheme” obtained at de-
cision epoch t, ; may be modified at the subsequent decision
epoch ¢, 1. Please note that the start time of the 1st OP period
is not considered as a decision epoch. This is because the unit
energy price in the 1st OP period is the lowest, and it is very un-
likely to have a peak power demand to be drawn from the Grid
during that price period. Hence during the 1st OP period, the
storage system is being charged, instead of being discharged as
in the following 1st LP, the HP, and the 2nd LP periods. Thus,
we simply assume that the peak power demand to be drawn from
the Grid, which may affect the monthly demand price, will not
occur during the 1st OP period. Furthermore, we assume that
the storage system will be (nearly) fully charged at the end of
the 1st OP period (at time ¢, 2).

We use F; ;, to denote the available storage energy at decision
epocht, , oftheithday. Wehave I; o ~ Fy,;1 where Ey, is the
storage energy when fully charged, and F;» > E; 53 > E; 4 >
E; 5, since the storage is being discharged in the 1st LP, the HP,
and the 2nd LP period.

The proposed storage control algorithm possess the following
three adaptive features: i) The storage control algorithm utilizes
the most up-to-date prediction results of PV and load power pro-
files from the intra-day refinement phase; ii) at each decision
epoch ¢, j, the global tier of the storage control algorithm may
adaptively modify the optimization results for the rest of the day
obtained at the former decision epoch ¢, ;_1; iii) the feedback
control-based local tier is performed much more frequently to
adaptively mitigate the effect of prediction error and the inac-
curacy of the global tier.

A. The Global Control Tier

In contrast to the other parts of the paper, we use a continuous-
time based system model in the description of the global con-
trol tier of the proposed storage control algorithm. The reason
for using a continuous-time model is to effectively incorpo-
rate the PV and load prediction results in the global control tier
and formulate the global control tier as a convex optimization
problem. Consider that we are currently at decision epoch ¢ ,
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Fig. 2. Relationship between the predicted net load power, storage output
power, and grid power profiles in the kth price period of the ith day. Fig. 2 (i)
corresponds to the case when I .vget k. 2> 2ar — pr (21 < 2pr — 2ay). Fig.
2 (ii) corresponds to the case when Parger, 1 < 205 — pg (21 > 2ps, — 2ay).

(1 < kg < 5) of the ith day. In this algorithm, let Pye. ;(2),t €
[ts.kortes = 24 : 00] denote the predicted net load power
consumption profile of the rest of the ¢th day, which equals to
the predicted load power consumption profile minus the pre-
dicted PV power generation profile. Such predicted P ; (%)
profile can be reconstructed from the intra-day refinement phase
of PV and load peak and average power predictions, and the
details of reconstruction shall be discussed later. The storage
output power, which is the control variable of the global tier of
the storage control algorithm, is denoted by P ;(¢). Therefore,
the (predicted) power drawn from the smart grid (i.e., the grid
power), denoted by Pyyia i (t), can be calculated via Pyyiq i (1) =
Pnct,i (t) - Psr,i (t)

Consider a specific price period (the kth price period with
1 < k < 5, for instance) of the ith day, as shown in Fig. 2. We
use pg and ay, to denote the predicted peak and average net load
power consumption values in that price period, respectively.
Furthermore, we use pioud.+ and @iead » to denote the predicted
peak and average load power consumption values, and use ppy i
and ay,y ;. to denote the predicted peak and average PV power
generation values, respectively, over the kth price period of the
tth day. Please note that the index ¢ of such py, ay, etc. values
has been omitted for the conciseness in notation. We obtain the
above-defined pioad ks @load ks Ppv,k, and apy & values from the
intra-day refinement phase of PV and load predictions, and ap-
proximately calculate the py, and a;, values in the following way:

Pe = Pload,k — (2(1/p\',k - va,k)
A = Gload,k — Opv,k (12)
The intuitions of (12) are given as follows: The predicted peak
net load power consumption pj, should be equal to the predicted
peak load power consumption pigad. subtracted by the min-
imum PV power generation, which is approximated by 2a,, 1 —
Ppv.k- Similarly, a; should be equal to the predicted average
load power consumption aisad,x subtracted by the average PV
power generation apy .

We assume that the net load power consumption during the
kth (1 < k& < 5) price period of the ith day, i.e., Pneti(),t €
[ts.k»ter], is uniformly distributed between the lowest value
2ay, — pr, and the highest value py, . Without loss of generality, we
draw such predicted net load power consumption curve as line
segment (a) in Fig. 2. Please note that although Fig. 2 arranges
the net load power consumption during the £th price period in
descending order from the left side, it does not show the exact
time series variation of the net load but the distribution of the
net load during this price period.
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Briefly speaking, the role of storage discharging in the price
period of interest is to make the power drawn from the Grid,
Pyyia.i(t), lower than the net load power consumption Ppet ;(%).
Let y;. denote the predicted amount of energy drawn from the
storage system during the kth price period. For a given y;., we
prove! that the optimal (predicted) grid power profile for peak
(or cost) minimization is given by min(Pre¢,i(#), Prarget, k) for
t € [ty ks te k] shown as curve (b) in Fig. 2, where Piayget & is the
maximum (predicted) grid power during this price period (also
shown in Fig. 2.) Please notice that Fig. 2(i) and (ii) correspond
to the cases when Prarget & > 20 — Pr and Pravger x < 205 —
Pr, respectively. The relationship between y, and Piaget,» are
provided as follows: Let . = pr — Piarget,k, and then we have

1 @ (tor —tsk)  (@r)? (te — tok)

Ye = 5 " Tk p =
2 2py, — 2ap 4(pr — ar)

(13)

when Piarget.k > 205 — pr (T < 2pr — 2a4) as shown in

Fig. 2(i). On the other hand, the function is given by

(2[1‘,]‘7 — 2p; + 2a1¢) . (te,]{; — ts,k’)
2

= (o = po ) - (e — L)

Y =
(14)

when Peaget i < 20k — pr {(2x > 2pr — 2ay) as shown in
Fig. 2(ii). Equations (13) and (14) are derived based on the ob-
servation that yy, is the area of the shadowed triangle (Fig. 2(i))
or trapezoid (Fig. 2(ii)) with the height . ; — ¢4 x.

The above-defined x5 denotes the maximum power reduc-
tion between the predicted net load power profile and the pre-
dicted grid power profile in the kth price period. We use x as
the optimization variable in the global control tier instead of
Piorget,k in order to formulate the global tier as a convex op-
timization problem. The relationship between y and xj, de-
noted by yi = fr(z,), is already provided in (13) and (14). In
fact, y is a convex and monotonically increasing function of
&y, because: 1) (dfi(xr))/(dxr) > 0, and ii) (dfx(xr))/(dxr)
is the smallest at the beginning (x; = 0), and then gradually
increases as x, becomes larger. One can see that capturing the
relationship between x; and y; necessitates the usage of the
continuous-time model in the global control tier.

Now we return to the optimal storage control problem at de-
cision epoch 5 1, (1 < ky < 5) of the ith day, as illustrated
in Fig. 3 (k9 = 3 in this case.) At that time, we derive the pre-
dicted p; and ay values for kg < k& < 5 from the intra-day
refinement phase of PV power generation and load power con-
sumption predictions at decision epoch %, r,, as well as (12).
The storage energy at decision epoch .z, is given by F; 4.
We use Peakop, Peakyp, and Peakpp, respectively, to denote
the actual peak grid power consumption values observed so far
over the OP, LP, and HP price periods in this billing period.
Such Peakop, Peakyp, and Peakyp values are initialized to
be zero at the beginning of each billing period. The x; values
for kg < k < 5 in this optimal storage control problem are op-
timization variables, and we have y;, = fi(x) forkg < k < 5.
The objective of the optimal storage control problem is to find
the optimal 7, values for kg < k < 5, subject to the storage en-
ergy constraint ZZ: ky Yk < E; ,, S0 as to minimize the total
cost over the billing period.

Then the proposed (near-) optimal storage control algorithm
at decision epoch ¢, 1, is given by the following. First we
check whether the storage system has enough energy for peak

IPlease refer to the Appendix for the detailed proof.
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Fig. 3. The optimal control problem at decision epoch t. s = 13 : 00.

shaving such that the (predicted) cost due to demand price
in the billing period will not increase in the ith day, or in
other words, the (predicted) power profile drawn from the
Grid, Piria;(t), will not exceed the Peakyp, Peakyp, and
max(Peakop, Peakyp, Peakyp) values in the LP, HP, and OP
price periods in the rest of the ith day, respectively. We know
that the demand price is the dominating factor over the unit
energy price in [9]. More specifically, we set:

zo « max(0, ppy — Peakrp), if kg =2 (15)
x3 +— max(0, p3 — Peakgp), ifky <3 (16)
x4 +— max(0, ps — Peakrp), ifky <4 17)
x5 +— max(0, p; — max(Peakop, Peakpp, Peakyp))
(18)

Then we compare F; j, and Zi:kg Yk = Z'Z:ko frlzr),
and we have the following two cases based on the comparison
results. .

1) Casel(E;;, > Z‘;:ko Ji(z1)): Inthis case, the storage
energy is adequate for peak shaving such that the (predicted)
cost due to demand price in the billing period will not increase
in the rest of the ith day. We further minimize the (predicted)
cost due to unit energy price in the rest of the 7th day, subject to
the constraint that the (predicted) cost due to demand price will
not increase in this day. We call such problem cost minimization
with adequate energy (CMAE), with deterministic solution as
follows:

) Ifky = 2, letzy — fy (B — folwe) — fa(za) —
f5(x5)). Then x3 will become larger than its original value
max(0, ps — Peakyp). We keep the xo, x4, and ;5 values
the same as before. This is because the unit energy price in
the HP period is the highest among each day, and thereby,
we are going to use all the (predicted) surplus storage en-
ergy in the HP period for total cost minimization.

2) If]%o = 3, we set r3 +— ]Lr;l(EL’g - f4(”[‘4) - ,}"5(.7,‘5)), and
keep the x4 and x5 values unchanged.

3) Ifkg = 4, weset 24 «— fy "(E; 4 — f5(25)), and keep the
x5 value the same as before.

4) If ky = 5, we simply leave the x5 value as it was. This is
because the unit energy price in the 2nd OP price period is
the lowest among each day, and thus, spending additional
storage energy in this price period will have no benefit.

2) Casell (E; &, < Zi:ko fr(x)): Inthis case, the storage
energy is not adequate for peak shaving and therefore, we have
to make the predicted peak grid power consumption over at least
one of the LP, HP, and OP price periods of the :th day exceed
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the Pecakpp, Pcakpp, and max(Pcakop, Pecakpp, Pecakgp)
values, respectively. We solve the following optimization
problem, called the peak shaving with inadequate energy
(PSIE) problem, such that the (predicted) cost increase due to
demand price in the sth day will be minimized.

The PSIE Optimization Problem

Find the optimal values zy, for kg < k < 5.

Minimize:

Price_Drp - max{Pcakyp, I[ko = 2|(p2 — 22),

Tlko < 4](ps — 4)}

+ Price_Dyp - max{Peakyp, I[ko < 3]- (ps — z3)}

+ Price_Doveran - max{Peakyp, Peakyp, Peakop, I[ky = 2]

“(p2 — 22}, I[ko < 3](p3 — w3), ko < 4](ps — 74),p5 — 75}
(19)

in which I[x] is the indicator function, which equals to one
if statement x is true, and equals to zero otherwise.

Subject to:

zp >0, forkg<k<5 (20)
Z fe(zr) < Eig, (21)
k=ko

Remember that fi(z;) is a convex and monotonically in-
creasing function over z; for kg < k& < 5. The above PSIE
problem is a convex optimization problem since it has convex
objective function and convex inequality constraints, and thus,
it can be optimally solved with polynomial time complexity by
using standard convex optimization techniques such as [12].

B. The Local Control Tier

The local control tier of the storage control algorithm is per-
formed along with system operation to compensate for the errors
in the PV power generation and (or) load power consumption
predictions. In this part, we return to the slotted time model as
described in Section II.

Consider that we are currently at the jth time slot, which
belongs to the kth price period, of the #th day of a billing pe-
riod. At that time, we have derived the P,;gct,1 Value from the
global tier of the storage control algorithm performed at deci-
sion epoch ¢ ;. We also have the actual net load power con-
sumption Pyet ;[J] = Pload ilj] — Pov,:[j]. The basic job of the
local tier of the storage control algorithm is: trying to limit the
grid power, given by Pgyid i[j] = Puet.i[j] — Pst,i[j], no more
than the Prarget 1 value through controlling the storage output
power Pst,i[j]. Moreover, the local tier should also make sure
that the physical limitations of the storage system are not vi-
olated, i.e., the amount of energy stored in the storage system
cannot exceed the maximum value E¢,;; or become less than
zero at the end of the jth time slot. Details of the local tier of
storage control algorithm are given as follows:

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results on load
power consumption and PV power generation prediction algo-
rithms proposed for the residential smart grid users, as well as

IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 2, MARCH 2014

Algorithm 1: Local tier of storage controller at time slot j, price
period k, day i.

Assume that at the beginning of the /™ time slot, the amount of stored
energy in the storage system is E;[f].

Ianet,i []] > Ptarget,k:
. . , E;[j
| Pst,i[]] < min (Pnet,i[]] - Ptarget,kr %)
Else If we arc currently at the 2™ OP period, i.c., k = 5:

/ j Eruu=Eilj]
Pt i[j] < max (Ppeei[j] — Peargetjor — ! UD ).

//This is because the unit energy price in the 2™ OP period is the
lowest. We may charge the storage system in the 2™ OP period,
as long as the grid power Pgriq;[j] = Pneti[j] — Pstilf] is no
more than Pygrget k-

Else Py ;[j] < 0.

Set Ptarget,k « max (Ptarget,k' Pnet,i[j] - Pst,i[i])-

the effectiveness of the proposed residential storage control al-
gorithm. In the experiments, we use the electric load data from
the Baltimore Gas and Electric Company measured in the year
2007 [11]. We use PV power generation profiles measured at (i)
Duffield, VA, measured in the year 2007, and (ii) Los Angeles,
CA, measured in the year 2012 [13]. These two profiles are rep-
resentative of the PV generation profiles in the west coast and
the east coast of the U.S., respectively.

A. Load and PV Power Profile Predictions

In this section, we show some representative experimental
results on the accuracy of the peak load power consumption
and PV power generation predictions. The average load power
consumption and PV power generation prediction results are in
general 10%—15% more accurate than the peak predictions, and
are therefore not shown due to space limitation.

Fig. 4 compares the peak load power consumption predic-
tion results and the actual peak load power consumption results
in the HP period of each day in a year. The peak load power
consumption prediction results shown in the top subfigure come
from the initial prediction performed at time 00:00 of each day,
whereas the prediction results in the bottom subfigure come
from the intra-day refinement performed at time #, 3 = 13 : 00.
Data in the first 120 days of the year are used for initial training,
and thus the prediction results over those days are not shown
in Fig. 4. We can observe from Fig. 4 that the proposed adap-
tive regression-based initial prediction algorithm is effective in
load power consumption prediction, resulting in an average pre-
diction error of about 8%, by making use of both the daily and
weekly dependencies. The average prediction error is further re-
duced to less than 4%, i.e., less than 50% of the average predic-
tion error in initial prediction, by the effective use of intra-day
refinement.

Fig. 5 compares the peak PV power generation prediction re-
sults with the actual PV power generation results in the 1st LP
period of each day in a year, using the PV data measured at
Duffield, VA, USA. The peak PV power generation prediction
results shown in the top subfigure come from the initial predic-
tion performed at time 00:00 of each day, whereas the prediction
results shown in the bottom subfigure come from the intra-day
refinement procedure performed at time £, » = 10 : 00. Data
in the first 90 days in the year are used for initial training, and
thus the prediction results over those days are not shown in
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Fig. 4. Comparison between the peak load power consumption prediction re-
sults from initial prediction (top) and from intra-day refinement at time ¢, 5 =
13 : 00 (bottom) and actual peak load power consumption results.

PV Peak Prediction in 1st LP Period without Intra-day Refinement
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Fig. 5. Comparison between the peak PV power generation prediction results
from the initial prediction (top) and from intra-day refinement at time ¢, o =
10 : 00 (bottom) and actual peak PV power generation results.

Fig. 5. We can observe that the proposed modified exponen-
tial average-based initial prediction algorithm is effective in pre-
dicting the sunny day peak (and also average) PV power gen-
eration over each day in a year, by effectively capturing the
long-term seasonal change of sunny day peak power genera-
tion values throughout a year while filtering out the random ef-
fects of clouds. The proposed intra-day refinement technique
also proves itself effective in predicting the decay factors due to
clouds by reducing the average prediction error to about 14%.
We achieve even more accurate peak PV power generation pre-
dictions on PV data measured at Los Angeles, CA, USA, with
an average error of less than 12%.

B. The Proposed Residential Storage Control Algorithm

In our experiments for testing the effectiveness of the pro-
posed residential storage control algorithm, the residential smart
grid user is equipped with the load devices and PV system with

power consumption and generation profiles same as the pro-
files used in Section V-A, as well as the storage system for
peak shaving. We define the cost saving capability of a storage
control algorithm (the proposed algorithm or the baseline algo-
rithm) to be the average monthly cost saving due to the addi-
tional storage system, compared to the same residential smart
grid user equipped only with the PV system. We compare the
cost saving capabilities of the proposed near-optimal storage
control algorithm with three baseline algorithms. All the base-
line algorithms charge the storage system from the Grid during
the OP period with constant power. The first baseline algorithm
is a relatively simple algorithm that distributes all the available
energy stored in the storage system evenly in the HP and LP
periods that have relatively higher monthly demand price and
unit energy price. The second baseline algorithm is a relatively
more advanced algorithm that distributes its available energy
with constant output power P13 in the HP period and PR ¢

in the LP period. The PR%¢ and PR7? values satisfy:

(22)

PISE /PITE = Price Dyp/Price Dyp
The third baseline algorithm, on the other hand, distributes
the available energy of the storage system during the HP and
LP periods trying not to increase the Pcakpp, Pecakgp, and
max(Peakgp, Peakyp, Peakyp) values. More specifically,
during each billing period, the third baseline algorithm main-
tains the three peak values observed from the beginning of the
billing period. Suppose we are at time slot j of the ¢th day,
which belongs to the HP or LP periods. The storage will provide
power Poet i[j] — Peakup (or Phee.i[j] — Peakpp) if the net
load power Pyt i[j] > Peakpp (or Puet;[j] > Peakrp) and
the storage has enough energy. Otherwise, the storage will not
supply power. The objective is to maintain the grid power in
this time slot not to exceed the Peakyp (or Peakrp) and the
max(Peakop, Peakyp, Peakyp) values.

Fig. 6 shows the comparison results on the cost saving ca-
pabilities between the proposed storage control algorithm and
the baseline algorithms. The x-axis of this figure is the total
storage capacity, and the y-axis is the ratio of the cost saving
capability of a storage control algorithm (the proposed algo-
rithm or the baseline algorithm) to the cost saving capability of
the proposed near-optimal algorithm. We can see from Fig. 6
that the proposed near-optimal residential storage control al-
gorithm consistently outperforms the three baseline systems,
with an average cost saving capability improvement of 58.6%,
33.2%, and 89.8% than the first, second, and third baseline al-
gorithms, respectively. Compared with Baseline 1 and Base-
line 2, the proposed algorithm achieves higher improvement in
Fig. 6(a) when the storage capacity is relatively large, whereas
it achieves higher improvement in Fig. 6(b) when the storage
capacity is relatively small. In addition, Baseline 3 achieves rel-
atively higher performance in Fig. 6(b) when the PV generation
profile measured at Los Angeles is used. These observations
imply that the results are affected by the dataset and the con-
dition.

Finally, we analyze the effect of the correction factor 7544
(defined in Section IIT) on the cost saving capability of the
storage controller, in order to demonstrate the necessity of
avoiding under-estimation of load power consumption. We
analyze the effect of 7, in the same manner, with details
omitted due to space limitation. The learning results show
that the optimal 7j,,4 ~ 1.1 (the optimal 7,, ~ 0.9.) We
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Fig. 6. Comparison of the cost saving capabilities between the proposed near-
optimal storage control algorithm and baseline algorithms: (a) we use the PV
generation profile measured at Duffield, VA, USA, and (b) we use the PV gen-
eration profile measured at Los Angeles, CA, USA.

TABLE I
COMPARISON OF NORMALIZED COST SAVING CAPABILITIES OF THE PROPOSED
STORAGE CONTROL ALGORITHM AT DIFFERENT 9150aqa VALUES

Noad 0.85 0.9 0.95 1.0 1.05
Cost Saving | 682% | 763% | 873% | 935% | 99.3%

Noad 1.1 .15 12 125 13
Cost Saving 1 99.1% | 922% | 80.0% | 654%

provide the normalized cost saving capabilities of the storage
controller under different 75,9 values in Table I. One can
observe that the cost saving capability of the proposed storage
control algorithm degrades both when 71,54 > 1.1 and when
Toad < 1.1, but the sensitivity on the 771,,q value is not very
high when 1.05 < 7j6aq < 1.15. However, when #jj5aq > 1.15
or Tjjoad < 1.05, the performance degradation becomes sig-
nificant. We can see that both under-estimation (7jgada < 1.0)
and large over-estimation (7jj0aa > 1.15) of the load power
consumption will result in significant degradation in the cost
saving capability. However, the performance degradation due
to under-estimation is in general more significant than that due
to over-estimation. For example, the performance degradation
when 71024 = 0.9 is comparable with that when 74,9 = 1.25,
whereas the performance degradation when 7jj,aq = 0.85 is
comparable with that when 71559 = 1.3.
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Fig. 7. Break-even time of the whole PV and storage system for the residential
smart grid user as a function of storage capacity.

C. Break-Even Time Analysis

We analyze the break-even time of the whole PV and storage
system. In this analysis, the PV module has a fixed peak power
generation capacity (when the solar irradiance is 1000 W/m?) of
2.5 kW, and we find the optimal storage capacity to reduce the
break-even time of the whole system. Since the PV module and
storage module have different life times (~20 years for the PV
module and ~2.5 years/500-800 cycles for lead-acid batteries
[14]), we define the break-even time of the whole system as fol-
lows. We use the least common multiple (20 years) of the life
times of PV and storage modules as the life time of the whole
system. During this operation period, we need to replace the bat-
teries in the storage system eight times. Let Total Cost denote
the total cost of the whole PV and storage system in its 20-year
life time, including the replacement cost of the battery-based
storage system. Let the break-even time of the whole PV and
storage system denote the time required for the residential smart
grid user to saving Total Cost amount of electricity cost. We
use $50/kWh as the unit cost of the storage system, which is
similar to [14]. Due to different PV technologies, we use dif-
ferent break-even time values of the PV module: 10 years, 15
years, and 20 years, corresponding to different prices of the PV
module $1980, $2970, and $3960, respectively. With these dif-
ferent break-even time values of the PV module, we analyze
the break-even time of the whole system under different storage
module sizes as shown in Fig. 7.

We derive the following conclusions from Fig. 7: i) In all of
the three cases, the incorporation of the storage module can re-
duce the break-even time of the whole system by up to 30%
compared with the case when only the PV module is installed.
ii) When the PV break-even time is 10 years and is relatively
low, the most desirable size of the storage module is low (2
kWh). This is because a small-size storage module can effec-
tively store the excessive PV power generation and use it for
peak shaving and demand cost reduction. On the other hand, a
large-size storage module, which has a larger break-even time
than the PV module, will actually increase the break-even time
of the whole system. We can also observe from Fig. 7 that the
break-even time of the whole system is less sensitive to the
storage module size when the PV break-even time is 15 years
or 20 years and is comparable with the break-even time of the
storage system itself. We may perform other optimizations, e.g.,
finding the optimal sizes of the PV module and storage module
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with a given budget, which is not elaborated in this work due to
space limitation.

VI. CONCLUSION

This paper addresses the problem on integrating residential
PV and storage systems into the smart grid for simultaneous
peak shaving and total electricity cost minimization, making use
of the dynamic energy pricing models. We first propose novel
PV power generation and load power consumption profile fore-
casting methods, which are specifically developed for the res-
idential storage controller for performing peak shaving. More-
over, we propose an effective residential storage control algo-
rithm, which consists of a global control tier performed at each
decision epoch of a billing period to globally “plan” the future
discharging/charging schemes of the storage system, and a local
control tier performed along with system operation to compen-
sate for the prediction errors. We find the optimal size of the en-
ergy storage so as to minimize the break-even time of the initial
investment in the PV and storage systems. Experimental results
demonstrate that the proposed residential storage control algo-
rithm saves at most 89.8% more electricity cost than the baseline
algorithms.

APPENDIX

We use proof by contradiction. Consider some other (pre-
dicted) grid power profile Py ;;(?) that results in the same y,
value. The total cost induced by the energy price component is
the same in the kth price period (because ¥y, is the same.) Sup-
pose Pg’,rid(t) < Piarger i fort € [ts k. te ], which will result
in a smaller (predicted) peak power level in this price period. Of
course we also have Pg/rid(t) < Pyet,i(t). Then the (predicted)
total amount of energy drawn from the grid in the kth price pe-
riod is given by f:h'” (Puet,i(t) — Ppyq(t))dt and is larger than

Yo = f:“: (Pret,i(t) — min(Pyet,i (1), Prarget,k))dt. We have
found the contradiction and have proved the statement.
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