

 1

Frame-Based Dynamic Voltage and Frequency Scaling for an
MPEG Player

Kihwan Choi, Wei-Chung Cheng, and Massoud Pedram
Department of EE-Systems, University of Southern California, Los Angeles, CA90089

{kihwanch, wecheng, pedram}@usc.edu

Abstract — This paper describes a dynamic voltage and
frequency scaling (DVFS) technique for MPEG decoding to
reduce the energy consumption while maintaining a quality of
service (QoS) constraint. The computational workload for an
incoming frame is predicted by using a frame-based history so
that the processor voltage and frequency can be scaled to
provide the exact amount of computing power needed to
decode the frame. More precisely, the required decoding time
for each frame is separated into two parts: a frame-dependent
(FD) part and a frame-independent (FI) part. The FD part
varies greatly according to the type of the incoming frame
whereas the FI part remains constant regardless of the frame
type. Separation of the FI part from the overall decoding
sequence provides two key benefits depending on the
hardware platform: better compensation of the error due to
workload prediction and higher level of energy saving when
given a QoS degradation level. The proposed DVFS scheme
has been implemented on two platforms, a low performance
StrongArm-1110-based evaluation board from Intel and a
high performance XScale-based testbed designed at USC. In
the StrongArm-1110-based system, the FI part is used to
compensate for the prediction error that may occur during the
FD part, whereas in the XScale-based system, the FI part is
used to reduce energy consumption by employing the lowest
CPU frequency during the corresponding time intervals.
Detailed current measurements in these two platforms
demonstrate larger than 87 % and 80 % CPU energy saving
while maintaining a user-provided frame rate, respectively.

Index Terms — Dynamic voltage and frequency scaling,
MPEG decoding, workload decomposition.

I. INTRODUCTION

EMAND for portable computing and communication
devices has been increasing rapidly. Because portable

devices are battery-operated, a design objective is to minimize
the energy dissipation (and thus maximize the battery service
time) without any appreciable degradation in the QoS. DVFS
is a highly effective method to achieve this design goal. This is
because energy consumption in CMOS VLSI circuits is
quadratically proportional to the supply voltage. Therefore,
reducing the supply voltage results in a large energy saving.
Reducing the voltage level, however, slows the circuit down.
The key idea behind DVFS techniques is to perform dynamic
voltage scaling so as to provide “just-enough” circuit speed to
process the workload while meeting the total compute time
and/or throughput constraints, and thereby, reduce the energy
dissipation.

Previous DVFS works can be divided into two categories,
one for non real-time operation and the other for real-time
operation. The most important step in implementing DVFS is
prediction of the future workload, which allows one to choose
the minimum required voltage/frequency levels while
satisfying key constraints on energy and QoS. As proposed in
[1] and [2], a simple interval-based scheduling algorithm can
be used in non real-time operation. This is because there is no
timing constraint. As a result, some performance degradation
due to workload misprediction is allowed. The defining
characteristic of the interval-based scheduling algorithm is that
uniform-length intervals are used to monitor the system
utilization in the previous intervals and thereby set the voltage
level for the next interval by extrapolation. This algorithm is
effective for applications with predictable computational
workloads such as audio [3] or other digital signal processing
intensive applications [4]. Although the interval-based
scheduling algorithm is simple and easy to implement, it often
predicts the future workload incorrectly when a task’s
workload exhibits a large variability. One typical example of
such a task is MPEG decoding. In MPEG decoding, because
the computational workload varies greatly depending on each
frame type, repeated mispredictions may result in a decrease in
the frame rate, which in turn means a lower QoS in MPEG.

There are also many studies to apply DVFS in real-time
application scenarios [5][6][7][8]. In [5][6] the multi-task
scheduling in the operating system (OS) is the focus. More
precisely, the scheduling is performed so as to reduce energy
consumption while meeting given hard timing constraints. In
these coarse-grained DVFS approaches, it is assumed that the
total number of CPU cycles needed to complete each task is
fixed and known a priori. This is an assumption that is
difficult to satisfy in practice. In [7], an intra-task voltage
scheduling technique was proposed in which the application
code is divided into many segments and the worst-case
execution time of each segment (which is obtained from a
static timing analysis) is used to determine a suitable voltage
for the next segment. In [8] a method based on a software
feedback loop was proposed. In this method, a deadline for
each time slot is provided. The authors calculate the operating
frequency of the processor for the next time slot depending on
the slack time generated in the current slot and again the
worst-case execution time of the next time slot. In these two
fine-grained DVFS approaches, it is assumed that the worst-
case execution time of each segment of a task is known. This
assumption is again difficult to meet for many applications, for
example, for MPEG decoding where the worst-case execution

D

 2

time cannot be accurately determined on a per-frame basis.
Note that a single worst-case execution time for all video
frames (which may be calculated rather easily) will not be
useful because it tends to be too pessimistic and therefore will
significantly reduce the energy saving potential of a DVFS
technique that uses it.

In this paper, an effective DVFS algorithm for MPEG
decoding is proposed in which the future workload is predicted
on a per-frame basis. This is accomplished by using a frame-
type-based workload-averaging scheme where the prediction
error due to statistical variation in the workload of the frame-
dependent part of the decoder is effectively compensated for
by using the frame independent part of the decoding time as a
“buffer zone.” This allows us to obtain a significant energy
saving without any notable QoS degradation. This algorithm
has been implemented on two different platforms: an Intel-
designed StrongARM-1110 based for low performance and a
USC-designed XScale-based high performance platform and
has resulted in the CPU energy reduction of more than 87%
and 80%, respectively.

Notice that when lowering the supply voltage to reduce
energy consumption, the clock frequency should be decreased
first to prevent timing failure due to the increased gate delay.
Because a minimum voltage is assigned to each operating
frequency value, in this paper, the term “voltage and frequency
scaling” will be used rather than either “voltage scaling” or
“frequency scaling.”

The remainder of this paper is organized as follows. Related
works on DVFS and MPEG are described in Section II. In
Sections III and IV, a new DVFS algorithm is presented.
Details of the implementation, including both hardware and
software, are described in Section V. Experimental results and
conclusions are given in Sections VI and VII, respectively.

II. BACKGROUND

A. Fundamentals of DVFS

Many kinds of application programs, which may require
real-time or non real-time operations, are executed on a
general-purpose processor. In general, DVFS techniques are
very effective in reducing the energy dissipation while meeting
a performance constraint in real-time applications such as
video decoding. The energy consumption per task running on a
CMOS VLSI circuit is given by the following well-known
equation [9]:

= ⋅ ⋅ ⋅2
switched clkE C V f T (1)

where V is the supply voltage level, Cswitched is the switched
capacitance per clock cycle, fclk is the clock frequency, and T is
the total execution time of the task.

Fig. 1 illustrates the basic concept of DVFS for real-time
application scenarios. In this figure, T2 and T4 denote deadlines
for tasks W1 and W2, respectively (in practice, these deadlines
are related to the QoS requirements.) W1 finishes at T1 if the
CPU is operated with a supply voltage level of V1. The CPU
will be idle during the remaining (slack) time, S1. To provide a

precise quantitative example, let us assume T2-T0=T4-T2=∆T,
and T1-T0=∆T/2; the CPU clock frequency at V1 is f1=n/∆T for
some integer n; and that the CPU is powered down or put into
standby with zero power dissipation during the slack time. The
total energy consumption of the CPU is E1 = CV1

2f1∆T/2
=nCV1

2/2 where C is the effective switched capacitance of the
CPU per clock cycle. Alternatively, W1 may be executed on
the CPU by using a voltage level of V2=V1/2, and is thereby
completed at T2. Assuming a first-order linear relationship
between the supply voltage level and the CPU clock frequency,
f2=f1/2. In the second case, the total energy consumed by the
CPU is E2=CV2

2f2∆T=nCV1
2/8. Clearly, there is a 75 % energy

saving as a result of lowering the supply voltage (this saving is
achieved in spite of “perfect” – i.e., immediate and with no
overhead - power down of the CPU). This energy saving is
achieved without sacrificing the QoS because the given
deadline is met. An energy saving of 89 % is achieved when
scaling V1 to V3=V1/3 and f1 to f3=f1/3 in case of task W2.

Time

Voltage

V1

V3

V2

Deadline
for W1

W1 W2

Deadline
for W2

T1 T2 T3 T4

W1 W2

S1 S2

T0

Time

Voltage

V1

V3

V2

Deadline
for W1

W1 W2

Deadline
for W2

T1 T2 T3 T4

W1 W2

S1 S2

T0
Fig. 1. An illustration of the DVFS technique

A major requirement for implementation of an effective

DVFS technique is accurate prediction of the time-varying
CPU workload for a given computational task. A simple
interval-based scheduling algorithm is employed in [10] to
dynamically monitor the global CPU workload and adjust the
operating voltage/frequency based on a CPU utilization factor,
i.e., decrease (increase) the voltage when the CPU utilization
is low (high). Two prediction schemes have been used in
interval-based scheduling: the moving-average (MA) and the
weighted-average (WA) schemes [10]. In the MA scheme, the
next workload is predicted based on the average value of
workloads during a predefined number of previous intervals,
called window size. In the WA scheme, a weighting factor, ω,
is considered in calculating the future workload such that
severe fluctuation of the workload is filtered out, resulting in a
smaller average prediction error. Their operations are
represented in the following equations.

MA :

1

0

0

()
(1) , 1

()
 ,

1

n

t

WindowSize n

Workload t
Workload t t n

n

Workload t
otherwise

t

τ

τ

τ

τ

−

=

=

=

−
+ = ≥ −

−
=

+

∑

∑

(2)

WA :

 3

τ

τ

ϖ ϖ

ϖ ϖ ϖ τ
−

=

≡

+ = ⋅ + − ⋅

= − ⋅ + ⋅ − ⋅ −∑
1

0

(0) (0)

(1) () (1) ()

 (1) (0) (1) ()

avg

avg

t
t

Workload Workload

Workload t Workload t Workload t

Workload Workload t

(3)

 These two workload prediction schemes are easy to
implement and result in effective DVFS algorithms when the
workload fluctuation is not too severe. To illustrate this point,
two popular software applications, MP3 and MPEG playback,
were tested using the WA scheme. Experimental results are
shown in Fig. 2 and Fig. 3. Fig. 2 shows the CPU usage
measured during each time interval (300 msec) whereas Fig. 3
depicts the workload prediction errors for both cases.

0

50

100

0 10 20 30 40 50

No. of Measurements

C
P

U
_U

sa
g

e
[%

] MPEG

MP3

Fig. 2. CPU usage of MP3 and MPEG

0

50

100

0 10 20 30 40 50

No. of Measurements

E
rr

o
r

[%
]

MPEG

MP3

0

50

100

0 10 20 30 40 50

No. of Measurements

E
rr

o
r

[%
]

MPEG

MP3

Fig. 3. Workload prediction error

These results show that interval-based voltage scaling which
solely depends on the global state of the system is quite
effective for the MP3 playback where the workload variation
is rather small. On the other hand, it becomes ineffective (see
the large prediction errors) for MPEG decoding due to the
large variation in the CPU workload for this application. More
precisely, the global system status monitoring interval-based
DVFS algorithm for MPEG decoding cannot track the
workload variation, resulting in a significant QoS degradation
such as frame rate fluctuation.

B. MPEG Terminology

An MPEG video stream consists of three frame types: I-
frame (Intra-coded), P-frame (Predictive-coded), and B-frame
(Bi-directionally-coded). I-frames can be decoded
independently. P-frames have to be decoded based on the
previous frame. B-frames require both the previous and the
next frames in order to be decoded. Sequences of frames are
grouped together to form a Group of Pictures (GOP). A GOP
contains 12-15 frames, starting with an I-frame. It takes several

steps to decode each frame: Parsing, Inverse Discrete Cosine
Transformation (IDCT), Reconstruction, Dithering, and
Display [11]. Among these steps, the IDCT and
Reconstruction take up half of the decoding time [12]. The
IDCT is CPU-intensive (i.e., requires iterative multiplication-
accumulation computation over an 8 × 8 array of integer or
floating-point values) whereas the reconstruction, dithering,
and display steps are memory-intensive (i.e., require data
movement between the processed video stream and display
frame buffer). Each frame type results in a different workload
during the IDCT and reconstruction step, meaning that the
execution time of different frame types varies by a large
amount while the time for dithering and display steps is same
over all types of frames. Based on these observations, the
decoding process may be divided into two parts: a frame-
dependent part (parsing, IDCT and reconstruction) and a
frame-independent part (dithering and display) as shown in Fig.
4. The operations performed during frame-independent part
are off-chip transactions such as SDRAM access and write to
frame buffer of display device. CPU is stalled until these
operations are finished without doing any useful work.
Execution time during frame-independent is constant over all
frame types in a given video stream and this property can be
useful in the implementation of effective DVFS.

Initialization

Read headers

Read blocks

Reconstruct MB

IDCT

Merge MB data

Write frame

Dither frame

Display frame

Session end

Session start

blocks/MB

MBs/picture

frames/stream

Frame Dependent

Frame Independent

Initialization

Read headers

Read blocks

Reconstruct MB

IDCT

Merge MB data

Write frame

Dither frame

Display frame

Session end

Session start

blocks/MB

MBs/picture

frames/stream

Frame Dependent

Frame Independent

Fig. 4. MPEG decoding sequence

C. Prior Work

As stated in the previous section, it is very difficult to
accurately predict the execution time of each frame in MPEG
decoder due to the high variability in the computational
workload of each frame.

A number of researchers have applied DVFS to MPEG
video decoding in order to achieve lower energy consumption.
In [10] and [13], DVFS is performed based on the ratio of the
number of idle and busy cycles of the CPU while the MPEG
stream is decoded. Although significant energy reduction is
achieved, there is no guarantee that deadline for each frame is
met because this interval-based prediction technique cannot

 4

capture large fluctuations in decoding time for each frame. In
[14], the authors studied the empirical relationship between the
decoding time and the code size of each frame (i.e., the
number of bits in the encoded frame). Their results showed a
strong correlation between these two parameters with an error
of less than 25%. However, the code size of each frame cannot
be obtained before starting the IDCT step. To overcome this
limitation, a method using feedback control was proposed in
[15] in which the set of macro blocks1 in a frame are first
divided into two groups, each containing half of the macro
blocks. The authors assume a static (fixed) relationship (in the
form of a linear equation) between the IDCT time and code
size of each group of macro blocks. By analyzing the first
group of macro blocks, they obtain the code size of that group.
Next, they assume that the code size of the second group of
macro blocks is the same as this value and calculate the IDCT
time of the second group based on the IDCT time and this
code size. This code size prediction scheme is however
inaccurate and may result in frequent deadlines misses.
Furthermore, the linear prediction equation must be changed
when different resolutions of the video image or different
frame pixel sizes are encountered.

In [16], the estimation of decoding time is performed in
units of GOP. In this approach, sizes and types of the frames
of an incoming GOP are observed and the time needed to
decode the next GOP is estimated based on statistics of the
previous GOPs. This approach also suffers from a rather high
occurrence of mispredictions. Furthermore, even more severe
QoS degradation may occur when the prediction is inaccurate
because the same frequency (voltage) is applied for all frames
in a GOP. There is a different approach in which the decoding
time prediction is not needed [17]. This is accomplished by
including the execution time information of each frame to the
video content itself (e.g., as part of the frame header).
However, this approach adds to the computational workload of
the video encoding. As acknowledged in the same reference,
this approach is only worthwhile if the encoded video stream is
sent to many clients so that the extra cost of adding decoding
time information to the frame headers is compensated by
energy savings on many mobile clients. In addition, this
scheme requires modification of currently used standard video
stream format.

In [18], an application-independent DVFS approach,
Vertigo, was proposed, which uses multiple performance-
setting algorithms that are organized into a decision hierarchy
for various types of applications. This algorithm was applied
to MPEG decoding. Vertigo is an interval-based approach
where workload in the next time interval is estimated based on
the history of previous intervals. This algorithm estimates the
deadline for each interval based on the estimated workload in
the previous intervals. This approach is different from [10] and
[13] where the length of each time interval is fixed. The

1 A macro block corresponds to a 16 by 16 pixel area of the

original image and consists of six 8 by 8 blocks on which IDCT is
performed.

authors compared Vertigo with LongRun policy [19] and
reported that Vertigo has higher performance in terms of the
match between the actually achieved frame rate and the target
frame rate. Note, however, that actual frame rates with Vertigo
are still far less than the target frame rate, i.e., the actual times
are 17% to 30% shorter than the target times), which will in
turn result in lower energy saving.

There have been a number of studies on using buffers in
multimedia processing. One of the most important advantages
of using buffers is that no explicit frame decode time
prediction is needed, thus missed deadlines due to prediction
errors are avoided. Reference [20] used an off-line algorithm
to schedule the frame decoding rate and respective frequency,
and they did not consider multimedia streams that include B
frames. Reference [21] focused on the estimation of the
input/output buffer size for the decoder and it is assumed that
the worst case execution time is known in advance. In [22] a
feedback control scheme using PI controller at the decoder
output buffer such that constant frame rate is achieved by
monitoring the occupancy of the frame buffer. But, it is
difficult to control the gain of PI controller and a slight
mismatch in the controller gain might cause
underflow/overflow at the buffer. Also, frequency/voltage
setting is linearly subdivided into 40 discrete levels, which is
not true in actual situation.

Techniques that utilize buffers introduce some amount of
delay when a video session starts due to buffer filling as well
as severe modification of application source code itself to
implement a control scheme. In spite of these problems,
buffers can be quite useful. In this paper, we have not
considered the effects of the buffers, which would make the
deadline for processing any frame a soft deadline. This will
have significant implication on the proposed DVFS approach,
but falls outside the scope of the present paper. More precisely,
we expect that with buffers, one can achieve even higher
energy savings by dynamically changing the deadline for
processing each frame without overflowing the buffer.

To develop an effective DVFS technique for low-energy
MPEG decoding, two prerequisites must be met: existence of
an accurate workload prediction method and availability of
error compensation methods for handling the case when a
prediction error occurs. Prediction error compensation is
important in MPEG decoding because a certain level of video
quality, such as frame rate, should be guaranteed as well as
energy reduction. However, most approaches concentrate on
the prediction only, not the prediction error compensation
method. This lack of prediction error compensation method
comes from the fact that the characteristics of each step in
decoding sequence were not considered carefully, FD part only
not FI part. In this paper, a DVFS technique for low-energy
MPEG decoding, in which a frame-based workload prediction
and two effective prediction error compensations, intra-frame
compensation and inter-frame compensation, are provided and
these two compensation techniques can be used either
individually or together depending on the used hardware.
Intra-frame compensation uses the FI part as a “buffer zone” to

 5

recover prediction errors in FD part, whereas inter-frame
compensation uses “error diffusion” to distribute a prediction
error in a frame to following frames such that the error is
localized, resulting in smooth variation in the frame rate at run
time. If prediction error can be recovered effectively, then
there is a lower requirement for accurate prediction technique.

In this paper, we propose a DVFS method for an MPEG
decoding which enables easy implementation with the least
modification of MPEG decoder program. It is assumed that
there is no display buffer, i.e., a frame should be decoded and
displayed in a given time, determined by a frame rate. Also,
our method uses no special hardware such as dynamic memory
access (DMA) to perform display operation, which is common
in portable mobile application.

We mention here that if the FD and FI decoding steps are
pipelined and performed in parallel, then the proposed intra-
frame compensation technique may not be effective. However,
to achieve such pipelined operation of the FD and FI decoding
steps, special hardware such as DMA is required. In addition,
significant modification of the application source code as well
as the interrupt handler in OS kernel will be needed. In this
work, we have targeted a DVFS method for a software MPEG
decoder, which can run on any computer system without DMA
support and without any modification of MPEG decoder
source code or the OS interrupt handler (with the exception of
some code to predict the workload and to find the optimal
voltage setting.)

III. DECOMPOSITION OF MPEG DECODING SEQUENCE

As stated previously, the decoding process of a frame is
divided into two parts based on the required execution time
and the expected energy consumption. One part captures the
frame-dependent (FD) portion of the decoding process
whereas the other part captures the frame-independent (FI)
portion of the decoding process as shown below:

; Decoding FD FI Decoding FD FIT T T E E E= + = + (4)

where TDecoding is the whole decoding time of a frame, TFD and
TFI are the elapsed time during the FD and FI parts,
respectively, and EFD and EFI are the CPU energy consumption
during FD and FI, respectively.

The parsing, IDCT and reconstruction steps are included in

the frame-dependent time whereas the dithering and display
steps are included in the frame-independent time. A large
variation in decoding time for each frame is caused by
variation in frame-dependent time, not by frame-independent
time. This is because the dithering and display time are
dependent upon the frame pixel size and are otherwise
constant for a given video stream.

To determine the FD and FI times for a given frame, the
source code for a software MPEG decoder, i.e., mpeg_play
[23], was modified, and a timestamp function was inserted at
each decoding step. The measurement was performed on
SA1110-based platform using a test video clip. Fig. 5 shows
the FD and FI time distributions for each frame when playing

MPEG with a frames-per-second (fps) rate of 2. Fig. 6 depicts
the same distributions for the maximum fps rate that the CPU
can sustain (as high a fps rate as the CPU can sustain). In Fig.
5, with fps = 2, the deadline is fixed at 0.5sec. Considering that
decoding sequence of (IBBPBBPBBPBBPBB) for a GOP in
Fig. 5 and Fig. 6, one can observe that the FD time varies
greatly depending on the frame type and that it is longer for the
I-frames and shorter for the B-frames.

In Fig. 6, where a frame rate is not set, the decoding time
varies depending on the frame type. Here the FI time is
constant (~50 msec at the maximum clock frequency of 206
MHz). Notice that there is a large amount of slack in the FI
time in Fig. 5. Furthermore, notice that although the FD time
varies considerably depending on the frame type, the FI time is
nearly constant for a given frame type (the FI time depends on
the pixel size of the given movie stream, which is obviously
constant for the same movie.) These plots provide empirical
evidence of the claims made earlier with regards to the FD and
FI parts of the decoding steps and their relationship to the
frame type.

The typical operations performed in the FI part are memory-
intensive. Examples include reading and writing the pixel data
in the dithering step and wiring the decoded frame data to the
frame buffer in the display device. These operations result in
many CPU stalls for the external memory transactions to be
completed. The time required for a memory transaction is
directly related to the memory clock frequency. Depending on
the hardware design, memory bus clock frequency may or may
not be affected by the CPU frequency scaling. For example, in
the SA1110-based system the memory access timing is
changed in lockstep with the CPU frequency [15] whereas in
the XScale-based system [24], the memory bus frequency is
determined by the external memory controller component
independently of the CPU frequency.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50

Frame number

D
ec

o
d

in
g

 T
im

e
[s

ec
] Decoding Time

FI Time

FD Time

I

B

P P P P

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50

Frame number

D
ec

o
d

in
g

 T
im

e
[s

ec
] Decoding Time

FI Time

FD Time

I

B

P P P P

Fig. 5. Decoding time with fps = 2

 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50

Frame number

D
ec

o
d

in
g

 T
im

e
[s

ec
]

Decoding Time
FD Time

FI Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50

Frame number

D
ec

o
d

in
g

 T
im

e
[s

ec
]

Decoding Time
FD Time

FI Time

Fig. 6. Decoding time without setting any fps rate (as high a fps

rate as the CPU can sustain)

In Fig. 7, actual execution times of the FD and FI parts for
each frame type are shown with changing CPU frequencies in
the SA1110-based and XScale-based systems. Notice that in
case of the SA1110-based system the FI time decreases as the
CPU frequency increases (Fig. 7 (a)), whereas in the XScale-
based platform the FI time is nearly constant (Fig. 7 (b)). The
rates of decoding time (∆TDecoding) and energy consumption
(∆EDecoding) for processing a frame as a function of the CPU
frequency change in both target systems are given below:

SA1110-based :
∆ = ∆ + ∆ ∆ = ∆ + ∆; Decoding FD FI Decoding FD FIT T T E E E (5)

XScale-based :

∆∆ = ∆ = ∆ = ∆ + ∆
∆

, (0); FI
Decoding FD Decoding FD FI

T
T T E E E

f
 (6)

From these observations, it can be seen that the FI part can
be used as a “timing buffer zone” in the SA1110-based system
and an “energy saving means” in the Xscale-based system.
More precisely, in the SA1110-based system where the
memory access time varies according to the CPU frequency,
the FI part can used as a kind of timing buffer zone to
compensate for the prediction error of TFD because the
workload during TFI is constant, and TFI can be adjusted by
changing the CPU frequency. In the XScale-based system
where memory clock is set independently of the CPU clock
frequency, the CPU frequency during the FI part can be set to
its lowest allowed value without causing an increase in the
latency, resulting in significant amount of energy saving.
However, note that in this case the timing error in the FD part
cannot be compensated in the FI part.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

103.2 132.7 162.2 176.9 206.4

Frequency [MHz]

T
im

e
[s

ec
]

FD : I-type
FD : P-type
FD : B-type
FI : I-type
FI : P-type
FI : B-type

SA1110-based

(a) SA1110-based platform

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

333 400 466 533 600 666 733

Frequency [MHz]

T
im

e
[s

ec
]

FD : I-type
FD : P-type
FD : B-type
FI : I-type
FI : P-type
FI : B-type

XScale-based

(b) XScale-based platform

Fig. 7. FD and FI time variation over CPU frequencies on two
different platforms

IV. WORKLOAD PREDICTION AND ERROR COMPENSATION

A. Workload prediction

A DVFS algorithm for low-power MPEG decoding with
large workload variation is presented in this section. The
frame-dependent time prediction is performed by maintaining
a moving-average of the frame-dependent time for each frame
type (three averages, one per frame type). The frame-
independent time is not predicted since it is constant for a
given video sequence as explained in the previous section. The
expected frame-dependent time for an incoming frame is thus
determined based on the moving average for the appropriate
frame type. The effectiveness of the proposed frame-based
workload prediction scheme is verified by calculating the
prediction error ratio in B-frames, which usually exhibit the
largest variation among the frame types. For the prediction, we
tested both MA and WA scheme with different test video clips
and found that both schemes showed similar prediction
accuracies. So, we chose the MA scheme with a window size
of six for the prediction. Results are shown in Fig. 8. The
movie clip used in the experiment has 660 frames (320 × 240)
including I-, P-, and B-type frames. Based on the measured FD
time, the prediction error was calculated. Prediction errors for
I-, P-, and B-type were 5 %, 3 %, and 10 %, respectively. In
practice, because of the way the predictor function is
constructed and the dynamic nature of its updating, the
probability of such an occurrence is very small. However,
these error rates could be different according to movie type, so

 7

it is required to compensate the prediction error such that
energy saving is maximized while a given deadline is kept. We
considered two methods for prediction error compensation by
separating the FD and FI parts; intra-frame compensation and
inter-frame compensation.

-50

-25

0

25

50

0 100 200 300 400

Frame number

E
rr

o
r

[%
]

B-Frames

-50

-25

0

25

50

0 100 200 300 400

Frame number

E
rr

o
r

[%
]

B-Frames

Fig. 8. Errors in B-frame workload prediction

We point out that the FI workload is always constant
independent of the hardware platform. Now, the main
motivation for intra-frame compensation in the SA1110-based
system is that we can adjust the FI time by changing the CPU
frequency. This is possible because the FI workload can easily
be known after decoding only one frame. For the XScale-
based system, the constant FI workload results in a constant FI
time due to the asynchrony between the off-chip memory
access and the CPU as explained in the text. In the XScale
developer’s manual, it is stated that, for stable operation, the
CPU frequency should be at least three times larger than the
memory clock frequency (100MHz). This is a platform design
requirement and is the reason that the minimum CPU
frequency is 333 MHz instead of the 266 MHz when the
memory clock frequency is 100 MHz. For any valid setting of
cpu and memory clocks in the XScale-based platform, we have
observed a constant FI time.

B. Intra-frame compensation with frequency dependent FI

Intra-frame compensation method recovers FD time
prediction error inside that frame itself, i.e., during FI part,
such that the decoding time of each frame can be maintained
as a given frame rate. For the implementation of intra-frame
compensation method, it is required that the FI time should be
varied as CPU frequency changes and this method can be
applied to SA1110-based system. Prediction error in the FD
part is compensated in the following FI zone by changing the
CPU frequency/voltage. This is possible because the workload
of the FI part is constant for a given video stream and easily
obtained after decoding the first frame. The basic operation of
the proposed intra-frame DVFS algorithm is shown in Fig. 9.

The FD part comes first. Based on the frame type and the
prediction of the required time for the FD part,
voltage/frequency scaling is performed to minimize energy
dissipation while meeting the predicted time. When a
misprediction occurs (which is detected by comparing the
predicted FD time with the actual FD time), an appropriate
action must be taken during the FI part to minimize the impact

of the misprediction. If the actual FD time was smaller than the
predicted value, there will be no QoS degradation. Hence, we
can scale down voltage during the FI time and further save
energy while meeting the deadline (cf. “Over-predicted” of
Fig. 9). On the other hand, if the actual FD time was larger
than the predicted value, corrective action must be taken to
preserve the required QoS. This is accomplished by scaling up
the voltage and frequency during the FI part so as to make up
for the lost time (cf. “Under-predicted” of Fig. 9).

FD FI

Voltage

Time

Deadline

FD FI

Predicted
FD Time

FD FI

Error =0 (V’FD = VFD = V’FI = VFI)

Over-predicted (V’FD > VFD , V’FI < VFI)

FD
FI Under-predicted (V’FD< VFD , V’FI > VFI)

V’FD

Prediction

V’FD V’FI

V’FD

VFD = VFI

V’FI

V’FI

FD FI

Voltage

Time

Deadline

FD FI

Predicted
FD Time

FD FI

Error =0 (V’FD = VFD = V’FI = VFI)

Over-predicted (V’FD > VFD , V’FI < VFI)

FD
FI Under-predicted (V’FD< VFD , V’FI > VFI)

V’FD

Prediction

V’FD V’FI

V’FD

VFD = VFI

V’FI

V’FI

Fig. 9. Intra-frame compensation

To meet a given frame rate without deadline miss when FD
workload is under-predicted, the following condition should be
met;

εε

= + ≤ ⇒

⎛ ⎞ ⋅ − +≤ ⋅ − =⎜ ⎟
⎝ ⎠

(1)
1 where

FD FI
Decoding

FD FI

FI FD FD FI
FD

FD FI

W W
T D

f f

W f W W
f

W f D

(7)

where D is deadline of a frame to be decoded, given as an
inverse of a given frame rate, WFD is actual workload of the FD
part, ε is error rate in the workload prediction of the FD part,
WFI is a constant workload during FI, fFD and fFI are CPU
frequency during the FD and FI parts, respectively.

In order to find out how much prediction error in the FD
part can be recovered by using intra-frame compensation, the
maximum tolerable error rate (εmax) was considered by setting
fFI as fmax and it is given as follows;

ε α
β

= +
−max

1
1

(8)

where α and β are defined as the ratio of WFI /WFD and D•

fmax/WFI, respectively, and fmax is the maximum CPU frequency
supported.

α value is different from different video sequence as well as
different frame types of a given video clip and this intra-frame
scheme cannot guarantee that one will never encounter a QoS
degradation because it is possible that the under-prediction of
the time needed for the FD part is so large that even the
highest voltage/frequency level for the FI part is unable to
make up for the lost time. This problem usually occurs more
frequently in I-type frames (lower α) compared to P- or B-type
frames (higher α), in the higher resolution video (lower α)

 8

than lower resolution one (higher α), and at higher frame rate
than at lower frame rate.

We performed measurements of both FD and FI workloads
using six different video clips and calculated average error
rates for each frame type are summarized in Table I. Based on
the measurement results, εmax for each test video is calculated
as a function of deadline, i.e., frame rate, α, and WFI as shown
in Fig. 10. In Fig. 10, positive εmax represents the maximally
allowed FD prediction error, whereas negative εmax value
means that any prediction error (under-prediction) cannot be
recovered using intra-frame compensation and causes
deadline-missed frame. εmax increases as frame rate decreases
and α value increases and it is found that intra-frame
compensation method using the FI part as timing buffer is
quite useful for test video (6). For this video sequence, up to
100 % prediction error in the FD part can be recovered during
the FI part at frame rate 1 and all frames would not miss the
deadline considering that the maximum prediction error rate of
this video is 13.39 in Table I. As we can see in Fig. 10,
however, intra-frame compensation cannot guarantee stable
frame rate for all kinds of video sequences and it is required
another compensation technique called inter-frame
compensation in which prediction error effect can be
minimized.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1
2

3
4

5
6

7
8

9
10

-5

-4

-3

-2

-1

0

1

αframe rate [fps]

εmax [x 100%] (6)

(4)

(2)
(1)

(3),(5)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1
2

3
4

5
6

7
8

9
10

-5

-4

-3

-2

-1

0

1

αframe rate [fps]

εmax [x 100%] (6)

(4)

(2)
(1)

(3),(5)

Fig. 10. The maximum tolerable error rate for different video

sequences

C. Inter-Frame Prediction Error Compensation

The concept of proposed inter-frame compensation
technique is similar to that of considering “excess cycles” in
the interval-based workload prediction techniques [1][2].
“Excess cycles” may be generated as a result of inaccurate
estimation of the workload for the next time interval. They are
positive (negative) if the selected CPU speed is lower (higher)
than the required speed for the next time interval. The same
situation can arise during the MPEG decoding. In particular,
for the current frame, we calculate the number of excess cycles
due to an incorrect CPU speed setting and make use of this
information to set the CPU frequency for the next frame. There
is a commonly used technique in video rendering called error
diffusion [25] in which the quantization error of previously

quantized pixel is filtered and distributed forward to
unquantized pixels such that much smoother image can be
achieved. This technique can also be used for inter-frame error
compensation and helps eliminate severe fluctuations in the
video frame rate due to the prediction errors.

When a prediction error (under-prediction or over-
prediction) occurs in the FD part of a frame, this error
propagates to the subsequent frames and may cause an overall
frame rate degradation (for the under-predicted decoding time)
or energy waste (for the over-predicted decoding time) unless
this error is compensated in following frame slots. Fig. 11
illustrates the operation of the proposed inter-frame
compensation technique for both the SA1110-based and the
XScale-based systems. More precisely, the amount of error
encountered in one frame is diffused over the succeeding
frames whereby the CPU frequencies of the following frames
are calculated by considering both their individual predicted
workload averages and the number of transferred prediction
error cycles from the previous frames. This error diffusion
makes the prediction error to be localized into a small number
of ensuing frames and allows it to be effectively compensated
for by increasing (decreasing) the CPU frequency in case of
over-prediction (under-prediction), resulting in smooth and
graceful change in the frame rate and/or higher energy saving.
As mentioned before, the I-type frame is the most sensitive to
under-prediction error because it needs the largest time for the
FD part. Notice that considering the typical frame sequence in
the MPEG decoding where an I-type frame is followed by B-
type or P-type frames, under-prediction error in an I-type
frame can be very well compensated in the subsequent frames.
The proposed error diffusion technique may of course become
ineffective if there are long sequences of under-predicted (or
over-predicted) frames. However, in practice, this is an
unlikely scenario to occur.

Voltage

Time

D1

Predicted
FD Time

FD1

FI1

FD1 FI1 FD2
FI2

D2

FD2 FI2

V’FD1

V’FI1= Vmax V’FD2 V’FI2

VFD2

VFI2VFD1 VFI1

Under-predicted
(V’FD1 < VFD1)

Compensated
(V’FD2 > VFD2)

without prediction error

with prediction error

T1 T2

excess
cycles

Voltage

Time

D1

Predicted
FD Time

FD1

FI1

FD1 FI1 FD2
FI2

D2

FD2 FI2

V’FD1

V’FI1= Vmax V’FD2 V’FI2

VFD2

VFI2VFD1 VFI1

Under-predicted
(V’FD1 < VFD1)

Compensated
(V’FD2 > VFD2)

without prediction error

with prediction error

T1 T2

excess
cycles

(a) SA1110-based system

Voltage

Time

D1

Predicted
FD Time

FD1

Under-predicted
(V’FD1 < VFD1)

FD1 FI1 FD2 FI2
D2

FD2 FI2

V’FD1 V’FI1= Vmin

V’FD2

VFD2
VFD1 VFI1=Vmin VFI2=Vmin

FI1

V’FI2=Vmin

Compensated
(V’FD2 > VFD2)excess

cycles

without prediction error

with prediction error

T1 T2

Voltage

Time

D1

Predicted
FD Time

FD1

Under-predicted
(V’FD1 < VFD1)

FD1 FI1 FD2 FI2
D2

FD2 FI2

V’FD1 V’FI1= Vmin

V’FD2

VFD2
VFD1 VFI1=Vmin VFI2=Vmin

FI1

V’FI2=Vmin

Compensated
(V’FD2 > VFD2)excess

cycles

without prediction error

with prediction error

T1 T2

(b) XScale-based system

 9

Fig. 11. Illustration of the inter-frame compensation technique

The CPU frequency for the FD part of (i+1)st frame, f i+1

FD,
is calculated as follows:

1
1

0, if ()

() ,

avg
i FD

FD i i
err FI

i i
FD FIi

err i i
FD FI

W
f

D T T

T T D
T

T T D otherwise

+
+=

− −

⎧ + =⎪= ⎨
+ −⎪⎩

(9)

where Wavg
FD is the average FD workload for the frame that

is of the same type as the (i+1)st frame, Ti
err is the time

difference between a target deadline D and the actual decoding
time for the ith frame. D is in turn calculated as an inverse of
the target frame rate.

D. Simulation results

In order to verify the effectiveness of proposed error
compensation method, we performed simulations using
profiled data of the FD and FI parts for six different video
sequences. In this simulation, it is assumed that overhead for
scaling is negligible.

Energy consumption during the whole video session, E, is
calculated from the operating voltage and frequency values of
both SA1110-based and XScale-based systems as follows:

() ()
=

⎡ ⎤⋅ ⋅ ⋅ + ⋅ ⋅ ⋅⎢ ⎥⎣ ⎦∑
2 2

1

N
i i i i i i

FD FD FD FD FI FI FI FI
i

E C v f T C v f T (10)

where N is the total number of displayed frames, CFD (CFI) is
the effective switched capacitance during FD (FI), TFD

i (TFI
i)is

the elapsed time for FD (FI) of the ith frame, vFD
i (vFI

i) and fFD
i

(fFI
i) are CPU operating voltage and frequency set during FD

(FI) for ith frame, respectively.
CFD and CFI are in general different. Furthermore, we expect

that CFI is lower than CFD because the CPU is stalled during
off-chip memory accesses which are commonplace during FI.
Based on the measured CPU power dissipation in the XScale-
based system, the ratio of CFI to CFD is calculated as ~0.76 at
the maximum CPU frequency of 733 MHz. In our
experimental results, however, we set this ratio to one.

As a criterion to decide about the effectiveness of error
compensation methods, we used the frame rate variance (FRV)
at run time. FRV is defined as follows:

()
=

−∑
2

1 ,

N
i
act target

ii
act i

fps fps
i

FRV fps
N T

 (11)

where
targetfps denotes the target frame rate. FRV represents the

frame rate fluctuation during a whole session and it is one of
key QoS factors in video applications. For the proposed DVFS
policy we considered the following three cases: applying 1) no
compensation (NC) 2) inter-frame compensation only (IC) 3)
both intra-frame and inter-frame compensation (I2C).
Simulation results for SA1110-based system with the test
movie (1) are depicted in Fig. 12. From this figure, it can be
seen that IC and I2C result in much lower FRV values
compared to the NC case and achieve the target frame rate (3
fps) after some “warm-up time”. This warm-up time is needed
to collect statistics about the decoding time of various frame

types so that the workload prediction for the next frame
becomes accurate. Note that the NC case results in a frame rate
of 3.3 fps which is larger than target frame rate, 3fps, resulting
in higher energy expenditure. In addition, the FRV is much
larger for the NC case compared to the IC and I2C cases.
Finally, as expected the FRV is lower for I2C case, lower
frame rate fluctuation can be obtained due to intra-frame
compensation, resulting in more stable frame rates.

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

0 30 60 90 120 150
Frame number

F
ra

m
e

ra
te

 [
fp

s]

no compensation

(1) Terminator
Target : 3 fps

FRV = 0.15772

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

0 30 60 90 120 150
Frame number

F
ra

m
e

ra
te

 [
fp

s]

no compensation

(1) Terminator
Target : 3 fps

FRV = 0.15772

(a) NC

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

0 30 60 90 120 150
Frame number

F
ra

m
e

ra
te

 [
fp

s]
IC

FRV = 0.038

(1) Terminator
Target : 3 fps

(b) IC

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

0 30 60 90 120 150
Frame number

F
ra

m
e

ra
te

 [
fp

s]

I 2 C

FRV = 0.0003

(1) Terminator
Target : 3 fps

(c) I2C

Fig. 12. Frame-rate fluctuation comparison : NC, IC, and I2C

The FRV values for other test videos are summarized in
Table II. Energy savings for all test videos are calculated with
respect to the case without any DVFS and are summarized in
Table III. Both IC and I2C achieve nearly the same degree of
energy saving for the test videos (more than 80 % saving at

 10

low target frame rates.) For the XScale-based system, we only
used inter-frame compensation because the FI time is constant
for all frequencies as mentioned earlier.

Energy saving comparisons between two scenarios (i.e.,
with and without FD/FI decomposition) are presented for two
different test movies in Fig. 13. Notice that the energy savings
with or without FD/FI decomposition are calculated with
respect to the case of no DVFS. All other energy saving data
reported in subsequent figures or tables are also calculated in
the same way.

For the FD/FI decomposition scenario, the minimum
frequency is set during the FI part while for the scenario
without FD/FI decomposition, the same frequency is used for
the FD and FI parts. From Fig. 13, we found that with the same
target frame rate, a much higher CPU energy saving is possible
at higher frame rates with the FD/FI decomposition. FRV and
energy savings results of the proposed DVFS technique are
reported in Table IV.

0

20

40

60

80

100

9 10 11 12 13 14 15
Frame rate [fps]

C
P

U
 E

n
er

g
y

sa
vi

n
g

 [
%

]

FD/FI decomposition
no FD/FI decomposition

XScale; (2) Siberian Tiger

(a) Test movie (2)

0

20

40

60

80

100

28 29 30 31 32 33
Frame rate [fps]

C
P

U
 E

n
er

g
y

sa
vi

n
g

 [
%

]

FD/FI decomposition
no FD/FI decomposition

XScale; (6) Final3

(b) Test movie (6)

Fig. 13. CPU energy saving for with/without FD/FI
decomposition (XScale-based)

E. Energy consumption during the FI part

The CPU power consumption during the FI part may be
lower than that consumed during the FD part since during the
FI part the CPU is stalled until a requested memory transaction
is serviced. Meanwhile, the functional units inside the CPU are
not utilized. In the XScale-based system, it is possible to set
the minimum frequency during the FI part without causing any
latency increase, which results in significant CPU energy

saving. Note that the FI part cannot be used as a “timing buffer
zone” to compensate for the workload prediction error using
intra-frame method as can be done in the SA1110-based
system. Instead of using the intra-frame compensation, the
inter-frame compensation can be applied for the XScale-based
system.

V. IMPLEMENTATION

To implement the frame-based prediction algorithm for low-
power MPEG decoding, the mpeg_play program was used and
the required functions for calculating the moving averages and
calculating the clock speeds and voltages were inserted in the
player program. A device driver operating under the Linux OS
environment was written to implement the CPU clock speed
changes. Prediction of the decoding time for the next frame is
based on the moving average (over the last six frames of the
same type) as explained in Section II. In selecting the proper
frequency value, the overhead of DVFS itself was also
considered. For the hardware, we used two types of test beds
having different performance. One is Intel’s StrongARM1110
evaluation board [26] and the other is Intel’s XScale based low
power platform designed at USC [27].

A. StrongARM1110 based evaluation board

The hardware used is the Intel’s StrongARM 1110
evaluation board, which supports 12 different frequencies
ranging from 59 MHz to 221 MHz. A D/A converter was used
as a variable operating voltage generator to control the
reference input voltage to a DC-DC converter that supplies
operating voltage to the CPU. Inputs to the D/A converter are
generated using the general purpose input output (GPIO)
signals. The extra hardware was designed, built and interfaced
to the standard Intel Assabet board as a separate module. In
Fig. 14, the block diagram of the variable voltage generator is
shown. Regarding color representation, components having
same color are in the same board.

12-bit serial
D/A

converter

DC-DC
converter

SA1110
processor

Registers

Assabet

Neponset
External
circuitry

192
206

133
148
162
177

89
103
118

1.536
1.605

1.248
1.326
1.394
1.464

1.156
1.165
1.216

Freq.
[MHz]

Volt.
[V]

74 1.126
59 1.113

12-bit serial
D/A

converter

DC-DC
converter

SA1110
processor

Registers

Assabet

Neponset
External
circuitry

192
206

133
148
162
177

89
103
118

1.536
1.605

1.248
1.326
1.394
1.464

1.156
1.165
1.216

Freq.
[MHz]

Volt.
[V]

74 1.126
59 1.113

Fig. 14. The variable voltage generator implementation in
StrongArm 1110-based system

When the CPU clock speed is changed, a minimum

operating voltage level should be applied at each frequency to
avoid a system crash due to increased gate delays. In our
implementation, these minimum voltages are measured
through extensive experiments and stored in a table so that
these values are automatically sent to the variable voltage
generator when the clock speed changes. Voltage levels
mapped to each frequency are distributed from 1.1 V @59
MHz to 1.605 V @206 MHz and shown in Fig. 14.

 11

In anticipating the workload for the next frame, there is a
discontinuity in the calculated workload between the lower
frequencies (upper) and the higher frequencies (bottom)
because when the CPU frequency changes, the memory clock
characteristics are also affected, resulting in non-linear
performance scaling, which is a typical occurrence in a
StrongARM-based processor [15]. This phenomenon is
illustrated in Fig. 15. To correct for this non-linearity, a weight
factor for each frequency is extracted from the measurement
and included in the workload calculation.

0

20

40

60

80

100

0 50 100 150

Frame number

C
lo

ck
 C

yc
le

s[
X

1e
6] P-Frames

< 162MHz

>= 162MHz

Fig. 15. Non-linearity in memory performance as a function of
the CPU clock frequency

B. XScale based testbed – Apollo Testbed 2

The Apollo Testbed 2 (AT2), developed at USC, is a high-
performance and low-power embedded platform with high-
bandwidth wireless communication capability [27]. The photo
of the main PC Board of the AT2 system is shown in Fig. 16.
AT2 supports a number of peripheral devices such as a Web
CAM, external FLASH, 16-channel, and a 100 K
samples/second data acquisition system. AT2 system is a
complete Linux box in the sense that it provides support for a
wide variety of I/O interfaces, allows multi-processing
capability and in-system reconfiguration, permits accurate and
high speed data acquisition for the complete system as well as
for the individual modules in system (this is possible due to
careful separation of the system power planes on the PC board
layouts).

Fig. 16. Main board with the CPU, memory, and memory
controller

Fig. 17 shows the data acquisition system in which the
voltage drop across a precision resistor inserted between the
external power line and the “design under test” (DUT) power
line is used to measure the power consumption.

A programmable clock multiplier (PLL) in the XScale
processor generates the internal CPU clock which can be
adjusted from 200 up to 733MHz in steps of about 66 MHz
with the development-board speeds available only from 333
MHz. The lower bound results from a constraint to the
memory bus speed which is at 100 MHz in our system. The
bus speed has to be less than one third of the CPU clock speed.
This would yield a minimum speed of 333 MHz. Running the
system at CPU speeds slower than 333 MHz causes immediate
halts. The main PCB of AT2 includes an on-board variable
voltage generator which provides suitable operating voltage at
each clock frequency level. The block diagram of the variable
voltage generator and voltage levels for each frequency are
shown in Fig. 18.

DUTDUT

ResistorPower split

DUTDUT

ResistorPower split

DUT

V1

∆V = VDUT – V1
I = ∆V / R
P = I * V1

Sample
10kHz

I

R

∆V

VDUT

Operating
Voltage
of DUT

DUT

V1

∆V = VDUT – V1
I = ∆V / R
P = I * V1

Sample
10kHz

I

R

∆V

VDUT

Operating
Voltage
of DUT

Fig. 17. Data acquisition system with split power plane

12-bit parallel
D/A

converter

DC-DC
converter

XScale
processor

CPLD

AT2

Main board

1.26
1.49

1.05
1.12
1.19

0.99
0.91

Freq.
[MHz]

Volt.
[V]

666
733

400
466
533
600

333

12-bit parallel
D/A

converter

DC-DC
converter

XScale
processor

CPLD

AT2

Main board

1.26
1.49

1.05
1.12
1.19

0.99
0.91

Freq.
[MHz]

Volt.
[V]

666
733

400
466
533
600

333

Fig. 18. The variable voltage generator implementation in
XScale-based system

VI. EXPERIMENTAL RESULTS

The DVFS policies for MPEG decoding were implemented
on the StrongARM SA1110-based evaluation board and
XScale-based platform and results are discussed below.

A. StrongARM-based Platform

Due to the performance limitation of the StrongARM
SA1110 processor and large scaling overhead, frame rates
higher than 3 fps were not achievable. The overhead of DVFS
itself is about 10 msec which is much larger compared to the
reported value (~140 usec) [15] because in our implementation,
a 12-bit serial D/A converter is used to control a DC-DC
converter reference input to change CPU operating voltage. To
set data value to the D/A converter it was required to generate
a clock chain of 13 cycles (12 cycles to set 12-bit data and 1
cycle to latch data) and this clock chain was generated via
general purpose input output (GPIO) registers, causing large

 12

timing overhead. Also, this D/A converter is located in the
external circuitry connected to Neponset board via external
wires as shown in Fig. 14 and this wire connection would
cause additional timing overhead. One more reason for such
large overhead is that we can only scale frequency at most two
step-wide. If frequency is changed more than two steps, for
example change frequency from minimum to maximum
directly, our system crashed and we thought this phenomenon
occurred due to unstable variable voltage generator we made.
As a result, we performed measurements at frame rates of 1
and 2 fps, which are somewhat low for real video applications,
but are sufficient to demonstrate the capability of DVFS. For
prediction error compensation, only intra-frame compensation
was used since there were many time slacks during the FI part
due to low frame rates. Fig. 19 and Fig. 20 show the power
consumption in the system without and with DVFS while
playing MPEG at fps = 1. The power consumption is measured
at a 2 kHz sampling frequency. The CPU frequency is 206
MHz without DVFS and, depending on the frame type, it is
reduced down to 89MHz with the proposed DVFS technique.
Average board-level power consumptions for both cases are
2.94 W (0.49 A @6 V) and 2.46 W (0.41 A @6 V),
respectively, which represent a 16 % reduction in the total
system energy. By considering the efficiency of two DC-DC
converters [28] (one is for 6 V to 3.3 V and the other is for 3.3
V to the CPU supply voltage) 85 % and the power
consumption of SA1110 is about 400 mW at 206 MHz
according to the Intel SA1110 reference manual [26], then it
may be concluded that the CPU energy consumption was
reduced by about 87 % as a result of applying the proposed
frame-type-based DVFS technique. Notice that it is not
possible to directly measure the CPU power consumption in
the Intel Testbed. Fig. 21 and Fig. 22 show the power
consumption at fps = 2 and about 43 % of the CPU energy
saving is achieved without no deadline missed frame.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5000 10000 15000 20000

No. of Measurements

C
u

rr
en

t
@

 6
V

 [
A

] Avg. Current = 0.49A

Fig. 19. Power consumption without DVFS at fps = 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5000 10000 15000 20000

No. of Measurements

C
u

rr
en

t
@

 6
V

 [
A

] Avg. Current = 0.41A

Fig. 20. Power consumption with DVFS at fps = 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5000 10000 15000 20000

No. of Measurements

C
u

rr
en

t
@

 6
V

 [
A

] Avg. Current = 0.53A

Fig. 21. Power consumption without DVFS at fps = 2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5000 10000 15000 20000

No. of Measurements

C
u

rr
en

t
@

 6
V

 [
A

]

Avg. Current = 0.49A

Fig. 22. Power consumption with DVFS at fps = 2

B. XScale-based Platform

The same measurements were performed in the AT2 system.
Unlike StrongArm-based platform, there is linear performance
scaling in the XScale processor. This is because the AT2 main
board contains an external memory controller that isolates the
CPU from the memory, and therefore, the memory bus clock
speed (100 MHz) and the CPU clock speed become
decoupled. For the 80200 XScale processor, the latency for
switching the CPU voltage/frequency is 6 µsec at 333 MHz
[24]. By using our data acquisition system, the power
consumption of each component on the AT2 main board can

 13

individually be measured and reported.
Fig. 23 depicts the CPU power consumption while decoding

an I-frame followed by a B-frame in which two different
frequencies are set during the FI part (a) 666 MHz and (b) 333
MHz. A 733 MHz is used for the FD part. As mentioned in the
previous section, FI time, which contains the off-chip access
latencies during “dithering” and “display”, does not change
with the CPU frequency, 37 msec at both frequencies, whereas
the average power consumption during the FI part is
significantly reduced from 510 mW to 186 mW (64 %
reduction) as a result of voltage scaling.

We measured the actual CPU power consumptions while
playing back six test video clips on the AT2 system with the
proposed DVFS method and the results are summarized in
Table V. From this table, it is seen that less energy is required
by separating the FD and FI parts (cf. the FD/FI Decom
columns) compared to the case without workload
decomposition (cf. the No-Decom columns). Furthermore, as
frame rate becomes higher, the energy saving difference
between the two cases (with and without decomposition)
becomes higher. This is because FI time portion in the allowed
decoding time for a frame increases as frame rate increases.
We acknowledge that we have not exactly implemented any of
the previous DVFS approaches on our platform to see how
they perform. However, as stated above, our key contribution
is to recognize that the frame workload can be divided into FI
and FD parts, which behave quite differently with respect to
CPU voltage and frequency scaling. None of the previous
work does anything like this (they basically consider the FD
part only and ignore the fact that the FI part may be used as
either “timing buffer” or “energy saving means” to increase the
energy saving.) We show in Table V the relative performance
of DVFS without decomposition and DVFS with workload
decomposition as compared to the base line without any DVFS.
We can think of previous work on DVFS for the MPEG
decoder as being in essence similar to the reported results
without workload decomposition.

0

500

1000

1500

2000

2500

3000

0 40 80 120 160 200

Time [msec]

C
P

U
 P

o
w

er
co

n
su

m
p

ti
o

n
 [

m
W

]

I-frame

FD

(2) Siberian Tiger

FI

733MHz : FD
666MHz : FI

FI

FD

B-frame

Dithering

Display
0

500

1000

1500

2000

2500

3000

0 40 80 120 160 200

Time [msec]

C
P

U
 P

o
w

er
co

n
su

m
p

ti
o

n
 [

m
W

]

I-frame

FD

(2) Siberian Tiger

FI

733MHz : FD
666MHz : FI

FI

FD

B-frame

Dithering

Display

(a) FD : 733 MHz, FI : 666 MHz

0

500

1000

1500

2000

2500

3000

0 40 80 120 160 200

Time [msec]

C
P

U
 P

o
w

er
co

n
su

m
p

ti
o

n
 [

m
W

] (2) Siberian Tiger 733MHz : FD
333MHz : FI

I-frame

FD

FI FI

FD

B-frame

Dithering

Display
0

500

1000

1500

2000

2500

3000

0 40 80 120 160 200

Time [msec]

C
P

U
 P

o
w

er
co

n
su

m
p

ti
o

n
 [

m
W

] (2) Siberian Tiger 733MHz : FD
333MHz : FI

I-frame

FD

FI FI

FD

B-frame

Dithering

Display

(b) FD : 733 MHz, FI : 333 MHz

Fig. 23. Decoding time and power consumption at different CPU
frequencies

Finally, Fig. 24 shows the effectiveness of inter-frame
compensation method. With this compensation scheme, the
run-time frame rate smoothly converges to the target frame
rate (here, 13 fps). Notice that the frame rate diverges from the
target rate without this compensation, resulting in wasted CPU
energy. The reason that the divergent rate is higher (rather than
lower) than the target frame rate is that the I- and P-frames
need the maximum frequency to meet the deadline, and they
are unaware of the positive timing slacks that are carried over
from the previous B-frames.

11

12

13

14

15

16

0 30 60 90 120 150

Frame number

F
ra

m
e

ra
te

 [
fp

s]

(1) Terminator 2 target : 13f ps

no compensation

with "inter-frame compensation"

Fig. 24. Frame rate variation with “inter-frame” compensation
method

VII. CONCLUSION

A frame-based workload prediction algorithm for DVFS in
MPEG decoding was proposed and implemented on two
different platforms, a StrongARM-based portable system for a
low performance and an XScale-based AT2 system for a high
performance system. In this DVFS, each frame type is handled
individually for more accurate decoding time prediction. The
whole decoding time for a frame is divided into two parts:
frame-dependent and frame-independent. During the FI part
the required operation is memory intensive and the amount of
workload is same over all frame types in a given video
sequence. To avoid QoS degradation due to misprediction, two
error compensation methods are proposed: intra-frame and
inter-frame compensation. Using this property, the FI period is
used as a timing buffer when misprediction occurs in FD

 14

TABLE I
TEST VIDEO SEQUENCES SUMMARY (SA1110-BASED)

FD workload (X106) α Avg. prediction error Video clip name Frame
size

of
frame I P B

FI workload
(X106) I P B I P B

(1) Terminator2 352 × 240 150 43.11 34.15 17.33 14.98 0.35 0.44 0.86 7.22 4.29 7.57
(2) Siberian Tiger 320 × 240 634 64.91 55.11 29.97 13.00 0.20 0.24 0.43 2.7 5.77 6.62

(3) Deploy 352 × 288 725 22.80 12.73 13.19 17.10 0.75 1.34 1.30 6.66 4.91 3.02
(4) Wg_wt 304 × 224 331 32.33 15.24 - 11.80 0.36 0.77 - 8.34 15.71 -

(5) Badboy2 480 × 208 666 22.00 19.28 18.71 17.10 0.78 0.89 0.91 17.27 16.01 9.02
(6) Final3 160 × 120 500 14.25 12.64 7.89 7.92 0.56 0.63 1.00 5.06 7.5 13.4

TABLE II

FRV SIMULATION SUMMARY – SA1110 (* : NUMBERS IN PARENTHESIS ARE FOR TEST CASE (6))

(1) (2) (3) (4) (5) (6) fps*
IC I2C IC I2C IC I2C IC I2C IC I2C IC I2C

2 (4) 0.12 0.003 0.002 1E-04 0.116 0.003 0.135 0.011 0.016 1E-04 0.259 0.007
3 (5) 0.038 3E-04 0.002 0.002 0.069 9E-05 0.08 6E-04 0.004 7E-05 0.181 1E-04
4 (6) 0.007 0.001 0.022 0.022 0.038 3E-05 0.042 3E-04 0.001 5E-04 0.121 8E-04
5 (7) 0.02 0.019 0.416 0.416 0.017 8E-05 0.019 2E-04 0.016 0.016 0.077 3E-04
6 (8) - - - - 0.005 5E-04 0.013 0.008 0.081 0.081 0.042 2E-04

workload prediction. When applied to a dedicated MPEG
player, more than 87 % and 80 % of CPU energy was saved by
the proposed DVFS scheme in both low and high performance
platforms, respectively.

REFERENCES
[1] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for

reduced CPU energy,” Proc. 1st Symp on Operating Systems Design
Implementation, 1994, pp. 13-23.

[2] K. Govil, E. Chan, and H. Wasserman, “Comparing algorithms for
dynamic speed-setting of a low power CPU,” Proc. 1st ACM Int. Conf.
Mobile Computing Networking, 1995, pp.13-25.

[3] T. Burd, T. Pering, A. Stratakos, and R. Brodersen, “A dynamic voltage
scaled microprocessor system,” IEEE Journal of Solid-State Circuit,
vol. 35, no.11, Nov. 2000, pp.1571-1580.

[4] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos, “Data driven signal
processing: an approach or energy efficient computing,” Proc.
International Symposium on Low Power Electronics and Design, 1996,
pp.347-352.

[5] F. Yao, A. Demers, and S. Shenker, “ A Scheduling Model for Reduced
CPU Energy,” IEEE Annual Foundations of Computer Science, 1995,
pp.374-382.

[6] T. Ishihara and H. Yasuura, “Voltage Scheduling Problem for
Dynamically Variable Voltage Processors,” International Symposium on
Low Power Electronics and Design, 1999, pp.197-202.

[7] D. Shin, J. Kim, and S. Lee, “Low-energy intra-task voltage scheduling
using static timing analysis,” Proc. Design Automation Conference,
2001, pp.438-443.

[8] S. Lee and T. Sakurai, “Run-time power control scheme using software
feedback loop for low-power real-time applications,” Proc. Asia-Pacific
Design Automation Conference, 2000, pp. 381-386.

[9] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-power digital

design,” Proc. IEEE Symp. on Low Power Electronics, 1994, pp.8-11.
[10] T. Pering, T. Burd, and R. Brodersen, “The simulation and evaluation of

dynamic voltage scaling algorithms,” Proc. International Symposium
on Low Power Electronics and Design, 1998, pp.76-81.

[11] J. Mitchell, W. Pennebaker, C. Fogg, and Didier LeGall, MPEG video
compression standard, Chapman and Hall, 1996.

[12] K. Patel, B. Smith, and L. Rowe, “Performance of a software MPEG
video decoder,” Proc. First ACM Int’l Conf. on Multimedia, 1993,
pp.75-82.

[13] D. Grunwald, P. Levis, K. Farkas, C. Morrey III, and M. Neufeld,
“Policies for Dynamic Clock Scheduling,” Symposium on Operating
Systems Design & Implementation, Oct. 2000

[14] A. Bavier, A. Montz, and L. Peterson, “Predicting MPEG execution
times,” Proc. Int’l Conf. On Measurement and Modeling of Computer
Systems, 1998, pp. 131-140.

[15] J. Pouwelse, K. Langendoen, R. Lagendijk, and H. Sips, “Power-aware
video decoding,” Presented at 22nd Picture Coding Symposium, Seoul,
Korea, 2001.

[16] D. Son, C. Yu, and H. Kim, “Dynamic voltage scaling on MPEG
decoding,” International Conference of Parallel and Distributed
System (ICPADS), June 2001

[17] E. Chung, L. Benini, and G. Micheli, “Contents provider-assisted
dynamic voltage scaling for low energy multimedia applications,”
International Symposium on Low Power Electronics and Design, Aug.
2002, pp.42-47.

[18] K. Flautner and T. Mudge, “Vertigo: automatic performance-setting for
Linux,” In OSDI, Boston, MA, Dec. 2002, USENIX.

[19] Transmeta Crusoe. http://www.transmeta.com/technology/index.html
[20] Y. Lu, L. Benini, and G. D. Micheli, “Dynamic frequency scaling with

buffer insertion for mixed workloads,” IEEE Transactions on computer-
aided design of integrated circuits and systems, 21(11): Nov. 2002,
pp.1284-1305.

[21] C. Im, H. Kim, and S. Ha, “Dynamic voltage scheduling technique for
low-power multimedia applications using buffers,” International
Symposium on Low Power Electronics and Design, pp. 34-39, Aug.
2001.

[22] Z. Lu, J. Lach, M. Stan, K. Skadron, “Reducing multimedia decode
power using feedback control,” Proc. of International Conference on
Computer Design, San Jose, CA, Oct. 2003

[23] http://bmrc.berkeley.edu/frame/research/mpeg
[24] “Intel 80200 Processor Based on Intel XScale Microarchitecture,”

http://developer.intel.com/design/iio/manuals/273411.htm
[25] R. Floyd and L. Steinberg, “An adaptive algorithm for spatial

grayscale,” Proc. SID, 17(2), pp.75-77
[26] http://www.intel.com/design/strong/manuals/278240.htm
[27] http://atrak.usc.edu/~apollo

[28] http://pdfserv.maxim-ic.com/arpdf/MAX1692.pdf

 15

TABLE III
ENERGY SAVING SUMMARY – SA1110 (* : NUMBERS IN PARENTHESIS ARE FOR TEST CASE (6))

(1) (2) (3) (4) (5) (6) fps*
IC I2C IC I2C IC I2C IC I2C IC I2C IC I2C

2 (4) 78.57 78.9 69.36 69.41 83.36 83.38 80.26 80.27 80.94 80.89 82.53 82.52
3 (5) 63.95 64.54 47.99 46.62 72.46 72.46 66.01 65.73 67.94 67.7 77.13 77.06
4 (6) 46.18 45.82 22.77 20.34 59.45 59.29 52.22 52.86 52.16 52.27 70.82 70.82
5 (7) 29.11 28.01 - - 46.58 46.45 33.68 31.62 38.8 39.04 63.7 63.66
6 (8) - - - - 33.66 33 6.455 5.869 13.81 13.64 57.4 57.55

TABLE IV

SIMULATION RESULTS SUMMARY – XSCALE (* : NUMBERS IN PARENTHESIS ARE FOR TEST CASE (6))

(1) (2) (3) (4) (5) (6) fps*

FRV
Energy
Saving

FRV
Energy
Saving

FRV
Energy
Saving

FRV
Energy
Saving

FRV
Energy
Saving

FRV
Energy
Saving

10 (28) - - 0.016 77.715 - - - - - - 0.031 82.444
11 (29) - - 0.032 70.554 - - - - - - 0.02 80.648
12 (30) 0.132 81.861 0.073 63.038 - - - - - - 0.03 78.461
13 (31) 0.051 78.139 0.163 54.858 - - 1.144 81.214 0.028 80.473 0.07 75.901
14 (32) 0.049 72.226 0.364 43.974 - - 0.442 77.489 0.075 76.212 0.146 72.69

15 0.125 66.622 - - 0.03 79 0.148 73.164 0.177 71.059 - -
16 0.327 60.283 - - 0.007 74.911 0.077 67.099 0.417 63.914 - -
17 - - - - 0.016 68.241 0.044 60.112 - - - -

TABLE V

ACTUAL MEASUREMENT RESULTS SUMMARY – XSCALE (* : NUMBERS IN PARENTHESIS ARE FOR TEST CASE (6))

(1) t2 (2) st (3) dp (4) wg (5) bd (6) fi fps*
FD/FI
Decom

No-
Decom

FD/FI
Decom

No-
Decom

FD/FI
Decom

No-
Decom

FD/FI
Decom

No-
Decom

FD/FI
Decom

No-
Decom

FD/FI
Decom

No-
Decom

10 (27) - - 77.26 73.147 - - - - - - 81.337 80.881
11 (28) 80.791 80.463 68.448 55.49 - - - - - - 82.168 82.042
12 (29) 79.883 79.681 60.26 43.391 - - - - 79.508 79.33 81.616 81.849
13 (30) 74.763 71.599 48.213 25.361 - - 77.043 75.272 78.988 78.848 81.272 81.654

14 68.69 40.45 40.804 2.5972 73.27 57.94 69.311 60.593 75.734 71.339 - -
15 57.845 22.166 - - 65.311 35.526 60.003 41.333 60.721 46.986 - -
16 52.701 4.0561 - - 60.208 4.2396 54.281 28.227 59.128 0.585 - -
17 52.399 3.3786 - - 59.241 0.7792 44.884 9.4696 - - - -

