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Abstract — This paper describes a dynamic voltage and 
frequency scaling (DVFS) technique for MPEG decoding to 
reduce the energy consumption while maintaining a quality of 
service (QoS) constraint. The computational workload for an 
incoming frame is predicted by using a frame-based history so 
that the processor voltage and frequency can be scaled to 
provide the exact amount of computing power needed to 
decode the frame. More precisely, the required decoding time 
for each frame is separated into two parts: a frame-dependent 
(FD) part and a frame-independent (FI) part. The FD part 
varies greatly according to the type of the incoming frame 
whereas the FI part remains constant regardless of the frame 
type. Separation of the FI part from the overall decoding 
sequence provides two key benefits depending on the 
hardware platform: better compensation of the error due to 
workload prediction and higher level of energy saving when 
given a QoS degradation level. The proposed DVFS scheme 
has been implemented on two platforms, a low performance 
StrongArm-1110-based evaluation board from Intel and a 
high performance XScale-based testbed designed at USC. In 
the StrongArm-1110-based system, the FI part is used to 
compensate for the prediction error that may occur during the 
FD part, whereas in the XScale-based system, the FI part is 
used to reduce energy consumption by employing the lowest 
CPU frequency during the corresponding time intervals. 
Detailed current measurements in these two platforms 
demonstrate larger than 87 % and 80 % CPU energy saving 
while maintaining a user-provided frame rate, respectively. 

Index Terms — Dynamic voltage and frequency scaling, 
MPEG decoding, workload decomposition.  

I. INTRODUCTION 

EMAND for portable computing and communication 
devices has been increasing rapidly. Because portable 

devices are battery-operated, a design objective is to minimize 
the energy dissipation (and thus maximize the battery service 
time) without any appreciable degradation in the QoS. DVFS 
is a highly effective method to achieve this design goal. This is 
because energy consumption in CMOS VLSI circuits is 
quadratically proportional to the supply voltage. Therefore, 
reducing the supply voltage results in a large energy saving. 
Reducing the voltage level, however, slows the circuit down. 
The key idea behind DVFS techniques is to perform dynamic 
voltage scaling so as to provide “just-enough” circuit speed to 
process the workload while meeting the total compute time 
and/or throughput constraints, and thereby, reduce the energy 
dissipation. 

Previous DVFS works can be divided into two categories, 
one for non real-time operation and the other for real-time 
operation. The most important step in implementing DVFS is 
prediction of the future workload, which allows one to choose 
the minimum required voltage/frequency levels while 
satisfying key constraints on energy and QoS. As proposed in 
[1] and [2], a simple interval-based scheduling algorithm can 
be used in non real-time operation. This is because there is no 
timing constraint. As a result, some performance degradation 
due to workload misprediction is allowed. The defining 
characteristic of the interval-based scheduling algorithm is that 
uniform-length intervals are used to monitor the system 
utilization in the previous intervals and thereby set the voltage 
level for the next interval by extrapolation. This algorithm is 
effective for applications with predictable computational 
workloads such as audio [3] or other digital signal processing 
intensive applications [4]. Although the interval-based 
scheduling algorithm is simple and easy to implement, it often 
predicts the future workload incorrectly when a task’s 
workload exhibits a large variability. One typical example of 
such a task is MPEG decoding. In MPEG decoding, because 
the computational workload varies greatly depending on each 
frame type, repeated mispredictions may result in a decrease in 
the frame rate, which in turn means a lower QoS in MPEG.  

There are also many studies to apply DVFS in real-time 
application scenarios [5][6][7][8]. In [5][6] the multi-task 
scheduling in the operating system (OS) is the focus. More 
precisely, the scheduling is performed so as to reduce energy 
consumption while meeting given hard timing constraints. In 
these coarse-grained DVFS approaches, it is assumed that the 
total number of CPU cycles needed to complete each task is 
fixed and known a priori. This is an assumption that is 
difficult to satisfy in practice. In [7], an intra-task voltage 
scheduling technique was proposed in which the application 
code is divided into many segments and the worst-case 
execution time of each segment (which is obtained from a 
static timing analysis) is used to determine a suitable voltage 
for the next segment. In [8] a method based on a software 
feedback loop was proposed. In this method, a deadline for 
each time slot is provided. The authors calculate the operating 
frequency of the processor for the next time slot depending on 
the slack time generated in the current slot and again the 
worst-case execution time of the next time slot. In these two 
fine-grained DVFS approaches, it is assumed that the worst-
case execution time of each segment of a task is known. This 
assumption is again difficult to meet for many applications, for 
example, for MPEG decoding where the worst-case execution 
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time cannot be accurately determined on a per-frame basis. 
Note that a single worst-case execution time for all video 
frames (which may be calculated rather easily) will not be 
useful because it tends to be too pessimistic and therefore will 
significantly reduce the energy saving potential of a DVFS 
technique that uses it. 

In this paper, an effective DVFS algorithm for MPEG 
decoding is proposed in which the future workload is predicted 
on a per-frame basis. This is accomplished by using a frame-
type-based workload-averaging scheme where the prediction 
error due to statistical variation in the workload of the frame-
dependent part of the decoder is effectively compensated for 
by using the frame independent part of the decoding time as a 
“buffer zone.” This allows us to obtain a significant energy 
saving without any notable QoS degradation. This algorithm 
has been implemented on two different platforms: an Intel-
designed StrongARM-1110 based for low performance and a 
USC-designed XScale-based high performance platform and 
has resulted in the CPU energy reduction of more than 87% 
and 80%, respectively.  

Notice that when lowering the supply voltage to reduce 
energy consumption, the clock frequency should be decreased 
first to prevent timing failure due to the increased gate delay. 
Because a minimum voltage is assigned to each operating 
frequency value, in this paper, the term “voltage and frequency 
scaling” will be used rather than either “voltage scaling” or 
“frequency scaling.” 

The remainder of this paper is organized as follows. Related 
works on DVFS and MPEG are described in Section II. In 
Sections III and IV, a new DVFS algorithm is presented. 
Details of the implementation, including both hardware and 
software, are described in Section V. Experimental results and 
conclusions are given in Sections VI and VII, respectively.  

II. BACKGROUND 

A. Fundamentals of DVFS 

Many kinds of application programs, which may require 
real-time or non real-time operations, are executed on a 
general-purpose processor. In general, DVFS techniques are 
very effective in reducing the energy dissipation while meeting 
a performance constraint in real-time applications such as 
video decoding. The energy consumption per task running on a 
CMOS VLSI circuit is given by the following well-known 
equation [9]: 

= ⋅ ⋅ ⋅2
switched clkE C V f T  (1)  

where V is the supply voltage level, Cswitched is the switched 
capacitance per clock cycle, fclk is the clock frequency, and T is 
the total execution time of the task. 

Fig. 1 illustrates the basic concept of DVFS for real-time 
application scenarios. In this figure, T2 and T4 denote deadlines 
for tasks W1 and W2, respectively (in practice, these deadlines 
are related to the QoS requirements.) W1 finishes at T1 if the 
CPU is operated with a supply voltage level of V1. The CPU 
will be idle during the remaining (slack) time, S1. To provide a 

precise quantitative example, let us assume T2-T0=T4-T2=∆T, 
and T1-T0=∆T/2; the CPU clock frequency at V1 is f1=n/∆T for 
some integer n; and that the CPU is powered down or put into 
standby with zero power dissipation during the slack time. The 
total energy consumption of the CPU is E1 = CV1

2f1∆T/2 
=nCV1

2/2 where C is the effective switched capacitance of the 
CPU per clock cycle. Alternatively, W1 may be executed on 
the CPU by using a voltage level of V2=V1/2, and is thereby 
completed at T2. Assuming a first-order linear relationship 
between the supply voltage level and the CPU clock frequency, 
f2=f1/2. In the second case, the total energy consumed by the 
CPU is E2=CV2

2f2∆T=nCV1
2/8. Clearly, there is a 75 % energy 

saving as a result of lowering the supply voltage (this saving is 
achieved in spite of “perfect” – i.e., immediate and with no 
overhead - power down of the CPU). This energy saving is 
achieved without sacrificing the QoS because the given 
deadline is met. An energy saving of 89 % is achieved when 
scaling V1 to V3=V1/3 and f1 to f3=f1/3 in case of task W2.  
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Fig. 1. An illustration of the DVFS technique 

 
A major requirement for implementation of an effective 

DVFS technique is accurate prediction of the time-varying 
CPU workload for a given computational task. A simple 
interval-based scheduling algorithm is employed in [10] to 
dynamically monitor the global CPU workload and adjust the 
operating voltage/frequency based on a CPU utilization factor, 
i.e., decrease (increase) the voltage when the CPU utilization 
is low (high). Two prediction schemes have been used in 
interval-based scheduling: the moving-average (MA) and the 
weighted-average (WA) schemes [10]. In the MA scheme, the 
next workload is predicted based on the average value of 
workloads during a predefined number of previous intervals, 
called window size. In the WA scheme, a weighting factor, ω, 
is considered in calculating the future workload such that 
severe fluctuation of the workload is filtered out, resulting in a 
smaller average prediction error. Their operations are 
represented in the following equations.  
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(3)  

 These two workload prediction schemes are easy to 
implement and result in effective DVFS algorithms when the 
workload fluctuation is not too severe. To illustrate this point, 
two popular software applications, MP3 and MPEG playback, 
were tested using the WA scheme. Experimental results are 
shown in Fig. 2 and Fig. 3. Fig. 2 shows the CPU usage 
measured during each time interval (300 msec) whereas Fig. 3 
depicts the workload prediction errors for both cases. 
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Fig. 2. CPU usage of MP3 and MPEG 
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Fig. 3. Workload prediction error 

These results show that interval-based voltage scaling which 
solely depends on the global state of the system is quite 
effective for the MP3 playback where the workload variation 
is rather small. On the other hand, it becomes ineffective (see 
the large prediction errors) for MPEG decoding due to the 
large variation in the CPU workload for this application. More 
precisely, the global system status monitoring interval-based 
DVFS algorithm for MPEG decoding cannot track the 
workload variation, resulting in a significant QoS degradation 
such as frame rate fluctuation. 

B. MPEG Terminology 

An MPEG video stream consists of three frame types: I-
frame (Intra-coded), P-frame (Predictive-coded), and B-frame 
(Bi-directionally-coded). I-frames can be decoded 
independently. P-frames have to be decoded based on the 
previous frame. B-frames require both the previous and the 
next frames in order to be decoded. Sequences of frames are 
grouped together to form a Group of Pictures (GOP). A GOP 
contains 12-15 frames, starting with an I-frame. It takes several 

steps to decode each frame: Parsing, Inverse Discrete Cosine 
Transformation (IDCT), Reconstruction, Dithering, and 
Display [11]. Among these steps, the IDCT and 
Reconstruction take up half of the decoding time [12]. The 
IDCT is CPU-intensive (i.e., requires iterative multiplication-
accumulation computation over an 8 × 8 array of integer or 
floating-point values) whereas the reconstruction, dithering, 
and display steps are memory-intensive (i.e., require data 
movement between the processed video stream and display 
frame buffer). Each frame type results in a different workload 
during the IDCT and reconstruction step, meaning that the 
execution time of different frame types varies by a large 
amount while the time for dithering and display steps is same 
over all types of frames. Based on these observations, the 
decoding process may be divided into two parts: a frame-
dependent part (parsing, IDCT and reconstruction) and a 
frame-independent part (dithering and display) as shown in Fig. 
4. The operations performed during frame-independent part 
are off-chip transactions such as SDRAM access and write to 
frame buffer of display device. CPU is stalled until these 
operations are finished without doing any useful work. 
Execution time during frame-independent is constant over all 
frame types in a given video stream and this property can be 
useful in the implementation of effective DVFS. 
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Fig. 4. MPEG decoding sequence 

C. Prior Work 

As stated in the previous section, it is very difficult to 
accurately predict the execution time of each frame in MPEG 
decoder due to the high variability in the computational 
workload of each frame.  

A number of researchers have applied DVFS to MPEG 
video decoding in order to achieve lower energy consumption. 
In [10] and [13], DVFS is performed based on the ratio of the 
number of idle and busy cycles of the CPU while the MPEG 
stream is decoded. Although significant energy reduction is 
achieved, there is no guarantee that deadline for each frame is 
met because this interval-based prediction technique cannot 
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capture large fluctuations in decoding time for each frame. In 
[14], the authors studied the empirical relationship between the 
decoding time and the code size of each frame (i.e., the 
number of bits in the encoded frame). Their results showed a 
strong correlation between these two parameters with an error 
of less than 25%. However, the code size of each frame cannot 
be obtained before starting the IDCT step. To overcome this 
limitation, a method using feedback control was proposed in 
[15] in which the set of macro blocks1 in a frame are first 
divided into two groups, each containing half of the macro 
blocks. The authors assume a static (fixed) relationship (in the 
form of a linear equation) between the IDCT time and code 
size of each group of macro blocks. By analyzing the first 
group of macro blocks, they obtain the code size of that group. 
Next, they assume that the code size of the second group of 
macro blocks is the same as this value and calculate the IDCT 
time of the second group based on the IDCT time and this 
code size. This code size prediction scheme is however 
inaccurate and may result in frequent deadlines misses. 
Furthermore, the linear prediction equation must be changed 
when different resolutions of the video image or different 
frame pixel sizes are encountered.  

In [16], the estimation of decoding time is performed in 
units of GOP. In this approach, sizes and types of the frames 
of an incoming GOP are observed and the time needed to 
decode the next GOP is estimated based on statistics of the 
previous GOPs. This approach also suffers from a rather high 
occurrence of mispredictions. Furthermore, even more severe 
QoS degradation may occur when the prediction is inaccurate 
because the same frequency (voltage) is applied for all frames 
in a GOP. There is a different approach in which the decoding 
time prediction is not needed [17]. This is accomplished by 
including the execution time information of each frame to the 
video content itself (e.g., as part of the frame header). 
However, this approach adds to the computational workload of 
the video encoding. As acknowledged in the same reference, 
this approach is only worthwhile if the encoded video stream is 
sent to many clients so that the extra cost of adding decoding 
time information to the frame headers is compensated by 
energy savings on many mobile clients.  In addition, this 
scheme requires modification of currently used standard video 
stream format.  

In [18], an application-independent DVFS approach, 
Vertigo, was proposed, which uses multiple performance-
setting algorithms that are organized into a decision hierarchy 
for various types of applications. This algorithm was applied 
to MPEG decoding. Vertigo is an interval-based approach 
where workload in the next time interval is estimated based on 
the history of previous intervals.  This algorithm estimates the 
deadline for each interval based on the estimated workload in 
the previous intervals. This approach is different from [10] and 
[13] where the length of each time interval is fixed. The 

 
1  A macro block corresponds to a 16 by 16 pixel area of the 

original image and consists of six 8 by 8 blocks on which IDCT is 
performed. 

authors compared Vertigo with LongRun policy [19] and 
reported that Vertigo has higher performance in terms of the 
match between the actually achieved frame rate and the target 
frame rate. Note, however, that actual frame rates with Vertigo 
are still far less than the target frame rate, i.e., the actual times 
are 17% to 30% shorter than the target times), which will in 
turn result in lower energy saving. 

There have been a number of studies on using buffers in 
multimedia processing. One of the most important advantages 
of using buffers is that no explicit frame decode time 
prediction is needed, thus missed deadlines due to prediction 
errors are avoided. Reference [20] used an off-line algorithm 
to schedule the frame decoding rate and respective frequency, 
and they did not consider multimedia streams that include B 
frames. Reference [21] focused on the estimation of the 
input/output buffer size for the decoder and it is assumed that 
the worst case execution time is known in advance. In [22] a 
feedback control scheme using PI controller at the decoder 
output buffer such that constant frame rate is achieved by 
monitoring the occupancy of the frame buffer. But, it is 
difficult to control the gain of PI controller and a slight 
mismatch in the controller gain might cause 
underflow/overflow at the buffer. Also, frequency/voltage 
setting is linearly subdivided into 40 discrete levels, which is 
not true in actual situation.   

Techniques that utilize buffers introduce some amount of 
delay when a video session starts due to buffer filling as well 
as severe modification of application source code itself to 
implement a control scheme. In spite of these problems, 
buffers can be quite useful. In this paper, we have not 
considered the effects of the buffers, which would make the 
deadline for processing any frame a soft deadline. This will 
have significant implication on the proposed DVFS approach, 
but falls outside the scope of the present paper. More precisely, 
we expect that with buffers, one can achieve even higher 
energy savings by dynamically changing the deadline for 
processing each frame without overflowing the buffer. 

To develop an effective DVFS technique for low-energy 
MPEG decoding, two prerequisites must be met: existence of 
an accurate workload prediction method and availability of 
error compensation methods for handling the case when a 
prediction error occurs. Prediction error compensation is 
important in MPEG decoding because a certain level of video 
quality, such as frame rate, should be guaranteed as well as 
energy reduction. However, most approaches concentrate on 
the prediction only, not the prediction error compensation 
method. This lack of prediction error compensation method 
comes from the fact that the characteristics of each step in 
decoding sequence were not considered carefully, FD part only 
not FI part. In this paper, a DVFS technique for low-energy 
MPEG decoding, in which a frame-based workload prediction 
and two effective prediction error compensations, intra-frame 
compensation and inter-frame compensation, are provided and 
these two compensation techniques can be used either 
individually or together depending on the used hardware. 
Intra-frame compensation uses the FI part as a “buffer zone” to 
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recover prediction errors in FD part, whereas inter-frame 
compensation uses “error diffusion” to distribute a prediction 
error in a frame to following frames such that the error is 
localized, resulting in smooth variation in the frame rate at run 
time. If prediction error can be recovered effectively, then 
there is a lower requirement for accurate prediction technique. 

In this paper, we propose a DVFS method for an MPEG 
decoding which enables easy implementation with the least 
modification of MPEG decoder program. It is assumed that 
there is no display buffer, i.e., a frame should be decoded and 
displayed in a given time, determined by a frame rate. Also, 
our method uses no special hardware such as dynamic memory 
access (DMA) to perform display operation, which is common 
in portable mobile application.  

We mention here that if the FD and FI decoding steps are 
pipelined and performed in parallel, then the proposed intra-
frame compensation technique may not be effective. However, 
to achieve such pipelined operation of the FD and FI decoding 
steps, special hardware such as DMA is required. In addition, 
significant modification of the application source code as well 
as the interrupt handler in OS kernel will be needed. In this 
work, we have targeted a DVFS method for a software MPEG 
decoder, which can run on any computer system without DMA 
support and without any modification of MPEG decoder 
source code or the OS interrupt handler (with the exception of 
some code to predict the workload and to find the optimal 
voltage setting.) 

III. DECOMPOSITION OF MPEG DECODING SEQUENCE 

As stated previously, the decoding process of a frame is 
divided into two parts based on the required execution time 
and the expected energy consumption. One part captures the 
frame-dependent (FD) portion of the decoding process 
whereas the other part captures the frame-independent (FI) 
portion of the decoding process as shown below:  

;   Decoding FD FI Decoding FD FIT T T E E E= + = +  (4)  

where TDecoding is the whole decoding time of a frame, TFD and 
TFI are the elapsed time during the FD and FI parts, 
respectively, and EFD and EFI are the CPU energy consumption 
during FD and FI, respectively. 

 
The parsing, IDCT and reconstruction steps are included in 

the frame-dependent time whereas the dithering and display 
steps are included in the frame-independent time. A large 
variation in decoding time for each frame is caused by 
variation in frame-dependent time, not by frame-independent 
time. This is because the dithering and display time are 
dependent upon the frame pixel size and are otherwise 
constant for a given video stream.  

To determine the FD and FI times for a given frame, the 
source code for a software MPEG decoder, i.e., mpeg_play 
[23], was modified, and a timestamp function was inserted at 
each decoding step. The measurement was performed on 
SA1110-based platform using a test video clip. Fig. 5 shows 
the FD and FI time distributions for each frame when playing 

MPEG with a frames-per-second (fps) rate of 2. Fig. 6 depicts 
the same distributions for the maximum fps rate that the CPU 
can sustain (as high a fps rate as the CPU can sustain). In Fig. 
5, with fps = 2, the deadline is fixed at 0.5sec. Considering that 
decoding sequence of (IBBPBBPBBPBBPBB) for a GOP in 
Fig. 5 and Fig. 6, one can observe that the FD time varies 
greatly depending on the frame type and that it is longer for the 
I-frames and shorter for the B-frames.  

In Fig. 6, where a frame rate is not set, the decoding time 
varies depending on the frame type. Here the FI time is 
constant (~50 msec at the maximum clock frequency of 206 
MHz). Notice that there is a large amount of slack in the FI 
time in Fig. 5. Furthermore, notice that although the FD time 
varies considerably depending on the frame type, the FI time is 
nearly constant for a given frame type (the FI time depends on 
the pixel size of the given movie stream, which is obviously 
constant for the same movie.) These plots provide empirical 
evidence of the claims made earlier with regards to the FD and 
FI parts of the decoding steps and their relationship to the 
frame type. 

The typical operations performed in the FI part are memory-
intensive. Examples include reading and writing the pixel data 
in the dithering step and wiring the decoded frame data to the 
frame buffer in the display device. These operations result in 
many CPU stalls for the external memory transactions to be 
completed. The time required for a memory transaction is 
directly related to the memory clock frequency. Depending on 
the hardware design, memory bus clock frequency may or may 
not be affected by the CPU frequency scaling. For example, in 
the SA1110-based system the memory access timing is 
changed in lockstep with the CPU frequency [15] whereas in 
the XScale-based system [24], the memory bus frequency is 
determined by the external memory controller component 
independently of the CPU frequency.  
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Fig. 5. Decoding time with fps = 2 
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Fig. 6. Decoding time without setting any fps rate (as high a fps 

rate as the CPU can sustain) 

In Fig. 7, actual execution times of the FD and FI parts for 
each frame type are shown with changing CPU frequencies in 
the SA1110-based and XScale-based systems. Notice that in 
case of the SA1110-based system the FI time decreases as the 
CPU frequency increases (Fig. 7 (a)), whereas in the XScale-
based platform the FI time is nearly constant (Fig. 7 (b)). The 
rates of decoding time (∆TDecoding) and energy consumption 
(∆EDecoding) for processing a frame as a function of the CPU 
frequency change in both target systems are given below: 

SA1110-based : 
∆ = ∆ + ∆ ∆ = ∆ + ∆;   Decoding FD FI Decoding FD FIT T T E E E  (5)  

XScale-based :  

∆∆ = ∆ = ∆ = ∆ + ∆
∆

,  ( 0);   FI
Decoding FD Decoding FD FI

T
T T E E E

f
 (6)  

From these observations, it can be seen that the FI part can 
be used as a “timing buffer zone” in the SA1110-based system 
and an “energy saving means” in the Xscale-based system. 
More precisely, in the SA1110-based system where the 
memory access time varies according to the CPU frequency, 
the FI part can used as a kind of timing buffer zone to 
compensate for the prediction error of TFD because the 
workload during TFI is constant, and TFI can be adjusted by 
changing the CPU frequency. In the XScale-based system 
where memory clock is set independently of the CPU clock 
frequency, the CPU frequency during the FI part can be set to 
its lowest allowed value without causing an increase in the 
latency, resulting in significant amount of energy saving. 
However, note that in this case the timing error in the FD part 
cannot be compensated in the FI part. 
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(a) SA1110-based platform 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

333 400 466 533 600 666 733

Frequency [MHz]

T
im

e 
[s

ec
]

FD : I-type
FD : P-type
FD : B-type
FI  : I-type 
FI  : P-type
FI  : B-type

XScale-based

 
(b) XScale-based platform 

Fig. 7. FD and FI time variation over CPU frequencies on two 
different platforms 

IV. WORKLOAD PREDICTION AND ERROR COMPENSATION 

A. Workload prediction 

A DVFS algorithm for low-power MPEG decoding with 
large workload variation is presented in this section. The 
frame-dependent time prediction is performed by maintaining 
a moving-average of the frame-dependent time for each frame 
type (three averages, one per frame type). The frame-
independent time is not predicted since it is constant for a 
given video sequence as explained in the previous section. The 
expected frame-dependent time for an incoming frame is thus 
determined based on the moving average for the appropriate 
frame type. The effectiveness of the proposed frame-based 
workload prediction scheme is verified by calculating the 
prediction error ratio in B-frames, which usually exhibit the 
largest variation among the frame types. For the prediction, we 
tested both MA and WA scheme with different test video clips 
and found that both schemes showed similar prediction 
accuracies. So, we chose the MA scheme with a window size 
of six for the prediction. Results are shown in Fig. 8. The 
movie clip used in the experiment has 660 frames (320 × 240) 
including I-, P-, and B-type frames. Based on the measured FD 
time, the prediction error was calculated. Prediction errors for 
I-, P-, and B-type were 5 %, 3 %, and 10 %, respectively. In 
practice, because of the way the predictor function is 
constructed and the dynamic nature of its updating, the 
probability of such an occurrence is very small. However, 
these error rates could be different according to movie type, so 
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it is required to compensate the prediction error such that 
energy saving is maximized while a given deadline is kept. We 
considered two methods for prediction error compensation by 
separating the FD and FI parts; intra-frame compensation and 
inter-frame compensation. 
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Fig. 8. Errors in B-frame workload prediction 

We point out that the FI workload is always constant 
independent of the hardware platform. Now, the main 
motivation for intra-frame compensation in the SA1110-based 
system is that we can adjust the FI time by changing the CPU 
frequency. This is possible because the FI workload can easily 
be known after decoding only one frame. For the XScale-
based system, the constant FI workload results in a constant FI 
time due to the asynchrony between the off-chip memory 
access and the CPU as explained in the text. In the XScale 
developer’s manual, it is stated that, for stable operation, the 
CPU frequency should be at least three times larger than the 
memory clock frequency (100MHz). This is a platform design 
requirement and is the reason that the minimum CPU 
frequency is 333 MHz instead of the 266 MHz when the 
memory clock frequency is 100 MHz. For any valid setting of 
cpu and memory clocks in the XScale-based platform, we have 
observed a constant FI time. 

B. Intra-frame compensation with frequency dependent FI 

Intra-frame compensation method recovers FD time 
prediction error inside that frame itself, i.e., during FI part, 
such that the decoding time of each frame can be maintained 
as a given frame rate. For the implementation of intra-frame 
compensation method, it is required that the FI time should be 
varied as CPU frequency changes and this method can be 
applied to SA1110-based system. Prediction error in the FD 
part is compensated in the following FI zone by changing the 
CPU frequency/voltage. This is possible because the workload 
of the FI part is constant for a given video stream and easily 
obtained after decoding the first frame. The basic operation of 
the proposed intra-frame DVFS algorithm is shown in Fig. 9.  

The FD part comes first. Based on the frame type and the 
prediction of the required time for the FD part, 
voltage/frequency scaling is performed to minimize energy 
dissipation while meeting the predicted time. When a 
misprediction occurs (which is detected by comparing the 
predicted FD time with the actual FD time), an appropriate 
action must be taken during the FI part to minimize the impact 

of the misprediction. If the actual FD time was smaller than the 
predicted value, there will be no QoS degradation. Hence, we 
can scale down voltage during the FI time and further save 
energy while meeting the deadline (cf. “Over-predicted” of 
Fig. 9). On the other hand, if the actual FD time was larger 
than the predicted value, corrective action must be taken to 
preserve the required QoS. This is accomplished by scaling up 
the voltage and frequency during the FI part so as to make up 
for the lost time (cf. “Under-predicted” of Fig. 9). 
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Fig. 9. Intra-frame compensation 

To meet a given frame rate without deadline miss when FD 
workload is under-predicted, the following condition should be 
met; 

εε

= + ≤ ⇒

⎛ ⎞ ⋅ − +≤ ⋅ − =⎜ ⎟
⎝ ⎠

(1 )
1 where

FD FI
Decoding

FD FI

FI FD FD FI
FD

FD FI

W W
T D

f f

W f W W
f

W f D

 
(7)  

where D is deadline of a frame to be decoded, given as an 
inverse of a given frame rate, WFD is actual workload of the FD 
part, ε  is error rate in the workload prediction of the FD part, 
WFI is a constant workload during FI, fFD and fFI are CPU 
frequency during the FD and FI parts, respectively.  

In order to find out how much prediction error in the FD 
part can be recovered by using intra-frame compensation, the 
maximum tolerable error rate (εmax) was considered by setting 
fFI as fmax and it is given as follows;  

ε α
β

= +
−max

1
1

 
(8)  

where α and β are defined as the ratio of WFI /WFD and D• 

fmax/WFI, respectively, and fmax is the maximum CPU frequency 
supported. 

α value is different from different video sequence as well as 
different frame types of a given video clip and this intra-frame 
scheme cannot guarantee that one will never encounter a QoS 
degradation because it is possible that the under-prediction of 
the time needed for the FD part is so large that even the 
highest voltage/frequency level for the FI part is unable to 
make up for the lost time. This problem usually occurs more 
frequently in I-type frames (lower α) compared to P- or B-type 
frames (higher α), in the higher resolution video (lower α) 
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than lower resolution one (higher α), and at higher frame rate 
than at lower frame rate.  

We performed measurements of both FD and FI workloads 
using six different video clips and calculated average error 
rates for each frame type are summarized in Table I. Based on 
the measurement results, εmax for each test video is calculated 
as a function of deadline, i.e., frame rate, α,  and WFI as shown 
in Fig. 10. In Fig. 10, positive εmax represents the maximally 
allowed FD prediction error, whereas negative εmax value 
means that any prediction error (under-prediction) cannot be 
recovered using intra-frame compensation and causes 
deadline-missed frame. εmax increases as frame rate decreases 
and α value increases and it is found that intra-frame 
compensation method using the FI part as timing buffer is 
quite useful for test video (6). For this video sequence, up to 
100 % prediction error in the FD part can be recovered during 
the FI part at frame rate 1 and all frames would not miss the 
deadline considering that the maximum prediction error rate of 
this video is 13.39 in Table I. As we can see in Fig. 10, 
however, intra-frame compensation cannot guarantee stable 
frame rate for all kinds of video sequences and it is required 
another compensation technique called inter-frame 
compensation in which prediction error effect can be 
minimized. 
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Fig. 10. The maximum tolerable error rate for different video 

sequences 

C. Inter-Frame Prediction Error Compensation 

The concept of proposed inter-frame compensation 
technique is similar to that of considering “excess cycles” in 
the interval-based workload prediction techniques [1][2]. 
“Excess cycles” may be generated as a result of inaccurate 
estimation of the workload for the next time interval. They are 
positive (negative) if the selected CPU speed is lower (higher) 
than the required speed for the next time interval.  The same 
situation can arise during the MPEG decoding. In particular, 
for the current frame, we calculate the number of excess cycles 
due to an incorrect CPU speed setting and make use of this 
information to set the CPU frequency for the next frame. There 
is a commonly used technique in video rendering called error 
diffusion [25] in which the quantization error of previously 

quantized pixel is filtered and distributed forward to 
unquantized pixels such that much smoother image can be 
achieved. This technique can also be used for inter-frame error 
compensation and helps eliminate severe fluctuations in the 
video frame rate due to the prediction errors.  

When a prediction error (under-prediction or over-
prediction) occurs in the FD part of a frame, this error 
propagates to the subsequent frames and may cause an overall 
frame rate degradation (for the under-predicted decoding time) 
or energy waste (for the over-predicted decoding time) unless 
this error is compensated in following frame slots. Fig. 11 
illustrates the operation of the proposed inter-frame 
compensation technique for both the SA1110-based and the 
XScale-based systems. More precisely, the amount of error 
encountered in one frame is diffused over the succeeding 
frames whereby the CPU frequencies of the following frames 
are calculated by considering both their individual predicted 
workload averages and the number of transferred prediction 
error cycles from the previous frames. This error diffusion 
makes the prediction error to be localized into a small number 
of ensuing frames and allows it to be effectively compensated 
for by increasing (decreasing) the CPU frequency in case of 
over-prediction (under-prediction), resulting in smooth and 
graceful change in the frame rate and/or higher energy saving. 
As mentioned before, the I-type frame is the most sensitive to 
under-prediction error because it needs the largest time for the 
FD part. Notice that considering the typical frame sequence in 
the MPEG decoding where an I-type frame is followed by B-
type or P-type frames, under-prediction error in an I-type 
frame can be very well compensated in the subsequent frames. 
The proposed error diffusion technique may of course become 
ineffective if there are long sequences of under-predicted (or 
over-predicted) frames. However, in practice, this is an 
unlikely scenario to occur.  
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Fig. 11. Illustration of the inter-frame compensation technique 
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(9)  

where Wavg
FD is the average FD workload for the frame that 

is of the same type as the (i+1)st frame, Ti
err is the time 

difference between a target deadline D and the actual decoding 
time for the ith frame. D is in turn calculated as an inverse of 
the target frame rate. 

D. Simulation results 

In order to verify the effectiveness of proposed error 
compensation method, we performed simulations using 
profiled data of the FD and FI parts for six different video 
sequences. In this simulation, it is assumed that overhead for 
scaling is negligible.  

Energy consumption during the whole video session, E, is 
calculated from the operating voltage and frequency values of 
both SA1110-based and XScale-based systems as follows: 

( ) ( )
=

⎡ ⎤⋅ ⋅ ⋅ + ⋅ ⋅ ⋅⎢ ⎥⎣ ⎦∑
2 2

1

N
i i i i i i

FD FD FD FD FI FI FI FI
i

E C v f T C v f T  (10)  

where N is the total number of displayed frames, CFD (CFI) is 
the effective switched capacitance during FD (FI), TFD

i (TFI
i )is 

the elapsed time for FD (FI) of the ith frame, vFD
i (vFI

i) and fFD
i 

(fFI
i) are CPU operating voltage and frequency set during FD 

(FI) for ith frame, respectively.  
CFD and CFI are in general different. Furthermore, we expect 

that CFI is lower than CFD because the CPU is stalled during 
off-chip memory accesses which are commonplace during FI. 
Based on the measured CPU power dissipation in the XScale-
based system, the ratio of CFI  to CFD is calculated as ~0.76 at 
the maximum CPU frequency of 733 MHz. In our 
experimental results, however, we set this ratio to one. 

As a criterion to decide about the effectiveness of error 
compensation methods, we used the frame rate variance (FRV) 
at run time. FRV is defined as follows: 

( )
=

−∑
2

1 ,    

N
i
act target

ii
act i

fps fps
i

FRV fps
N T

 (11)  

where 
targetfps denotes the target frame rate. FRV represents the 

frame rate fluctuation during a whole session and it is one of 
key QoS factors in video applications. For the proposed DVFS 
policy we considered the following three cases: applying 1) no 
compensation (NC) 2) inter-frame compensation only (IC) 3) 
both intra-frame and inter-frame compensation (I2C). 
Simulation results for SA1110-based system with the test 
movie (1) are depicted in Fig. 12. From this figure, it can be 
seen that IC and I2C result in much lower FRV values 
compared to the NC case and achieve the target frame rate (3 
fps) after some “warm-up time”. This warm-up time is needed 
to collect statistics about the decoding time of various frame 

types so that the workload prediction for the next frame 
becomes accurate. Note that the NC case results in a frame rate 
of 3.3 fps which is larger than target frame rate, 3fps, resulting 
in higher energy expenditure. In addition, the FRV is much 
larger for the NC case compared to the IC and I2C cases. 
Finally, as expected the FRV is lower for I2C case, lower 
frame rate fluctuation can be obtained due to intra-frame 
compensation, resulting in more stable frame rates.  
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(a) NC 
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(b) IC 
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(c) I2C 

Fig. 12. Frame-rate fluctuation comparison : NC, IC, and I2C 

The FRV values for other test videos are summarized in 
Table II. Energy savings for all test videos are calculated with 
respect to the case without any DVFS and are summarized in 
Table III. Both IC and I2C achieve nearly the same degree of 
energy saving for the test videos (more than 80 % saving at 
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low target frame rates.) For the XScale-based system, we only 
used inter-frame compensation because the FI time is constant 
for all frequencies as mentioned earlier.  

Energy saving comparisons between two scenarios (i.e., 
with and without FD/FI decomposition) are presented for two 
different test movies in Fig. 13. Notice that the energy savings 
with or without FD/FI decomposition are calculated with 
respect to the case of no DVFS. All other energy saving data 
reported in subsequent figures or tables are also calculated in 
the same way.  

For the FD/FI decomposition scenario, the minimum 
frequency is set during the FI part while for the scenario 
without FD/FI decomposition, the same frequency is used for 
the FD and FI parts. From Fig. 13, we found that with the same 
target frame rate, a much higher CPU energy saving is possible 
at higher frame rates with the FD/FI decomposition. FRV and 
energy savings results of the proposed DVFS technique are 
reported in Table IV. 
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(b) Test movie (6) 

Fig. 13. CPU energy saving for with/without FD/FI 
decomposition (XScale-based) 

E. Energy consumption during the FI part 

The CPU power consumption during the FI part may be 
lower than that consumed during the FD part since during the 
FI part the CPU is stalled until a requested memory transaction 
is serviced. Meanwhile, the functional units inside the CPU are 
not utilized. In the XScale-based system, it is possible to set 
the minimum frequency during the FI part without causing any 
latency increase, which results in significant CPU energy 

saving. Note that the FI part cannot be used as a “timing buffer 
zone” to compensate for the workload prediction error using 
intra-frame method as can be done in the SA1110-based 
system. Instead of using the intra-frame compensation, the 
inter-frame compensation can be applied for the XScale-based 
system. 

V. IMPLEMENTATION 

To implement the frame-based prediction algorithm for low-
power MPEG decoding, the mpeg_play program was used and 
the required functions for calculating the moving averages and 
calculating the clock speeds and voltages were inserted in the 
player program. A device driver operating under the Linux OS 
environment was written to implement the CPU clock speed 
changes. Prediction of the decoding time for the next frame is 
based on the moving average (over the last six frames of the 
same type) as explained in Section II. In selecting the proper 
frequency value, the overhead of DVFS itself was also 
considered. For the hardware, we used two types of test beds 
having different performance. One is Intel’s StrongARM1110 
evaluation board [26] and the other is Intel’s XScale based low 
power platform designed at USC [27]. 

A. StrongARM1110 based evaluation board 

The hardware used is the Intel’s StrongARM 1110 
evaluation board, which supports 12 different frequencies 
ranging from 59 MHz to 221 MHz. A D/A converter was used 
as a variable operating voltage generator to control the 
reference input voltage to a DC-DC converter that supplies 
operating voltage to the CPU. Inputs to the D/A converter are 
generated using the general purpose input output (GPIO) 
signals. The extra hardware was designed, built and interfaced 
to the standard Intel Assabet board as a separate module. In 
Fig. 14, the block diagram of the variable voltage generator is 
shown.  Regarding color representation, components having 
same color are in the same board. 

 

12-bit serial 
D/A 

converter

DC-DC
converter

SA1110
processor

Registers

Assabet

Neponset
External 
circuitry

192
206

133
148
162
177

89
103
118

1.536
1.605

1.248
1.326
1.394
1.464

1.156
1.165
1.216

Freq.
[MHz]

Volt.
[V]

74 1.126
59 1.113

12-bit serial 
D/A 

converter

DC-DC
converter

SA1110
processor

Registers

Assabet

Neponset
External 
circuitry

192
206

133
148
162
177

89
103
118

1.536
1.605

1.248
1.326
1.394
1.464

1.156
1.165
1.216

Freq.
[MHz]

Volt.
[V]

74 1.126
59 1.113

 

Fig. 14. The variable voltage generator implementation in 
StrongArm 1110-based system 

 
When the CPU clock speed is changed, a minimum 

operating voltage level should be applied at each frequency to 
avoid a system crash due to increased gate delays. In our 
implementation, these minimum voltages are measured 
through extensive experiments and stored in a table so that 
these values are automatically sent to the variable voltage 
generator when the clock speed changes. Voltage levels 
mapped to each frequency are distributed from 1.1 V @59 
MHz to 1.605 V @206 MHz and shown in Fig. 14. 
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In anticipating the workload for the next frame, there is a 
discontinuity in the calculated workload between the lower 
frequencies (upper) and the higher frequencies (bottom) 
because when the CPU frequency changes, the memory clock 
characteristics are also affected, resulting in non-linear 
performance scaling, which is a typical occurrence in a 
StrongARM-based processor [15]. This phenomenon is 
illustrated in Fig. 15. To correct for this non-linearity, a weight 
factor for each frequency is extracted from the measurement 
and included in the workload calculation. 
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Fig. 15. Non-linearity in memory performance as a function of 
the CPU clock frequency 

B. XScale based testbed – Apollo Testbed 2 

The Apollo Testbed 2 (AT2), developed at USC, is a high-
performance and low-power embedded platform with high-
bandwidth wireless communication capability [27]. The photo 
of the main PC Board of the AT2 system is shown in Fig. 16. 
AT2 supports a number of peripheral devices such as a Web 
CAM, external FLASH, 16-channel, and a 100 K 
samples/second data acquisition system.  AT2 system is a 
complete Linux box in the sense that it provides support for a 
wide variety of I/O interfaces, allows multi-processing 
capability and in-system reconfiguration, permits accurate and 
high speed data acquisition for the complete system as well as 
for the individual modules in system (this is possible due to 
careful separation of the system power planes on the PC board 
layouts).  

 

 

Fig. 16. Main board with the CPU, memory, and memory 
controller 

Fig. 17 shows the data acquisition system in which the 
voltage drop across a precision resistor inserted between the 
external power line and the “design under test” (DUT) power 
line is used to measure the power consumption.  

A programmable clock multiplier (PLL) in the XScale 
processor generates the internal CPU clock which can be 
adjusted from 200 up to 733MHz in steps of about 66 MHz 
with the development-board speeds available only from 333 
MHz. The lower bound results from a constraint to the 
memory bus speed which is at 100 MHz in our system. The 
bus speed has to be less than one third of the CPU clock speed. 
This would yield a minimum speed of 333 MHz.  Running the 
system at CPU speeds slower than 333 MHz causes immediate 
halts. The main PCB of AT2 includes an on-board variable 
voltage generator which provides suitable operating voltage at 
each clock frequency level. The block diagram of the variable 
voltage generator and voltage levels for each frequency are 
shown in Fig. 18. 
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Fig. 17. Data acquisition system with split power plane 
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Fig. 18. The variable voltage generator implementation in 
XScale-based system 

VI. EXPERIMENTAL RESULTS 

The DVFS policies for MPEG decoding were implemented 
on the StrongARM SA1110-based evaluation board and 
XScale-based platform and results are discussed below.  

A. StrongARM-based Platform 

Due to the performance limitation of the StrongARM 
SA1110 processor and large scaling overhead, frame rates 
higher than 3 fps were not achievable. The overhead of DVFS 
itself is about 10 msec which is much larger compared to the 
reported value (~140 usec) [15] because in our implementation, 
a 12-bit serial D/A converter is used to control a DC-DC 
converter reference input to change CPU operating voltage. To 
set data value to the D/A converter it was required to generate 
a clock chain of 13 cycles (12 cycles to set 12-bit data and 1 
cycle to latch data) and this clock chain was generated via 
general purpose input output (GPIO) registers, causing large 
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timing overhead. Also, this D/A converter is located in the 
external circuitry connected to Neponset board via external 
wires as shown in Fig. 14 and this wire connection would 
cause additional timing overhead. One more reason for such 
large overhead is that we can only scale frequency at most two 
step-wide. If frequency is changed more than two steps, for 
example change frequency from minimum to maximum 
directly, our system crashed and we thought this phenomenon 
occurred due to unstable variable voltage generator we made. 
As a result, we performed measurements at frame rates of 1 
and 2 fps, which are somewhat low for real video applications, 
but are sufficient to demonstrate the capability of DVFS. For 
prediction error compensation, only intra-frame compensation 
was used since there were many time slacks during the FI part 
due to low frame rates. Fig. 19 and Fig. 20 show the power 
consumption in the system without and with DVFS while 
playing MPEG at fps = 1. The power consumption is measured 
at a 2 kHz sampling frequency. The CPU frequency is 206 
MHz without DVFS and, depending on the frame type, it is 
reduced down to 89MHz with the proposed DVFS technique. 
Average board-level power consumptions for both cases are 
2.94 W (0.49 A @6 V) and 2.46 W (0.41 A @6 V), 
respectively, which represent a 16 % reduction in the total 
system energy. By considering the efficiency of two DC-DC 
converters [28] (one is for 6 V to 3.3 V and the other is for 3.3 
V to the CPU supply voltage) 85 % and the power 
consumption of SA1110 is about 400 mW at 206 MHz 
according to the Intel SA1110 reference manual [26], then it 
may be concluded that the CPU energy consumption was 
reduced by about 87 % as a result of applying the proposed 
frame-type-based DVFS technique. Notice that it is not 
possible to directly measure the CPU power consumption in 
the Intel Testbed. Fig. 21 and Fig. 22 show the power 
consumption at fps = 2 and about 43 % of the CPU energy 
saving is achieved without no deadline missed frame. 
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Fig. 19. Power consumption without DVFS at fps = 1 
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Fig. 20. Power consumption with DVFS at fps = 1 
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Fig. 21. Power consumption without DVFS at fps = 2 
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Fig. 22. Power consumption with DVFS at fps = 2 

B.  XScale-based Platform 

The same measurements were performed in the AT2 system. 
Unlike StrongArm-based platform, there is linear performance 
scaling in the XScale processor. This is because the AT2 main 
board contains an external memory controller that isolates the 
CPU from the memory, and therefore, the memory bus clock 
speed (100 MHz) and the CPU clock speed become 
decoupled. For the 80200 XScale processor, the latency for 
switching the CPU voltage/frequency is 6 µsec at 333 MHz 
[24]. By using our data acquisition system, the power 
consumption of each component on the AT2 main board can 
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individually be measured and reported.  
Fig. 23 depicts the CPU power consumption while decoding 

an I-frame followed by a B-frame in which two different 
frequencies are set during the FI part (a) 666 MHz and (b) 333 
MHz. A 733 MHz is used for the FD part. As mentioned in the 
previous section, FI time, which contains the off-chip access 
latencies during “dithering” and “display”, does not change 
with the CPU frequency, 37 msec at both frequencies, whereas 
the average power consumption during the FI part is 
significantly reduced from 510 mW to 186 mW (64 % 
reduction) as a result of voltage scaling.  

We measured the actual CPU power consumptions while 
playing back six test video clips on the AT2 system with the 
proposed DVFS method and the results are summarized in 
Table V. From this table, it is seen that less energy is required 
by separating the FD and FI parts (cf. the FD/FI Decom 
columns) compared to the case without workload 
decomposition (cf. the No-Decom columns). Furthermore, as 
frame rate becomes higher, the energy saving difference 
between the two cases (with and without decomposition) 
becomes higher. This is because FI time portion in the allowed 
decoding time for a frame increases as frame rate increases. 
We acknowledge that we have not exactly implemented any of 
the previous DVFS approaches on our platform to see how 
they perform. However, as stated above, our key contribution 
is to recognize that the frame workload can be divided into FI 
and FD parts, which behave quite differently with respect to 
CPU voltage and frequency scaling. None of the previous 
work does anything like this (they basically consider the FD 
part only and ignore the fact that the FI part may be used as 
either “timing buffer” or “energy saving means” to increase the 
energy saving.) We show in Table V the relative performance 
of DVFS without decomposition and DVFS with workload 
decomposition as compared to the base line without any DVFS. 
We can think of previous work on DVFS for the MPEG 
decoder as being in essence similar to the reported results 
without workload decomposition.  
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(a) FD : 733 MHz, FI : 666 MHz 
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(b) FD : 733 MHz, FI : 333 MHz 

Fig. 23. Decoding time and power consumption at different CPU 
frequencies 

Finally, Fig. 24 shows the effectiveness of inter-frame 
compensation method. With this compensation scheme, the 
run-time frame rate smoothly converges to the target frame 
rate (here, 13 fps). Notice that the frame rate diverges from the 
target rate without this compensation, resulting in wasted CPU 
energy. The reason that the divergent rate is higher (rather than 
lower) than the target frame rate is that the I- and P-frames 
need the maximum frequency to meet the deadline, and they 
are unaware of the positive timing slacks that are carried over 
from the previous B-frames. 
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Fig. 24. Frame rate variation with “inter-frame” compensation 
method 

VII. CONCLUSION 

A frame-based workload prediction algorithm for DVFS in 
MPEG decoding was proposed and implemented on two 
different platforms, a StrongARM-based portable system for a 
low performance and an XScale-based AT2 system for a high 
performance system. In this DVFS, each frame type is handled 
individually for more accurate decoding time prediction. The 
whole decoding time for a frame is divided into two parts: 
frame-dependent and frame-independent. During the FI part 
the required operation is memory intensive and the amount of 
workload is same over all frame types in a given video 
sequence. To avoid QoS degradation due to misprediction, two 
error compensation methods are proposed: intra-frame and 
inter-frame compensation. Using this property, the FI period is 
used as a timing buffer when misprediction occurs in FD 
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TABLE I 
TEST VIDEO SEQUENCES SUMMARY (SA1110-BASED) 

FD workload (X106) α Avg. prediction error Video clip name Frame 
size 

# of 
frame I P B 

FI workload 
(X106) I P B I P B 

(1) Terminator2 352 × 240 150 43.11 34.15 17.33 14.98 0.35 0.44 0.86 7.22 4.29 7.57 
(2) Siberian Tiger 320 × 240 634 64.91 55.11 29.97 13.00 0.20 0.24 0.43 2.7 5.77 6.62 

(3) Deploy 352 × 288 725 22.80 12.73 13.19 17.10 0.75 1.34 1.30 6.66 4.91 3.02 
(4) Wg_wt 304 × 224 331 32.33 15.24 - 11.80 0.36 0.77 - 8.34 15.71 - 

(5) Badboy2 480 × 208 666 22.00 19.28 18.71 17.10 0.78 0.89 0.91 17.27 16.01 9.02 
(6) Final3 160 × 120 500 14.25 12.64 7.89 7.92 0.56 0.63 1.00 5.06 7.5 13.4 

 
TABLE II 

FRV SIMULATION SUMMARY – SA1110 ( * : NUMBERS IN PARENTHESIS ARE FOR TEST CASE (6)) 

(1) (2) (3) (4) (5) (6) fps* 
IC I2C IC I2C IC I2C IC I2C IC I2C IC I2C 

2 (4) 0.12 0.003 0.002 1E-04 0.116 0.003 0.135 0.011 0.016 1E-04 0.259 0.007 
3 (5) 0.038 3E-04 0.002 0.002 0.069 9E-05 0.08 6E-04 0.004 7E-05 0.181 1E-04 
4 (6) 0.007 0.001 0.022 0.022 0.038 3E-05 0.042 3E-04 0.001 5E-04 0.121 8E-04 
5 (7) 0.02 0.019 0.416 0.416 0.017 8E-05 0.019 2E-04 0.016 0.016 0.077 3E-04 
6 (8) - - - - 0.005 5E-04 0.013 0.008 0.081 0.081 0.042 2E-04 

 

workload prediction. When applied to a dedicated MPEG 
player, more than 87 % and 80 % of CPU energy was saved by 
the proposed DVFS scheme in both low and high performance 
platforms, respectively. 
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TABLE III 
ENERGY SAVING SUMMARY – SA1110 ( * : NUMBERS IN PARENTHESIS ARE FOR TEST CASE (6)) 

(1) (2) (3) (4) (5) (6) fps* 
IC I2C IC I2C IC I2C IC I2C IC I2C IC I2C 

2 (4) 78.57 78.9 69.36 69.41 83.36 83.38 80.26 80.27 80.94 80.89 82.53 82.52 
3 (5) 63.95 64.54 47.99 46.62 72.46 72.46 66.01 65.73 67.94 67.7 77.13 77.06 
4 (6) 46.18 45.82 22.77 20.34 59.45 59.29 52.22 52.86 52.16 52.27 70.82 70.82 
5 (7) 29.11 28.01 - - 46.58 46.45 33.68 31.62 38.8 39.04 63.7 63.66 
6 (8) - - - - 33.66 33 6.455 5.869 13.81 13.64 57.4 57.55 

 
TABLE IV 

SIMULATION RESULTS SUMMARY – XSCALE ( * : NUMBERS IN PARENTHESIS ARE FOR TEST CASE (6)) 

(1) (2) (3) (4) (5) (6) fps* 

FRV 
Energy 
Saving 

FRV 
Energy 
Saving 

FRV 
Energy 
Saving 

FRV 
Energy 
Saving 

FRV 
Energy 
Saving 

FRV 
Energy 
Saving 

10 (28) - - 0.016 77.715 - - - - - - 0.031 82.444 
11 (29) - - 0.032 70.554 - - - - - - 0.02 80.648 
12 (30) 0.132 81.861 0.073 63.038 - - - - - - 0.03 78.461 
13 (31) 0.051 78.139 0.163 54.858 - - 1.144 81.214 0.028 80.473 0.07 75.901 
14 (32) 0.049 72.226 0.364 43.974 - - 0.442 77.489 0.075 76.212 0.146 72.69 

15 0.125 66.622 - - 0.03 79 0.148 73.164 0.177 71.059 - - 
16 0.327 60.283 - - 0.007 74.911 0.077 67.099 0.417 63.914 - - 
17 - - - - 0.016 68.241 0.044 60.112 - - - - 

 
TABLE  V 

ACTUAL MEASUREMENT RESULTS SUMMARY – XSCALE ( * : NUMBERS IN PARENTHESIS ARE FOR TEST CASE (6)) 

(1) t2 (2) st (3) dp (4) wg (5) bd (6) fi fps* 
FD/FI 
Decom 

No-
Decom 

FD/FI 
Decom 

No-
Decom 

FD/FI 
Decom 

No-
Decom 

FD/FI 
Decom  

No-
Decom 

FD/FI 
Decom 

No-
Decom 

FD/FI 
Decom 

No-
Decom 

10 (27) - - 77.26 73.147 - - - - - - 81.337 80.881 
11 (28) 80.791 80.463 68.448 55.49 - - - - - - 82.168 82.042 
12 (29) 79.883 79.681 60.26 43.391 - - - - 79.508 79.33 81.616 81.849 
13 (30) 74.763 71.599 48.213 25.361 - - 77.043 75.272 78.988 78.848 81.272 81.654 

14 68.69 40.45 40.804 2.5972 73.27 57.94 69.311 60.593 75.734 71.339 - - 
15 57.845 22.166 - - 65.311 35.526 60.003 41.333 60.721 46.986 - - 
16 52.701 4.0561 - - 60.208 4.2396 54.281 28.227 59.128 0.585 - - 
17 52.399 3.3786 - - 59.241 0.7792 44.884 9.4696 - - - - 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 


