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Motivation

< Power has become a major consideration in VLSI design
Q Power consumption will increase significantly in next few years

Q High power consumption increases the packaging and cooling cost
and decreases the system reliability

Q The battery technology cannot keep pace with the VLSI technology
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Power Saving Techniques

¢ Voltage and process scaling

< Low k dielectric and copper interconnect

< Power-aware compiler and architecture design
< Power control and management techniques

% Dynamic voltage and frequency scaling based on
workload

» Better cell library design and resizing methods
< Circuit design techniques

< Low power-driven bus encoding techniques

< Low power design methodologies

% Power-conscious synthesis and design tools
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Dynamic Power Management (DPM)

< Itis a system level power optimization technique

< DPM causes transitions between the system power
modes to reduce power or energy dissipation while
meeting the performance constraints

< ldle or under-utilized components can be shut down
or slow down

< Policy refers to the type and timing of the power
mode transition. Finding an optimal power
management policy is a complex problem even for a
simple system

A Simple Example of DPM
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Heuristic Approaches

Service Requestor Service Provider

ﬂ o = e——— Q {*ON”, “OFF"}

Service Requester

T t Inter-arrival time T
—_—

Service Provider

|

Heuristic Policies

< Greedy policy
Q Turn on the server when request comes
Q Turn off the server when it is idle
Q Does not consider switching penalty
< Time-out policy
Q Turn on the server when request comes
Q Turn off when the server has been idle for Ty eshoid
Q No formal way to decide optimal T, eshoid
O Waste power during time-out
Q Performance penalty of wake up
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Predictive Policy

< Srivastva, Chandrakasan, et, al. 1996
Q Predict t, based on the history
O Regression analysis based predictor
Q If tigeli] > Tiresno: turn off the device.
Q Turn on the device as soon as request comes

< C.H. Huang, et. al. 1997
Q Pre-wakeup the device after it has been idle for t iy,
O Reduces timing penalty in wake up, but consumes more power

Stochastic Based Approach

®,

¢ DPM based on Discrete Time Markov Decision Process
(DTMDP) by L. Benini et. al., 1998
Q The system is modeled as DTMDP
Q The optimal policy is obtained using Linear Programming (LP)
Q Significant improvement in theoretical framework
O Limitations:
e Some assumptions are not practical
e The state transition probability is difficult to obtain

e Power Manager (PM) needs to send control signal in every time-
slice

7
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Operating System-directed Power
Management (OSPM)

0S

“controls” system
resources. It can also

control the power states

of the resources

ACPI

Need to d eveIOp (Advanced Configuration and
power managem ent Power Interface)

Power Consumption —

ACPI - Power Saving Modes

policies provides an interface
between the OS and
System resources

Program 1 = Program 2
Application Program Interface
Kernel
Device Drivers

System Resources

Monitor CPU Hard Disk

A Simple Power-managed System
Power Manager (PM)

1 ! oy ary
e aLamm Cheline!
Tt 1 ) wowew e org
L o
Service Queue (SQ)

Q«——

Service Provider (SP) Service Requestor (SR)
< Asingle SP, a SQ and a SR

< The request inter-arrival time, service time and SP
switching times are assumed to follow exponential
distribution

< The System is modeled as a Continuous Time Markov
Decision Process (CTMDP)
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A Complex Power-managed System

SQ

1 s
R IR E-»% P,

> Lsimmas (nifoe!

T ]

Service Requestor (SR) b SP,
o

L

Power Manager (PM) + SQ« : ._
Request Dispatcher (RD) RIW E =

Service Queues _ _
< Multiple SP's, SQ's and SR's Service Providers
< Complex system behavior and components interaction

< The system is modeled as a Controllable Generalized
Stochastic Petri Net (CGSPN)

Continuous Time Markov Process

ai-j ¢ stochastic process: a family of
’ ..» random variables {X(t), t=0}
¥ Y 3
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Controllable Markov Process

.y,
.
o,

o ST e 7A@ G9)
i J G5 g@ -a,a)

0
tran

_q:lN(SN)

g; can be controlled by command a;
Action a;: A command taken in state i

Action Set A;: Available commands in state i

Deterministic vs. Randomized Policy

< Policy (m): The set of state-command pairs
<i, a(t)>, a(t)UA,
< Deterministic policy
Q The action a(t) is chosen from A; with probability 1
< Randomized policy
Q The action alJA, is chosen with probability p’(t)
QY p (t)=1,a0A
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Controllable Markov Process With Cost

. G)..¢; -
D State Cost Rate:
C. 1 - _
i 1) )8 a@=6+Ya @
----- =
aj-,i(a) Cj,l

c;: System cost per unit time if system stays in state i

cj: System cost if system makes a transition from state i to
state |

Markov Decision Process

SyStle[n Cost: p._,(1): state probability of |
I : at time T if the system initial
G avg llqrytj(;;pbi(r)cjdr state is i

The system cost in a Markov decision process is policy
dependent

Policy optimization: Find an optimal policy /7 such that the
average cost is minimized

Stationary policy: g(t) (or p% (t) ) is the same for all times

Theorem: A stationary policy is optimal for the Markov
decision process
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Constrained Markov Decision Process

< The system contains an objective cost ¢_obj and
several constraint costs ¢_con

Q Definitions of ¢_obj and ¢_con are system-dependent
< Constrained policy optimization

Minimize,, (c_obj™,,)

suchthat:c_con™,, < Constraint

i,avg

< Theorem: If the constraint is inactive, the optimal
policy is a deterministic policy, otherwise it may be a
randomized policy

Simple DPM System Modeling:
Overview

» Each component is modeled as a CTMDP

» The entire system is modeled as a composition of the
individual component models

» The generator matrix of the composed model is
calculated using a Tensor sum operation

» Special effort is expended to correctly handle the
synchronization between SP and SQ

» The idle and busy states of the SP are separated;
Transitions from busy to idle state is not controllable

» Constraints are applied to the action sets to ensure that
the overall model is reasonable. This also ensures that
the policy optimization problem can be solved
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Service Provider (SP)

Required information: power

modes, actions, parameters

pow(s) Power consumption

M(s) Average service speed

1 xs s; Average transition time

ene(s;, §) Energy cost

. o
......
.~ Py
--------------

S={active,, active,, wait, sleep}

A={go_active,, go_active,, go_wait, go_sleep}

Busy state vs. Idle State

States: busy, idle, power down
%{_J

active state

busy - corresponding idle
Idle — power down or idle or
corresponding busy

Xbusy, idle = M
Xidle, busy = 0

Xidle, power down =Xa, power down
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Generator Matrix of SP

The parametric generator
matrix Ggp(a) is a
function of a (action)

Js,sj (a) =d(sj,a) Dxs S0 Si 7 S

051 s (a) = —Sjéa Us’sj (a)

1 sisthedestination state
&(s, a) = of actiona

0 otherwise

Single Service Queue (SSQ)

A

Q) g

A "/ A
() () 1(9)

< Shortcomings

QO Assumes all requests have the same priority, which is not true
in general

O Can only use one delay constraint, which is not flexible enough
to handle different types of requests
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Priority Service Queue (PSQ)

A simple priority queue in OS

Low Incoming
T
SP i+ Priority Request

W

Abstract model

Correlation State representation:
LSQ «——— HSQ (4, hg)

Correlation: Request in LSQ can be serviced only
when there is no request in HSQ

Service Requester (SR)

Tror,
~N N
A(ri) r. r. A
Anr) , J I
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System Model

< The system (SYS) can be modeled as the composition
of the Markov processes of SR, SP and SQ

O state set: X=SxQxR - {invalid states where SP is busy and SQ
is empty}

Q generator matrix Ggys(@) gives the state transition rates under
action a

Q Action set: A, for each state x

Policy Optimization

o

» Linear Programming
Q Optimal randomized policy (global optimal)
» Non-linear Programming
Q Optimal deterministic policy
Branch & Bound Algorithm
Q Optimal deterministic policy
Policy Iteration

Q Modification of conventional unconstrained optimization
algorithm

Q Only finds optimal deterministic policy with certain property

e

0.0

X3

o
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Some Variables to Measure CTMDP

@ Tiai: expectation of the time that the system will be in state i and
a is chosen 77 =1/ o}
J#
o x: frequency that th state is i and action a, is taken (state
action prob X A

° pfj‘i . probability that the next system state is j if current state
is i and action a is taken p’ =0’ /> of

I#i
° yia : expected cost during the time the system stays in state i

and ais taken ) = ¢ 7% + 3¢ !

PR
t| N

Calculate Variables In Our System

% Three different Via‘

C_pow® =c_pow,z} +3" _c_ pow;p;

c_lIsg* =c_lsgr?
c_hsg* =c_hsg, 7
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LP Based Optimization

Minimize ., (2, X'C_POW®) |\ o op,

q X a; a; q
subject to: 3, x¥ =37, ¥, X pjf =0,i0X

. a8 _
LiXe X 0 =1 Property of
: CTMDP
xia‘ >0
] g
i>-x'c_hsg™ <D
i za‘ Rk H Performance
2i2a Xiai C_ISqia‘ <D_ constraints

< Only gives the randomized policy

NLP Based optimization

< A NLP based optimization approach is used to find
the optimal deterministic policy

Q Deterministic policy: for each state i, there is only one g
that x* #0

Q Not an ILP because Xi"’“ may not be an integer
0 x*[x* =0,aa 0A,aza , ZA(A-1)/2 more constraint

Minimize{xiq} (Zi Zai X'C_ pow")

Minimize{xiai} (AZ| Zai:tl,ai JOA )gai D(il +Zi Zai Xiaic— pOVV'Ai)
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Motivation for Branch-Bound

< Branch-and-bound is used to solve the ILP

< Decision in each state has a significant impact on
the system performance and power consumption

Q Prune inefficient policies early on

Decision Tree for Brand-and-Bound

Partial decision
problem

{a,, b}

Level 3

Predictor(pr): optimal
randomized policy of the
partial decision problem

Prune operator: pr <
best policy

Page 17
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Policy Iteration

< Policy iteration: dynamic

. Random 1t
programming <
Q Unconstraint optimization Caculategn
{

N
Do ia,ij g]'=0 For each state i, determine the action a thatJ
i=1

minimizes ¢, calculate new o;; and ;.

. v
m— ;i i ~TU
gr=c +Zaﬁjcj
= New policy=old NO
n N policy
n — ~& 3 AT g Tt
¢t =c + D onc +1) ol g] VES
=1 = ¥
done|

Modified Policy Iteration

System Model |
Ve
Palicy Iteration
—_Algorithm

If the delay is larger than
constraint then increase
w, otherwise decrease w

Isdelay of thepolicy NO
within certain range of
the delay constraint?

joint cost, = c_pow,+wid_delay,

YES

. Satisfy the constraint by changing
Crbsiing the weight of ¢_con in joint cost

policy
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Policy Iteration Based Optimization

< Convex policy: (p;, d;)
O 0.p<p=d>d

Qo,Lp>p>p=
(di_dj)/(pj_pi)<(d|_di)/(pi_p|)

Del f;y

< Proposition: The output of the modified policy
iteration algorithm is an optimal convex policy
which satisfies the performance constraint

Experimental Results: Simple DPM
System With SSQ

< System model
Q A SP with three power mode: active, sleep, standby
Q High power consumption when the SP is busy
O When SP is active, average service time is 8ms
Q Two different distribution for SP transition time (TD)
e Exponential distribution (Exp) & uniform distribution (Uni)
Q A SQ model with length 20

State | sleep| stdby | idle | busy
P (W) | 0.13| 0.35 |0.95| 2.15
lu@s)| O 0 0 |0.008

E (J) | sleep|stdby |idle T, (s) | sleep|stdby | idle

sleep| O 51 |7.0 sleep 0 06 | 1.6

stby [ 0.006| 0O 2 stdby | 0.3 0 1.2

idle | 0.067(0.001 | O ide | 0.67| 0.4 0
Page 19
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Input Trace

< SR has one requestor generation state
Q Average requestor inter-arrival time is 0.72 sec
Q Five different distribution (RD)
e Exponential distribution (Exp)

e Combination of exponential distribution & Pareto distribution
(Exp&Par)
e Pareto: f(t)=1-at®
e Has longer idle time than exponential distribution
e Combination of two exponential distribution (Exp & Exp)
e Uniform distribution (Uni)
e Normal distribution (Nor)

Exponential distribution Exp + Pareto distribution Exp + Exp distribution

o0g

05
o0y
05
o000 =
04

sssssss

Inter-arrival time (s) Inter-arrival time (s) ’ ) |=ntéur-$rri§u/ajuti r%e?s)

Experimental Policies

< Always on policy

O Reasonable choice for system with high switching penalty
< Time-out policy

Q Three SP power modes: busy, idle, sleep

Q Vary time-out period to obtain a set of performance-power
trade offs

< N-policy
Q Three SP power modes: busy, idle, sleep

Q turn on the server when there are N requests waiting and
turn off the server when there are no requests

O Optimal deterministic policy if the system has only two
states

Q Vary the number N to obtain a set of performance-power
trade offs

Page 20

20



Experimental Policies (cont.)

< Theoretical CTMDP policy
Q Three SP power modes
O Four SP power modes

Q Vary performance constraint to obtain
a set of performance-power trade offs

< Modified CTMDP policy: CTMDP-
Poll

Q The PM will re-issue the command if
the system has been idle for a long
time, so that the probability for turning
off is increased

Q Three SP power modes: active, idle,
sleep

Q Vary performance constraint to obtain
a set of performance-power trade offs

Send command:
(pon =06 Posf = 0-4)

'

SP has been». Yes
idle for 2sec

lNo

Make new decision

Experimental Results (1)

300000

Exp. TD, Exp RD

¢ Always On
m Greedy

250000 )
A N-Policy

¢ Time Out

o 3CTMDP
200000

+ 4CTMDP
o CTMDP-POLL

Power

150000 -

L4

100000 196 om +m@a+omm o mOo WoOEE o

50000

=}

o (o}
F 30nd36

0.01 01  Performanc

e

1

10
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Experimental Results (2)
Uni. TD, Exp RD
250000 -
o’
*
* e
+ Always On ¢ A
4 1 'Y
200000 u Greedy
A N-Policy ¢ o
# Time-Out . A
© 3CTMDP
+ 150000 |—+4CTMDP d A
";’ B CTMDP-POLL . A A
[}
o
A
100000 1 o B0 ON@Y- {Gm {8 O mo+ OB@ @4 O m O L om om &
+ A
+ A
4
50000 ‘
0.01 01 Performance 1 10
Experimental Results (3)
500000 Exp. TD, Exp & Par RD
¢ # gt t°+ 4 Qo @ ° oo
+ o
B Ty °
¢ Always On -] . + [
400000 -—® Greedy -
A N-Policy s v+ °
4 Time Out .‘
. o 3CTMDP ¢ g 4
g ¢ =
g 300000 +—+ 4CTMDP . .
.
o B CTMDP-POLL
¢ 3 B A
d . +
AR 344 oy "
+
200000 -
)
Ok
A
A
100000 T T T
0.001 0.01 0.1 1 10
Performance
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Experimental Results (4)

Uni. TD, Exp & Par RD

700000
. o Always On
B Greedy
600000 . a N-Policy —
¢ Time-Out
500000 ° 0 3CTMDP
¢ O o 4O O QO+ 4CTMDP
o ¢ B Q + 9;. (@] +
5 "a + o = CTMDP-POLL
2400000 - ¢ . o N
g ‘e o0 ‘. +
=)
300000 - e ¢}
IA A
+
oA +
200000 @ .A+q'
og
AL
100000 : :
0.001 0.01 0.1 1 10
Performance
Experimental Results (5)
Exp. TD, Exp & Exp RD
180000 | | & AWaYS On =
= Greedy .
A N-Policy
160000 | _ *
& Time-out
0 3CTMDP *
140000 19 4 4cTMDP .
s CTMDP-POLL
5 *
20000 -
2
E * A
100000 *
] m A
46 00 H{00B-B-To¢ ©pE G %uon ",
80000 1 + o
o
Q
60000 - +
+ +%,
40000 : : :
0.001 0.01 1 10

0.1
Performance
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Experimental Results (6)
Uni. TD, Exp & Exp RD

250000
230000 4 PN
*
210000 —— & Always On
s Greedy A
190000 +— .
A N-Policy
170000 +—— & Time Out 3
o .
o 0 3CTMDP
< 150000 +— .
(@] +4CTMDP ‘
o . N
130000 ——| @ CTMDP-POLL .
* A
110000 o
* A
90000 $0 oomH® Hmmo ppmen fp EY 5
+ o
=] .OA
70000 . -
A
50000 ‘ ‘ ‘ +
0.001 0.01 0.1 1 10
Performance
Experimental Results (7)
300000 Exp. TD, Uni. RD
+ Always On -
= Greedy *
250000 |+ 4 N-Policy .
+ Time-out N
.
o 3CTMDP
200000 - + 4CTMDP - N
) @ CTMDP-POLL
=
o) . A
o
150000 .
*
100000 ¢ @ o o= © mowm @+0 D@ B+ om omy on A
+ A
s
50000 ‘ ‘
0.01 0.1 1 10
Performance
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Experimental Results (8)
Uni. TD, Uni. RD
300000
¢ Always On
» Greedy "
250000 A N-Policy
. ¢ Time Out
0 3CTVMDP . .
200000 +4CTMDP Y
= A
0 @ CTMDP-POLL
2 .
2 A
150000 ¢ A
A
100000 -4 @ ofbn $Of@F  Df DO @+ [ %) B )
+ , o8
A
+ A
oy
50000
0.01 0.1 1 10
Performance
Experimental Results (9)
Exp. TD, Nor. RD
300000
|
¢ Always On * A
= Greedy
250000 A N-Policy *
¢ Time-Out A
o 3CTMDP
200000 +4CTMDP ¢ A
5 o CTMDP-POLL
2 A
g
150000 * -
A
*
©OPOLe+ O+ 08 P+ o+ o+ o o o#
100000 [5] [5] oo o [5] [} o o m] [u] q - A
LA
50000 T T
0.01 01 Performance ! 10
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Power

300000

Experimental Results (10)

Uni. TD, Nor. RD

250000

< Always On
= = Greedy

200000

A N-Policy
® o « Time-out
o 3CTMDP

150000 -

100000

+4CTMDP —
@ CTMDP-POLL

emmomp+ OO 4@ OGm & + - - o [} a o &

50000

0.1

1 10
Performance

Analysis

The stochastic policies out perform the heuristic
policies

The stochastic policies can provide power delay
trade off

Three state CTMDP policy is not efficient with input
sequence with Exp & Pareto inter-arrival time

CTMDP-poll policy solves the above problem

Four state CTMDP is robust in different TD, RD
distribution
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0.0

2
0‘0

Experimental Results: Simple DPM
Systems With PSQ

System model
Q A SP with three power mode

Q A SR model with two states r, and r,, Ggg(r,.r,)=1/200,
Gggr(r,.r)=1/400, A(r,)=1/30, A, (r,)=1/50, A(r,)=1/60, A, (r,)=1/90

O A SQ model with a LSQ of length 3 and a HSQ of length 2
Two different workload trace
O Exactly same as theoretical model (exponential distribution)

A Uniform distribution of request inter-arrival time (instead of
exponential distribution)

Results for Trace 1

45.00% |
40.00% +| |
35.00% o Timeout
30.00% - | Tout=20
] 0 Timeout
zsoou ]
15.00% 1| o Timeout
. - Tout=60
10.00% 71 | m Greedy
5.00% -
0.00% <l

Power Improvement of Our approach vs. Heuristics
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Results for Trace 2

30.00% -
25.00% - o Timeout
20.00% - Tout=20
0 Timeout
15.00% - Tout=40
o Timeout
10.00% 1 Tout=60
5.00% - m Greedy
0.00% -

Power Improvement of Our approach vs. Heuristics
< Nearly same delay values

Generalized Stochastic Petri Nets For
Complex DPM System

< CTMDP is not efficient in modeling complex systems
O Need to construct system model manually

< Generalized Stochastic Petri Nets (GSPN)
Q Graphical tool for the formal description of complex system
Q Widely used in complex system performance analysis
@ Construction is straightforward from system behavior
a

Captures synchronization, mutual exclusion and conflict
information easily

Q GSPN can be transformed to CTMP
< Controllable Generalized Stochastic Petri Nets (CGSPN)
QO CGSPN can be transformed to CTMDP

System \\// ]
Behavior g COSPN B g CTMDP o Sl
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Outline of Part lli

< GSPN background
< Finding the embedded CTMP of a GSPN
< Introducing Controllable GSPN

< Complex power managed system modeling
@ Component modeling
Q Entire system modeling

GSPN Primitives

Place: condition or situation

Token
Q Marking m(p): #of tokens in p
Q System marking m: system state
Transition: events

O Timed transition (exponential Pon
distribution) R(t)

O Immediate transition

switch_on

t

Input arc: I(t, p) switch_off
o tOp, pO't (6420, M(P)=0, M(Poun)=0
Output arc: O(t, p) m=10,0.1]
Q thp, pOt U,
Inhibitor arc: H(t, p)
Q tf°p, pOet
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GSPN Enabling and Firing Rules

< tis enabled in marking m iff

Q Op O-t, m(p) =2 I(t, p) and Op O °t, m(p) < H(t, p)
< Firing of t

Q Removes I(t, p) tokens from °t

O Deposits O(t, p) tokens into t*

t

switch_on
pon poﬁ pqueue
0 1 1
tprocess 1 0 1
P, 1 0 0
0 1 0
F)on F’queue
tswitch_off

GSPN Enabling and Firing Rules (cont.)

< A timer is associated with timed transition t

Q When t is enabled, timer is set to a random value and
starts counting down

Q When timer reaches 0, t fires and resets the timer

< Immediate transition always has higher priority than
timed transition

Q tangible marking: no immediate transition is enabled
Q vanishing marking: at least one immediate transition is

enabled
& o
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Conflict Transitions

<« Effective conflict

Q Firing of one transition will disable another enabled
transition

<« Free choice conflict

Q Effective conflict transitions, which are always enabled at
the same time

Py P,
\ P
t2
t; t,
P, Ps P, P
Effective conflict Free choice conflict

Resolving Conflict

< Conflict timed transitions
Q Transition with the shortest associated time fires first

< Conflict immediate transitions
Q Transition fires under randomized choice

Q Each conflict immediate transition is associated with a
weight w,

Q The probability of firing an immediate transition t, is

W
> Wj

t; isenabled inm

P(ty Im) =

Page 31

31



SPN and CTMP

< SPN is GSNP without immediate transitions

<« SPN with a finite reachability set is isomorphic to a
CTMP
O CTMP states space: the reachable markings of SPN

Q 9m, m; : sum of the rate of transitions which moves SPN from
m; to m

Reachable
Markings -
— \

Transition
Rate: m;-m;

GSPN and CTMP

< For each GSPN with finite reachability set, there is a
unique embedded CTMP

Q State space: tangible markings of GSPN

O Steady state probability and state transition probability are the
same as that of the tangible markings in the GSPN

Too many

vanishing marklngs Reachable ——+ Tangible
Marklngs Markings
GSPN CTMP
Transition Rate: J

m;, - vanishing markings - ... 4
g 9 Indirect

transitions
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Convert GSPN to SPN

E XS

¢ Eliminate all of the vanishing markings by removing

immediate transitions and vanishing places from the

PN model

GSRN| || B SHHSEN | ||| I CTIME

GSPN With Cost

Impulse cost:
O Associated with transitions

Rate cost

Q Associated with places
Can be converted to CTMP
with cost

Q Rate cost:

m = 2c(p)
pdP
Q Transition cost:

>c(t)

rm’m, =
t:m[t>m’

C(tswitch on)=2J: Energy for turn on

C(tswich o =0.1J: Energy for turn
off

c(Pon)=m(P,,)2.5W: “on” power
C(Poi)=M(Py)0.1W: “off” power

c(pqueue):m(pqueue): #of waiting
requests in queue

t

switch_on

switch_off
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Controllable GSPN

< A controllable GSPN is a GSPN where the weights of
all or part of free-choice-conflict immediate transitions
can be controlled by outside commands
O Corresponds to a controllable CTMP
O Need to find the set of weights that minimizes the cost

o =RE) (Em-m)

Example of Controllable GSPN

pSWItCh A pqueue B
SWItCh A
pdecisioan
req B work B
pwork A

pwork B
tswitcth pswitcth

_ t4
treq_A

pdecisionfB
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Unit Server System Modeling: Basic
Elements

% The CGSPN model contains
Q Places set: {p[power]_[serv]_[status]}
e Models SP status

e One for each different power mode, different service speed or
different SP state (busy, idle or switching)

Q Places pg,
e Models service queue

Q Timed transitions: {t;,eq (sen work!
e Models service providing procedure

Q Immediate transitions {t;,,,eq (sen) go_work!
e Synchronizes SP and SQ

Q Timed transitions {tsp) power fserv [switcht

e Models the activity that the SP switches from one power mode to
another

Unit Server System Modeling: Power
Management Elements

% To model power management Switching
procedure, the GSPN must contains: - to sleep

Q p[power]_[sen/]_decision’ l . Read State
e Vanishing place Stayin *Info & make
- - I %P9 decision
e Models the short period when SP is +—
receiving command Stay in
sleep
Q p[power]_[sen/]_interrupt
e Vanishing place l Read State
- Go to
® M(Piemp)=1. the.re is interrupt 1 qtive InzjoeﬁsTo?\ke
[ M(pime"upt)zo, no interrupt
® “Pinemupt SENSitivity events iwelltgtirugg
Q t[power]_[serv]_[stgtus] . N l Read State
e Controllable immediate transitions Info & make
o Models the switching command that decision
will be issued by PM 1
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Example of the Unit Server System

t

s_decision

psﬁdecisio

Ps idle

t

s_interrupt
@ l:s_ignore
Pa_inter Tt Ps_interr
a_interr
Power mode: active (a), sleep (s)

p_mode status Single service type

active Idle, go2s Controllable transitions: {t, ; t, o} {ts_1. ts 2}

sleep Idle, go2a PM recheck the system state every time reaching a new state

Request Generating System

< The RGS generates different types of requests
O Request can be serviced by one or more Service Provider
< The request generation takes some amount of time
O Request inter-arrival time

<« The temporal correlation between different types of
requests can be modeled
Q prob(j| i) is known

< The request generation is stopped if SQ is full
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Example of Request Generating System
Modeling

Type A - Server A

Type B - Server B

Type AB - Server
A or Server B

Dtgen(A) = F1(Pgen (A)1) OF2(Pa_s0.5)
Dtgen(B) = FL(Pgen(B)1) OF2(Ps_s0.3)

SQg capacity =3 Dtgen(28) = F1(Pgen (AB).1) D(F2(Pe_s0-3) UF2(PA_s0:9))

Two SP’s: A, B
SQ, capacity = 5

Entire System

< Connect unit server and requestor generator models with
input/output/inhibitor arcs
Q If type i request can only be serviced by one SP: “a“ in power
mode “p” with service type “serv”

e Connect ty, (1) t0 P, , sen so

Q If type i request can be serviced by multiple SP’'s
® A place Pyesion(i)
o A set of immediate transitions tgp(i)
e t (i) may be controllable to model the request dispatcher
® (1) = Pyecision(): ()" = Pisp_powen_fsen1 so “Paecision(l) = tgen(l)

@ Connect sensitivity transitions t0 Py [power_[serv]_interrupt

O Captures the interaction between the server and the request
generator
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Example of Muti-server System
Modeling

RGS o
tgen(A)
Pa_s_interrupt
tA(AB ) s i
Pdecision(AB .A(j pA—a_'me"UPtQ

— !

USS,

tgen(AB)

tgen(B)

< SPA is sensitive to the power mode of SPB
< SPB is not sensitive to the power mode of SPA
< Both are sensitive to the incoming of request

Non-exponential Distribution

< The GSPN model requires that each timed transition
follows an exponential distribution

< Approximate the non-exponential distribution using
the stage method

o) ~ 6(s) m o @
1 —2 Fe) N9 a, (\@/g)
h® L(Sz HE) CEFE) HHE) G(s)=F(s) + H(s)

f f - N e i /1
fy 2 ' G(9)=a, ;ﬁlﬁz A (S, Jﬂj :

'_‘Q
NQ
wQ
]

a+B=11<isr
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Real Implementation of Stage Method

< In real implementation, r = 3
< Use curve fitting to determine g, and g, 1 <i<r

.2
Real distribution
0.15
P SR Y
—— =1
oD_as =2
1 z 3 1

GSPN Model for Non-exponential timed

activity

Stage_3
Stage_2

9 —
Sreget P, b
P H 1-a O_>
[ S
T %
EN a —

< We use the stage method to approximate the non-
exponential inter-arrival time of requests with r = 3
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Experimental Results: Complex DPM
System

< System model
Q Two SP’s (SP, and SPg) has the same functionality
Q SPA
e Average service time: bms
e pactive=2.3W, Pwaiting=0.8W, Pseeping=0.1w
Q SPp
e Average service time: 3ms
® Daciive=4.0W, Puaiting=0.8W, Psieeping=0.1W
O Two SQ's each with capacity two
O Request can be serviced by both SP’s

O The switching time and energy for both SP’s
are also known

Comparison Results (1)

0.257
0.2
|| @ pA=0.2, pB=0.8
0.157 0 pA=0.4, pB=0.6
] O pA=0.5, pB=0.5
0-11 B pA=0.6, pB=0.4
0.057 pA=0.8, pB=0.2
LA | 4

P0\9ver Improvement of Our approach vs. Heuristics
< Base case:
Q Greedy DPM policy for the servers
0O Randomized policy (pA, pB) for the dispatcher

< More than 20% power saving
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Comparison Results (lI)

0.16
0.1551

0.151 O pA=0.2, pB=0.8
0.145" O pA=0.4, pB=0.6

0.14- || DOpA=0.5, pB=0.5
0.135" || HpA=0.6, pB=0.4

0.131 — pA=0.8, pB=0.2
0.1251

0.12- el

Power Improvement of Our approach vs. Heuristics
< Base case:
Q Timeout DPM policy for the servers
O Randomized policy (pA, pB) for the dispatcher

< More than 13% power saving

0.5

Comparison Results (lll)
0.4

0 pA=0.2, pB=0.8

0.3 0 pA=0.4, pB=0.6

0 pA=0.5, pB=0.5

0.2 B pA=0.6, pB=0.4

0.1 PA=0.8, pB=0.2
0 L~ 4

Power Improvement of Our approach vs. Heuristics

< Base case:
Q Local optimal DPM for the servers
0 Randomized policy (pA, pB) for the dispatcher

< More than 20% power saving
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Conclusions

< We introduced a new and complete model for simple
and complex power managed systems

< Policy optimization techniques based on the proposed
system model were presented

< The proposed dynamic power management methods
outperform the existing approaches
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